Neural computation models

Daniel Hsu
COMS 6998-7 Spring 2025



Recap: neural l[anguage models

* Shannon 1948, 1951: Compute
P(xelxqy, .., Xe—q)
e Bengio et al, 2003 (and others): Maybe it

can be done using a neural network

* Maybe just the n-gram approximation, i.e.,
only a function of x;_,,41, ..., X¢

* Neural language models:
 Embed discrete tokens into vector space
e Consider function of vectors in this space

* There are interesting computations to be
done in this vector space!

France
cantaloupe
Japan

honeydew

—3 zebra
Paris / horse

Tokyo




Computation

Computational task Models of computation

e Evaluate functions * Circuits

* Execute algorithms * Automata (i.e., "machines")

¢ e E.g., finite state automata, push-

down automata, Turing machines



Circuit model

* Boolean functions f:{0,1}" = {0,1} output
e There are 22" such functions

* How many Boolean circuits (using

AND, OR, NOT gates) of size m?
< (3 . 2m+n)m

* So cannot compute all Boolean
functions using poly(n)-size circuits

* Circuit complexity: Which functions
have small circuits?




Function approximation

* Consider arbitrary continuous f:[0,1]™ - [0,1]

 How can you (approximately) compute it?

* Weierstrass approximation theorem: forany € > 0,
there is a (multivariate) polynomial p such that

— <
xé?ogﬁnlf(x) p(x)| <€

* Caveat: degree of p might be large!

e Cybenko; Hornik-Stinchcombe-White; Barron; ...:
Can also achieve this approximation using a neural
network with a single layer of "hidden units"

e Caveat: number of "hidden units" might be large!

* Saving grace?: for some "nice" functions, number of
"hidden units" can be relatively small




Decidability of languages

* A subset of strings L € {0,1}" is called a language
e E.g.,, L = valid encodings of 3-CNF formulas that are satisfiable

* A machine M decides the language L if, on input x € {0,1}%, the
machine M halts and returns 1,

e Church-Turing thesis: the following are equivalent

* There is an algorithm for deciding L
* Thereis a Turing machine that decides L

* Many other types of "machines" are equivalent to Turing machines in
computational power (at least up to polynomial factors in "runtime")
* E.g., multi-tape Turing machines, Random Access Machines
 Siegelmann and Sontag: also Recurrent Neural Networks (over Q)




Things to think about

* How do neural nets perform computation?

* Does it "simulate" a more "classical” type of machine?
 How are the components of the classical machine being simulated?
 Why might a neural net be preferable to the classical machine?



	Slide 1: Neural computation models
	Slide 2: Recap: neural language models
	Slide 3: Computation
	Slide 4: Circuit model
	Slide 5: Function approximation
	Slide 6: Decidability of languages
	Slide 7: Things to think about

