Notes on maximum entropy

Daniel Hsu

February 17, 2025

1 Maximum entropy
e Problem setting

— Suppose you want to model an unknown distribution over a (finite) set X’ (e.g., the set
of all English words).

— Let distribution ¢g be the “default model” you would pick absent any other information
(e.g., o = uniform over X).

— Then, you measure some “features” of the distribution.

* You get the average (i.e., expected) values of n “feature functions”
Ti: X >R, i=1,...,n

where expectation is with respect to the unknown distribution.

- For example:

Ti(x) = 1{z ends in a vowel}

T(xz) = number of characters in z

x Let b; denote the average value of T;.

- Note: In typical applications, you won’t have the actual average value of T;, but
rather just some noisy version of it. For example, we may have an i.i.d. sample

zb, ..., 2™, and we obtain

Let us ignore this detail for now.

— The default model (a.k.a. base measure) ¢y is not necessarily consistent with these
measurements.

— What model should you pick?



e Maximum entropy (maxent) principle: Choose model to be as close to gy as possible
while being consistent with the measurements:

in  RE(p,
min (. 00)

s.t. EXNp[TZ‘(X)] =b;, 1=1,...,n.

Here, minimization is over probability distributions A over X, and RE(p,q) denotes the
relative entropy (or Kullback-Leibler (KL) divergence) from p to ¢:

=Y pl) = Ex~p [m Z&(i]

TEX

Note: Shannon used the term “relative entropy” for something else.

— Why the name “maximum entropy”? If ¢ is the uniform distribution, then

zeX

where

=— > plz)Inp(x

reX

is the (Shannon) entropy of p (switching from logarithm base-2 to natural logarithm).
So minimizing RE(p, qo) is the same as maximizing H(p).

— Important property of p — RE(p, qo): (strict) convexity.

e Theorem: If maxent problem is feasible, then (for almost all measurement values by, ..., by)
solution has the following form:

pa(z) = Z(1>\)6Xp (; )\iTi($)> q@(r), zeX

for some A = (A1,...,\,) € R™. Here, Z()) is the normalization factor
Z exp <Z NiTi(z > x)
zeX

that ensures p) is a valid probability distribution.

— This parametric form for a probability distribution is called a Gibbs distribution or
Boltzmann distribution. Also related to exponential families.

— Example: If T} (x) = = ends in a vowel and A\ = —2.10, then a word that ends in a vowel
is exp(—2.10) ~ 0.12 as likely (according to py) as one that does not.

e Some notation:



— Convenient to collect all T; into a vector-valued function 7: X — R".
— Write A - T for the function = — > 1" | M/ Ti(x).
— Also write p[f] = > cx p(z) f(z) = Ex~p[f(X)] for any distribution p on X

— Maxent problem is

in  RE(p,
min (s o)

st. p[T]=b

where b = (b1, ...,by).

— A feasible maxent solution has the form

pa(r) = exp(A-T'(x))qo(x), z€X

1
Z(A)
with
Z(\) = aolexp(A - T)].
— Geometric picture

« Constraints p[T] = b define an affine subset of A
P=PT,b)={pecA:pT| =0}

* Maxent = p € P that minimizes RE(p, qo): information projection of gy onto P
* The Gibbs distributions

Q=09(T,q) ={pr: A€ R"}

form a nonlinear subset of A.

* It turns out if P # ), then [P N @] =1, where Q is the closure of Q (i.e., may need
to consider sequences of \’s)

e Use method of Lagrange multipliers to deal with constraints p[T] = b.

Lagrange multipliers: A = (A1,...,\,) € R"

Lagrangian function

L(p,\) = RE(p,q0) — X - (p[T] — b)
=RE(p,q0) —pA-T]+A-b

Maxent problem is equivalent to

min sup L(p, \).
min sup (p, \)

Properties of Lagrangian:

* Lagrangian is convex in p and linear in A.

+x Domain for p is convex and compact; domain for A is convex.



* Therefore we can switch order of min and sup:

min sup L(p,A\) = sup min L(p, \).
min sup (p, A) Sup min (p, A)

The function A — minyea L£(p, A) is called the dual (objective) function.

