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Statistical modeling and maximum entropy



Statistical modeling

(Berger, Della Pietra, Della Pietra, 1996)

Statistical modeling addresses the problem of constructing a stochastic
model to predict the behavior of a random process. In constructing this
model, we typically have at our disposal a sample of output from the
process. Given this sample, which represents an incomplete state of
knowledge about the process, the modeling problem is to parlay this
knowledge into a representation of the process. We can then use this
representation to make predictions about the future behavior about the
process.



Statistical modeling for machine translation

* What's the correct French translation of the English word "in"?
* If you don't know French, all French words might seem equally plausible

* Statistical machine translation: Use data to find the translation
e Data: you see translations produced by an expert

* Observation 1: it is always translated to a word from the set
{ dans, en, a, au cours de, pendant }

* Observation 2: 30% of the times, the translation is from the set
{ dans, en }

* Observation 3: (something about context around English word "in")



Statistical modeling for species distributions

(Phillips, Dudik, Schapire, 2004)

Where in North America do we find the Yellow-throated Vireo (YV)?

* A priori: all locations in North America seem equally likely to me
* Data: locations of YV sightings in North America

* Also have environmental measurements for all North American locations
(e.g., annual rainfall, average daily temperature, elevation)

* Goal: Construct distribution over North American locations that agrees with

the environmental measurements of locations where YV was sighted




General problem setup

* Finite domain X (e.g., all locations in North America)
* Let gy be the "default model"” you would've picked before seeing any data
(e.g., g = uniform distribution on X'), a.k.a. "base measure”
* Measure some "features" of the information source

* Get average (i.e., expected) values of n "feature functions"
Ti: X -> R

Example:
T,(x) = annual rainfall (in inches) at x
T,(x) = I{x is in the forest}
Let b; be the average value of T; in the information source
Default model g, may not be consistent with these measurements!

So what model should you choose instead?



Maximum entropy (maxent) principle

Maxent principle: Choose model as close to default model as possible

while being consistent with measurements New notation:
min RE(p, go) 1= ) p(Of ()
st.p[Ti| =b; Vi=1,..,n =
. , _ p(x) _ p
Recall: RE(p, q) = Xyex p(x) logq(x) =P [log q]

* If qq is uniform, then RE(p, q,) = —H(p) + log |X'| (hence "maxent")

* Objective function is strictly convex, and constraints are linear!



Form of maxent solutions

Theorem: Whenever the maxent problem is feasible (and excluding a
measure-zero set of (b4, ..., b,,)), the solution has the form

pAG) = o exp (z AT, <x>> 00(x)

for some "parameter vector" A = (14, ..., 4,,), where

Z(A) = 2 exp (2 AiT; (x)) qo(x)
=1

XEX
e Distributions of this form are called Gibbs or Boltzmann distributions

* Also related to exponential families (where g, need not be probability dist.)



Gibbs distributions

* The Gibbs distributions (corresponding to Ty, ..., T,, and g,) form a
parametric family of distributions {p;: 4 € R"}

* Each p, is an "exponential tilting" of the base measure g,
* Suppose T,(x) = I{x isin the forest} and A, = —2.1

* Then a location in the forest is exp(—2.1) = 0.12 as likely (according to p;) as
a location not in the forest (all else being equal):

p;(x) _ exp(A Ty (x) + A, To(x) + +++)
pa(y)  exp(4 T (y) + 4,TL(y) + )




Geometric interpretation

do
* Notation: 0
e T(x) = (Ty(x), ..., T,;(x))
* (A ' T)(X) =MT; (X) Tt AnTn(x) _“P/l*
e b= (by,..,b,) < d

* Feasible set: P = {p € A : p[T] = b}, an affine set

* Maxent problem: Find p € P that minimizes RE(p, q,)
* Like "projection” of g, onto P, except notion of "distance" is relative entropy

* Gibbs distributions (basedon T, q5): Q = {p; : 1 € R"}

* [t turns out whenever P # @, then maxent solution is the unique
distribution in both P and (the closure of) Q



Deriving the form of maxent solutions



Method of Lagrange multipliers

* Maxent: Findp € P = {p € A : p|T] = b} that minimizes RE(p, q,)
* To each constraint p[T;| = b;, associate a Lagrange multiplier A;

* Lagrangian function: for A = (44, ...
Affine in A

L(p,4) = RE(p, q0) {Ep D

* Maxent problem is Convex'in p

min sup L(p, A)
PEA JeRrn

12



Convex duality

Maxent problem satisfies conditions for a minmax theorem:

min sup L(p,A) = sup
PEA JeRrn AERT

Dual objective function
A min L(p, )

Question: For fixed A, what p € A minimizes L(p, 4)?

