Maximum entropy models

Daniel Hsu COMS 6998-7 Spring 2025

Statistical modeling and maximum entropy

Statistical modeling

(Berger, Della Pietra, Della Pietra, 1996)

Statistical modeling addresses the problem of constructing a stochastic model to predict the behavior of a random process. In constructing this model, we typically have at our disposal a sample of output from the process. Given this sample, which represents an incomplete state of knowledge about the process, the modeling problem is to parlay this knowledge into a representation of the process. We can then use this representation to make predictions about the future behavior about the process.

Statistical modeling for machine translation

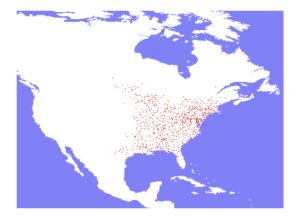
- What's the correct French translation of the English word "in"?
 - If you don't know French, all French words might seem equally plausible
- Statistical machine translation: Use data to find the translation
- Data: you see translations produced by an expert
- Observation 1: it is always translated to a word from the set { dans, en, à, au cours de, pendant }
- Observation 2: 30% of the times, the translation is from the set
 { dans, en }
- Observation 3: (something about context around English word "in")

Statistical modeling for species distributions

(Phillips, Dudík, Schapire, 2004)

Where in North America do we find the Yellow-throated Vireo (YV)?

- A priori: all locations in North America seem equally likely to me
- Data: locations of YV sightings in North America
- Also have **environmental measurements** for all North American locations (e.g., annual rainfall, average daily temperature, elevation)
- **Goal**: Construct distribution over North American locations that agrees with the environmental measurements of locations where YV was sighted





General problem setup

- Finite domain \mathcal{X} (e.g., all locations in North America)
 - Let q_0 be the "default model" you would ve picked before seeing any data (e.g., q_0 = uniform distribution on \mathcal{X}), a.k.a. "base measure"
- Measure some "features" of the information source
 - Get average (i.e., expected) values of n "feature functions"

$$T_i: \mathcal{X} \to \mathbb{R}$$

• Example:

 $T_1(x) =$ annual rainfall (in inches) at x $T_2(x) = \mathbb{I}\{x \text{ is in the forest}\}$

- Let b_i be the average value of T_i in the information source
- Default model q_0 may not be consistent with these measurements!
- So what model should you choose instead?

Maximum entropy (maxent) principle

Maxent principle: Choose model as close to default model as possible

while being consistent with measurements

$$\min_{p \in \Delta} \operatorname{RE}(p, q_0) \qquad p[f] \coloneqq \sum_{x \in \mathcal{X}} p(x)f(x)$$

s.t. $p[T_i] = b_i \quad \forall i = 1, ..., n$

New notation:

• Recall:
$$\operatorname{RE}(p,q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = p \left[\log \frac{p}{q} \right]$$

- If q_0 is uniform, then $\operatorname{RE}(p, q_0) = -H(p) + \log |\mathcal{X}|$ (hence "maxent")
- Objective function is strictly convex, and constraints are linear!

Theorem: Whenever the maxent problem is feasible (and excluding a measure-zero set of $(b_1, ..., b_n)$), the solution has the form

$$p_{\lambda}(x) = \frac{1}{Z(\lambda)} \exp\left(\sum_{i=1}^{n} \lambda_i T_i(x)\right) q_0(x)$$

for some "parameter vector" $\lambda = (\lambda_1, ..., \lambda_n)$, where

$$Z(\lambda) = \sum_{x \in \mathcal{X}} \exp\left(\sum_{i=1}^{n} \lambda_i T_i(x)\right) q_0(x)$$

- Distributions of this form are called Gibbs or Boltzmann distributions
- Also related to **exponential families** (where q_0 need not be probability dist.)