— Donsker-Varadhan inequality: For any function f: X — R,

RE(p, q) > p[f] — Inglexp(f)].

(Special case of Fenchel-Young inequality from convex analysis.)
— Claim: For each fixed A € R", function p — L(p, A) is minimized by p.
* For any p € A, Donsker-Varadhan (with f(x) = A-T'(z)) implies
L(p,\) = RE(p,q0) —p[A-T]+X-b

> pA-T] — Ingolexp( - T)] — p[A-T] + A- b
= —InZ(\)+A-b.

* For p = py,
L(px,A) = RE(px,q0) —paA[A-T]+X-b

-T
_ ZpA(x)lnM—p,\[)\-T]+)\'b
Z(XN)
reX
=pAAT]=InZ(A) —=pa[A-T] = A-b
=—InZ(\)+X-b
* S0
i A) = A).
min £(p, A) = L{px, )
— So dual function is A — L(py, A).
— If \* € R™ achieves

L(pre, A*) = sup L(px,\) = sup —InZ(\) + - b.
ACR™ AERR

then py~ is maxent solution.

e Connection to maximum likelihood principle for Gibbs distributions {p) : A € R"}

— Suppose we obtain b as the empirical average of T over data set z',...,2™:
1 m
b=— T(x%).
L)



— Consider the log-likelihood of py where the data set is treated as an i.i.d. sample:
In HpA(xj) = Zlnp/\(xj Zln( exp(A - T(xj))qo(x3)>
Jj=1 J=1
=-mlnZ\)+X- ZT(a:j) + Zlnqo(xj)
j=1 j=1

=m(—=InZ\)+X-b)+ Zlnqoxﬂ

— Maximizing log-likelihood = maximizing dual function.

— Annoyingly, the log-likelihood does not always have a maximizer.
X ={a,b,c}

q0(a) = qo(b) = qo(c) =1/3

T (z) = 1{z = a}, Tu(x) = 1{x = b}, T3(z) = 1{z = ¢}
b=1(0,1/3,2/3)

Log-likelihood

)\|—>—ln<eXp?E/\1) +eXP§)\2) +6XP§>\3)> +Q 2X3

B R R

+
3 3
does not attain supremum at any A

Proof of Donsker-Varadhan inequality RE(p, q) > p[f] — Inglexp(f)]:

— If RE(p, q) = oo (i.e., there exists x such that ¢(z) = 0 but p(z) > 0), then trivially true.

So assume p < ¢ (i.e., no such x as above).

— Consider any f: X — R, and observe that exp(f) is strictly positive function.

Define ¢’ to be the distribution proportional to exp(f)g, i.e.,

q = epo(f)(b

Z = qlexp(f)].

Then ¢ < ¢/, and hence p < ¢/, so
B/ = Zexp(—f)%O < 0.
— Can write
RE(p,q) :p[lng} :p[an — erln;ﬂ

:InZ—p[f]—Fp[lnﬂ

= Inglexp(f)] — p[f] + RE(p, ).
On the other hand, by Gibbs’ inequality, RE(p, ¢') > 0.

— Conclude

Inglexp(f)] — p[f] + RE(p, q) > 0.



2 Log partition function

e Consider Gibbs distributions @ = Q(T,qp) = {px : A € R"} generated by T: X — R"™ and
qo € A:

exp(A-T'(x))qo(z), =€ X.

e “Normalization constant” (as function of \)

Z(\) =Y exp(A-T(x))go(x)

TEX

is also called partition function.

— May also interpret as moment generation function for random vector Y := T'(X) where
X ~ q0-

e Main object of interest: log partition function G(\) :==1InZ(\).
— G is convex: for any A\°, A\ € R™ and « € (0, 1),
G(aX’ + (1 — )\

= ln<z exp((aX’ + (1 — a)Al) - T(:p))qo(x)>

reX

=1In (Z exp((a)\o) . T(aj)) exp(((l - oz))\l) . T(:U))qo(x)>

reX

« 11—«
<In [Z exp((a)\o) . T(a:));qo(x)] [Z eXp(((l —a)Al)- T(m))laqo(:c)]

reEX reEX
= aG\%) + (1 —a)G(\Y).