Donsker-Varadhan inequality: forany f: X’ - Randallp,q € A

RE(p, @) = plf] —logqlexp(f)]
* SoL(p,A) = —logqylexp(A1-T)] +A-b

. Furthermore@ = —logqylexp(4-T)] -@ Dual objective function

If A* maximizes dual objective, then p,~ is maxent solution
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Connection to maximum likelihood estimation

* Suppose b is empirical average of T on data set x%, ..., x™ € X

1 m
b = RX T(x))
Jj=1

* Consider family of Gibbs distributions Q; how to estimate parameter A?

* Log-likelihood of p; (treating data set as i.i.d. sample) is

UC j

Dual objective function!
 Maximum likelihood estimation for Gibbs distributions = maximum entropy
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Recap (so far)

The following are equivalent (for essentially all b):
* Distribution p that minimizes RE(p, q,) subject to p|T] = b
* Gibbs distribution

p(x) = exp((1 - T)(x)) qo(x)

Z(A)
satisfying p,|T] = b

* Maximum likelihood Gibbs distribution p; (when b = Ez}nﬂ T(xf))



Log partition function



Log partition function

* Normalization quantity used to ensure p; is a probability distribution

Z() = ) exp((- (X)) o)

xeX
is also called partition function

 Can also write as Z(1) = qylexp(A1 - T)]
* Can also interpret as moment generating function for T(X) where X ~ g,

* Logarithm of partition function is called
G(4) =logZ(A) =logqolexp(A-T)]

* Can write
py(x) = exp((A- T)(x) — G(D)) qo(x)



Properties of log partition function G(A)

e Convex!
* Proof via Holder's inequality

e Strictly convex iff Ty, ..., T, are affinely independent (on g,'s support)

* Affine independence: A, T; + .-+ A,,T,, is constant iff Ay =-- =4, =0
* Proof via equality case of Holder's inequality

* Gradient of G(A) w.r.t. /1

OB ;CT(x) exp((2- T)(®)) 4o (x)
= > TGP () = palT]
xeX

* Note: If G is strictly convex, then VG is 1-to-1!



The link between parameter spaces

Theorem: VG is 1-to-1 and VG(R™) = M° = {p|T] : p € A}’

Natural parameter space Mean parameter space
VG ,
S, 4§ [T]
A :l.,‘ 'II
« |
ve)™

R™ M*



Exclusion of boundary points

In previous theorem, boundary points of M are excluded

e Example: X = {0,1}, T(x) = x, qo(x) = %
e Suppose b = 1, which is a valid "mean parameter":
p|T] =D
forp(0) =0, p(1) =1

 Cannot realize p;|T] = 1 by a Gibbs distribution since

p;(0) >0
forevery A e R®



Information projection
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Information projection

* Maxent solution also called information projection of g, onto P

p* = argmin RE(p, q,)
pEP

* In fact, for any other p € P, we have a "Pythagorean identity"
RE(p, q0) = RE(p,p”) + RE(p”, qo)



Proof of Pythagorean identity

For simplicity, assume p* = p; € Q (a Gibbs distribution)

Pa
RE(p, q0) — RE(p1, q0) = RE(p, q0) — p2 [log—

do

= RE(p,q0) —palAd - T — G(A)]
= RE(p,q¢) —plA-T - G(D)]

Pa
= RE(p,qp) —p [108_

=P

=P

do
logﬁ — logp—/1
- 4o do
p
lOg— RE(p' p/l)
Pa




Iterative projection algorithm

e Start with p° = q,
eFort =1,2, ...
* Picksomei € {1,..,n},andlet P, ={p € A : p|T;] = b;}

e Let p¢ = argmin RE(p, p*~1)
PEP;

* By Pythagorean identity,
RE(p*, p*) = RE(p*,p*~") — RE(p%, p*™")



Regularized maxent
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Relaxing the expectation constraints

(Dudik, Phillips, Schapire, 2004)
e Suppose b = %Z}fnzl T(xj) for dataset x1,..,xmM € X

 Evenifxl,..,x™isi.i.d. sample from true information source ptrye,
we typically will not have b = ptryelT], so

* Relaxed maxent problem: Find p € A that minimizes RE(p, q,) while satisfying
IpIT;] — bl <B; Vi=1,..,n

* Regard f3; = 0 as "tuning parameters", based on deviation bounds for sample averages

* Dual objective (again, derived using method of Lagrange multipliers):

sup@xp@ TD Zﬁjm
AERM

Original dual objective
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Performance guarantee

* Pickany 6 € (0,1), and assume:

e T;: X > [0,1] and 5; = B = /log(2n/8)/(2m) foralli = 1, ...,n

e x1 ..., x™isi.i.d. sample from pirye

* b; = iZ}”lei(xj) foralli=1,..,n

* With probability at least 1 — 9, solution to relaxed maxent problem
D, satisfies

Ptruellogpy<] = fuﬂg (Ptruellogpal — 2l[Al15)
(= n
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