Gibbs distributions

- The Gibbs distributions (corresponding to $T_1, ..., T_n$ and q_0) form a parametric family of distributions $\{p_{\lambda} : \lambda \in \mathbb{R}^n\}$
- Each p_{λ} is an "exponential tilting" of the base measure q_0
 - Suppose $T_2(x) = \mathbb{I}\{x \text{ is in the forest}\}$ and $\lambda_2 = -2.1$
 - Then a location in the forest is $\exp(-2.1) \approx 0.12$ as likely (according to p_{λ}) as a location not in the forest (all else being equal):

$$\frac{p_{\lambda}(x)}{p_{\lambda}(y)} = \frac{\exp(\lambda_1 T_1(x) + \lambda_2 T_2(x) + \cdots)}{\exp(\lambda_1 T_1(y) + \lambda_2 T_2(y) + \cdots)}$$

Geometric interpretation

- Notation:
 - $T(x) = (T_1(x), ..., T_n(x))$
 - $(\lambda \cdot T)(x) = \lambda_1 T_1(x) + \dots + \lambda_n T_n(x)$ • $b = (b_1, \dots, b_n)$

- q_0 Q $p_{\lambda^{\star}}$ \mathcal{P}
- Feasible set: $\mathcal{P} = \{p \in \Delta : p[T] = b\}$, an affine set
- Maxent problem: Find $p \in \mathcal{P}$ that minimizes $\operatorname{RE}(p, q_0)$
 - Like "projection" of q_0 onto \mathcal{P} , except notion of "distance" is relative entropy
- Gibbs distributions (based on *T*, q_0): $Q = \{p_{\lambda} : \lambda \in \mathbb{R}^n\}$
- It turns out whenever $\mathcal{P} \neq \emptyset$, then **maxent solution** is the unique distribution in both \mathcal{P} and (the closure of) \mathcal{Q}

Deriving the form of maxent solutions

Method of Lagrange multipliers

- Maxent: Find $p \in \mathcal{P} = \{p \in \Delta : p[T] = b\}$ that minimizes $\operatorname{RE}(p, q_0)$
- To each constraint $p[T_i] = b_i$, associate a Lagrange multiplier λ_i
- Lagrangian function: for $\lambda = (\lambda_1, ..., \lambda_n)$

$$\mathcal{L}(p,\lambda) = \operatorname{RE}(p,q_0) - \sum_{i=1}^{n} \lambda_i (p[T_i] - b_i)$$
$$= \operatorname{RE}(p,q_0) - p[\lambda \cdot T] + \lambda \cdot b$$
• Maxent problem is Convex in p

 $\min_{p \in \Delta} \sup_{\lambda \in \mathbb{R}^n} \mathcal{L}(p, \lambda)$

Convex duality

Maxent problem satisfies conditions for a **minmax** theorem: $\min_{p \in \Delta} \sup_{\lambda \in \mathbb{R}^n} \mathcal{L}(p, \lambda) = \sup_{\lambda \in \mathbb{R}^n} \min_{p \in \Delta} \mathcal{L}(p, \lambda)$

> Dual objective function $\lambda \mapsto \min_{p \in \Delta} \mathcal{L}(p, \lambda)$

Question: For fixed λ , what $p \in \Delta$ minimizes $\mathcal{L}(p, \lambda)$?

Donsker-Varadhan inequality: for any $f: \mathcal{X} \to \mathbb{R}$ and all $p, q \in \Delta$ RE $(p,q) \ge p[f] - \log q[\exp(f)]$

- So $\mathcal{L}(p, \lambda) \ge -\log q_0[\exp(\lambda \cdot T)] + \lambda \cdot b$
- Furthermore, $\mathcal{L}(p_{\lambda}, \lambda) = -\log q_0 [\exp(\lambda \cdot T)] + \lambda \cdot b$ Dual objective function If λ^* maximizes dual objective, then p_{λ^*} is maxent solution

Connection to maximum likelihood estimation

• Suppose *b* is empirical average of *T* on data set $x^1, \ldots, x^m \in \mathcal{X}$

$$b = \frac{1}{m} \sum_{j=1}^{m} T(x^j)$$

- Consider family of Gibbs distributions Q; how to estimate parameter λ ?
- Log-likelihood of p_{λ} (treating data set as i.i.d. sample) is

$$\log \prod_{j=1}^{m} \frac{p_{\lambda}(x^{j})}{q_{0}(x^{j})} = \dots = m(-\ln q_{0}[\exp(\lambda \cdot T)] + \lambda \cdot b)$$

Dual objective function!