Key step uses Holder’s inequality.
— When is G strictly convex?

* Key step based on Holder’s inequality holds with equality for A\° # Al if and only if
exp(A\? - T) = cexp(\! - T

(as functions) for some constant ¢ > 0 on the support of qp.

* This is equivalent to
(A =AY - T =In(c).

% This means there is a non-trivial linear combination of 17, ..., T, that results in a
constant function.
x Conclusion: G is strictly convex if and only if T3, ..., T, are affinely independent (on
the support of qp).
- Affine independence: If Y~ | \;T; is constant, then \; = --- =\, = 0.



— The gradient VG: R" — R™ maps the A parameter to the mean of T" under py:

VG = 555 3 (- T@)T@haola)
zeX

= palT].

— If G is strictly convex, then VG is 1-to-1.

* Consider any distinct A%, A\! € R™, and let A(¢) = (1 — )\ +tA! for ¢ € [0, 1] specify
the line segment between \° and A!.

*

Strict convexity of G implies strict convexity of G(A(t)).

*

Direct computation shows

{fe0m)}
{e0}

Strict convexity of G(A(t)) implies d—dtG()\(t)) is strictly increasing in ¢.

=\ =A%) pplT] = (A =A%) - VG(\Y),
t=0

= AL =20 pu[T]) = (A =29 - VG,
t=1

*

* Hence

AL =2 va(\Y) £ (A =20 va(ah.
Since A! — A% #£ 0, this implies

VG(\%) # VGa(\.

* (In fact, converse statement is also true.)
— Let M :={b:3p < qo.p[T] = b} be the set of possible “I'-means”.
x It can be shown that the image of VG

{VG(\) : A e R"}

is equal to the interior M° of M (i.e., all of M except the boundary points).

* Proof: see Theorem 3.3 in Wainwright and Jordan’s “Graphical Models ...” FnTML
monograph

— Upshot: Two ways to parameterize the Gibbs distributions.

x “Natural parameterization”: A € R™.
* “Mean parameterization”: mean of T

* VG is the link between these parameter spaces (or interiors thereof).

e Similar for general exponential families (where gy may be a general o-finite measure on a
measure space).

— Example: Poisson distribution X ~ Poi(u) for p > 0



* Probability mass function and mean:

2) = p® exp(—p)

n , = €Ny
xT.

where

G(A) =1In (Z exp()\)””;> = In(exp(exp(A))) = exp(A)
=0 :

<
dA

* Link between natural parameter A and “mean parameter” pu:

A) = exp(A) = pafz].

ft = exp(A).
— Example: unit variance normal distribution X ~ N(u,1) for p € R

x Probability density function and mean:

p(z) = \/12?exp<—(x_'u)2>, zeR

E[X] = p.

x Let qo(x) = exp(—22/2)/V2r, T(z) = x, so
pa(r) = exp(Az — G(A))go()

where

> exp(—x2 2
G\ = ln/_ exp()\:n)pi/QTT/Q) dz = Inexp(\?/2) = %

4G
S =

* Link between natural parameter A and “mean parameter” u:
w=A

— Example: multinomial distribution (X7, ..., Xg) ~ Mult(N; 7y, ..., 7%)

* Probability mass function and mean:

Pr(X1,. .., Xp) = (@1, 21)) = <x1N$k> [T~



x Let qo(z1,...,25) = (xlek), Ti(x1,...,z,) =x; fori € {1,...,k— 1}, so

k—1
pa(x) = exp (Z it — GO\)) qo(z)
i=1
where

G(A) =1In N )eX AYEL - ex( g o Eh—1 ] T
W x1+'“§+;k;—N <$1,...,xk p(A1) P(Ak-1)
= In(exp(\1) + -+ +exp(\p_1) + 1)V
= NIn(exp(A;) + - - 4+ exp(Ap_1) + 1)
a6 exp(Aq)

A =N , 1e{l,...,k—1}L
d>\z‘() exp(A) + - +exp(Ag—1) + 1 e d }

* Link between natural parameters A and “mean parameters”:

exp(A;)

Nm =N ,
T exp(h) -+ exp(he-r) + 1

ie{l,...,k—1}

* Note that if we had used k feature functions, T;(z1,...,zx) = x; for alli € {1,...,k},
then they would not be affinely independent: we would have Zle T, = N.

* Try to invert VG: given b = (by,...,bx_1) € R'_fl (where by + -+~ + b1 < N),
b;
(bl +“'+bk—1).

(VG) ()i = In g

This fails at the “boundary” where some b; € {0, N}, but works everywhere else.

3 Information geometry
e Solution p* to maxent problem

in RE(p,
min - RE(p, q0)
st. p[T]=5b
is information projection of base measure go onto P(T,b) = {p € A : p[T] = b}.

e In fact, for any other p € P(T,b), we have

RE(p, o) = RE(p,p*) + RE(p*, qo).

This is the Pythagorean theorem for relative entropy.



— Proof is especially simple when p* = p) for some A € R™:

RE(p, o) — RE(px, o) = RE(p, q0) — pa [ln l;ﬂ

=RE(p,qo) — pA[A- T —In Z(\)]
= RE(p,q0) —p[A-T —In Z(N)]

— General version: For any P C A closed and convex, any ¢y € A, the information
projection p* := arg min,cp RE(p, qo) of go onto P satisfies

RE(p,q0) > RE(p,p*) + RE(p*, ), p€P,
with equality if P is an affine set.

e Relative entropy of a Gibbs distribution pyo from another pjy:

RE(pyo,px) = pyo [ln O]

exp(A? - T — G()\O))]

:p”[ exp)\ T—GO)

= pro[(A° T — G\ + G(N)]
= G(\) - ( ) + (A= 2%) - pyolT])
=G\ = (GO + (A =A%) - VG)).

— Difference between G and its affine approximation at A.
— Since G is convex, this difference is always non-negative.

— Gap is called Bregman divergence Bg(\, \?) generated by G.
(Requires convexity of G, and differentiability of G at the second argument of Bg.)

e Can express Gibbs distribution py in terms of a Bregman divergence

— pa(z) should be a function of x (or T'(x)), but B¢ is a divergence for comparing natural
parameters \

— There is a Bregman divergence Brp: M x M° — R

Br(p, %) = F(u) = (F(1°) + (1 — p°) - VF(u°))

10



corresponding to another convex function F': M — R such that
pa(z) = exp(=Bp(T(z), VG(A))qr(z)

where ¢r is a different base measure

— So what is this function F'? (And what is ¢r?)

e Convex duality: convex functions come in pairs G, G*

G*(n) = sup Ap—=G)

G* is the convex conjugate (or Fenchel conjugate) of G

— G* is supremum of affine functions (indexed by \), so G* is convex (even if G isn’t
convex!)

— Example: G(\) = £[|A[13
* 1 2
G"(p) = sup A-p— 5”)\”2
AER?
1 1
= sup LA — gl + Sl
AER™
Lo
S

where the supremum is achieved by A = p
— Example: G(A) = In(1 + exp(N))
(1) = sup A — In(1 + exp(A))
AER™

=phnp+(1—p)n(l —p)

where the supremum is achieved by A = In ﬁ

Example: G(A) = In(1 +exp(A1) + -+ exp(Ay))

G*(1) = pilnp + (1 - Zm) ln<1 - Zuz)
=1 =1 =1

— In general, assuming differentiability of G,

G*(u) = sup A-p—G(N)
AER™

has supremum “achieved” by A satisfying u = VG(\)
— Letting g = VG, for pu € g(R™), we have

G*(p) =g ' (n) - —Glg~ (n)).

11



— What is gradient of G* (at u € g(R™))? Let J denote the Jacobian map for g~1, so

VG (1) = (u)u (M)—J(M)VG(Q_I(H))

o Let F:=G* so VF =g 1,

and

e Log-likelihood of Gibbs distribution parameter A given data z',...,2™ € X:
Z log px( xJ Z Bp(T A)) + terms not involving A

So MLE can be interpreted as minimizing a sum of Bregman divergences over the data.

12
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