• Maximum likelihood estimation for Gibbs distributions = maximum entropy

Recap (so far)

The following are equivalent (for essentially all *b*):

- Distribution p that minimizes $RE(p, q_0)$ subject to p[T] = b
- Gibbs distribution

$$p_{\lambda}(x) = \frac{1}{Z(\lambda)} \exp((\lambda \cdot T)(x)) q_0(x)$$

satisfying $p_{\lambda}[T] = b$

• Maximum likelihood Gibbs distribution p_{λ} (when $b = \frac{1}{m} \sum_{j=1}^{m} T(x^{j})$)

Log partition function

Log partition function

• Normalization quantity used to ensure p_{λ} is a probability distribution

$$Z(\lambda) = \sum_{x \in \mathcal{X}} \exp((\lambda \cdot T)(x)) q_0(x)$$

is also called partition function

- Can also write as $Z(\lambda) = q_0[\exp(\lambda \cdot T)]$
- Can also interpret as **moment generating function** for T(X) where $X \sim q_0$
- Logarithm of partition function is called $_____ G(\lambda) = \log Z(\lambda) = \log q_0[\exp(\lambda \cdot T)]$
- Can write

$$p_{\lambda}(x) = \exp((\lambda \cdot T)(x) - G(\lambda)) q_0(x)$$

Properties of log partition function $G(\lambda)$

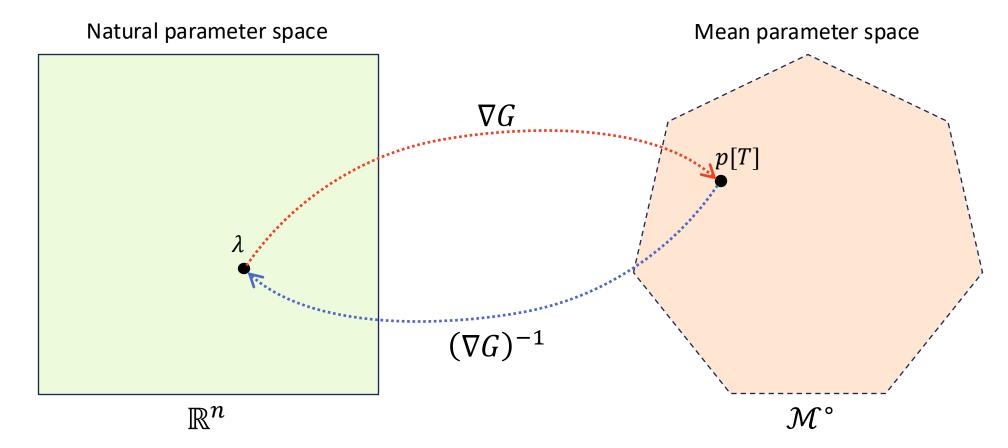
- Convex!
 - Proof via Hölder's inequality
- Strictly convex iff T_1, \ldots, T_n are **affinely independent** (on q_0 's support)
 - Affine independence: $\lambda_1 T_1 + \cdots + \lambda_n T_n$ is constant iff $\lambda_1 = \cdots = \lambda_n = 0$
 - Proof via equality case of Hölder's inequality
- Gradient of $G(\lambda)$ w.r.t. λ :

$$\nabla G(\lambda) = \frac{1}{Z(\lambda)} \sum_{x \in \mathcal{X}} T(x) \exp((\lambda \cdot T)(x)) q_0(x)$$
$$= \sum_{x \in \mathcal{X}} T(x) p_\lambda(x) = p_\lambda[T]$$

• Note: If G is strictly convex, then ∇G is 1-to-1!

The link between parameter spaces

Theorem: ∇G is 1-to-1 and $\nabla G(\mathbb{R}^n) = \mathcal{M}^{\circ} \coloneqq \{p[T] : p \in \Delta\}^{\circ}$



Exclusion of boundary points

In previous theorem, boundary points of ${\mathcal M}$ are excluded

- Example: $\mathcal{X} = \{0,1\}, T(x) = x, q_0(x) = \frac{1}{2}$
- Suppose b = 1, which is a valid "mean parameter":

$$p[T] = b$$

for p(0) = 0, p(1) = 1

- Cannot realize $p_\lambda[T]=1$ by a Gibbs distribution since $p_\lambda(0)>0$

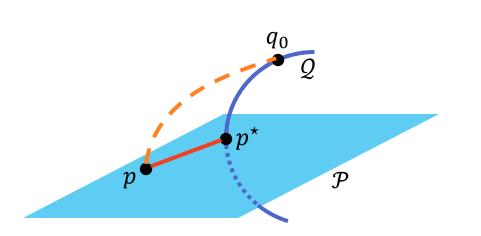
for every $\lambda \in \mathbb{R} \otimes$

Information projection

Information projection

• Maxent solution also called **information projection** of q_0 onto \mathcal{P} $p^* = \operatorname{argmin} \operatorname{RE}(p, q_0)$

 $p \in \mathcal{P}$



• In fact, for any other $p \in \mathcal{P}$, we have a "Pythagorean identity" $\operatorname{RE}(p,q_0) = \operatorname{RE}(p,p^*) + \operatorname{RE}(p^*,q_0)$

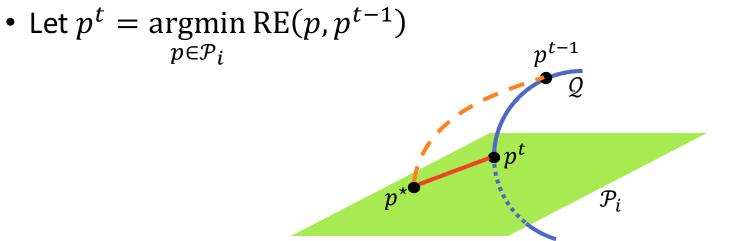
Proof of Pythagorean identity

For simplicity, assume $p^* = p_\lambda \in Q$ (a Gibbs distribution)

$$\operatorname{RE}(p, q_0) - \operatorname{RE}(p_\lambda, q_0) = \operatorname{RE}(p, q_0) - p_\lambda \left[\log \frac{p_\lambda}{q_0} \right]$$
$$= \operatorname{RE}(p, q_0) - p_\lambda [\lambda \cdot T - G(\lambda)]$$
$$= \operatorname{RE}(p, q_0) - p \left[\lambda \cdot T - G(\lambda) \right]$$
$$= \operatorname{RE}(p, q_0) - p \left[\log \frac{p_\lambda}{q_0} \right]$$
$$= p \left[\log \frac{p}{q_0} - \log \frac{p_\lambda}{q_0} \right]$$
$$= p \left[\log \frac{p}{p_\lambda} \right] = \operatorname{RE}(p, p_\lambda)$$

Iterative projection algorithm

- Start with $p^0 = q_0$
- For t = 1, 2, ...:
 - Pick some $i \in \{1, ..., n\}$, and let $\mathcal{P}_i = \{p \in \Delta : p[T_i] = b_i\}$



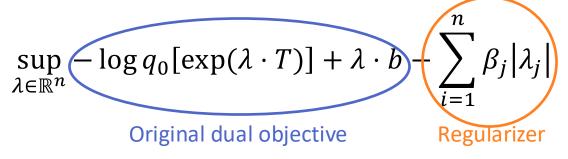
• By Pythagorean identity, $\operatorname{RE}(p^{\star},p^{t}) = \operatorname{RE}(p^{\star},p^{t-1}) - \operatorname{RE}(p^{t},p^{t-1})$

Regularized maxent

Relaxing the expectation constraints

(Dudík, Phillips, Schapire, 2004)

- Suppose $b = \frac{1}{m} \sum_{j=1}^{m} T(x^j)$ for data set $x^1, ..., x^m \in \mathcal{X}$
- Even if $x^1, ..., x^m$ is i.i.d. sample from true information source p_{true} , we typically will not have $b = p_{true}[T]$, so doesn't make sense to require p[T] = b
- Relaxed maxent problem: Find $p \in \Delta$ that minimizes $\operatorname{RE}(p, q_0)$ while satisfying $|p[T_i] b_i| \leq \beta_i \ \forall i = 1, \dots, n$
 - Regard $\beta_i \ge 0$ as "tuning parameters", based on deviation bounds for sample averages
- Dual objective (again, derived using method of Lagrange multipliers):



Performance guarantee

• Pick any $\delta \in (0,1)$, and assume:

•
$$T_i: \mathcal{X} \to [0,1]$$
 and $\beta_i = \beta \ge \sqrt{\log(2n/\delta)/(2m)}$ for all $i = 1, ..., n$

• x^1, \dots, x^m is i.i.d. sample from p_{true}

•
$$b_i = \frac{1}{m} \sum_{j=1}^m T_i(x^j)$$
 for all $i = 1, ..., n$

- With probability at least $1-\delta,$ solution to relaxed maxent problem p_{λ^\star} satisfies

$$p_{\text{true}}[\log p_{\lambda^*}] \ge \sup_{\lambda \in \mathbb{R}^n} (p_{\text{true}}[\log p_{\lambda}] - 2\|\lambda\|_1 \beta)$$