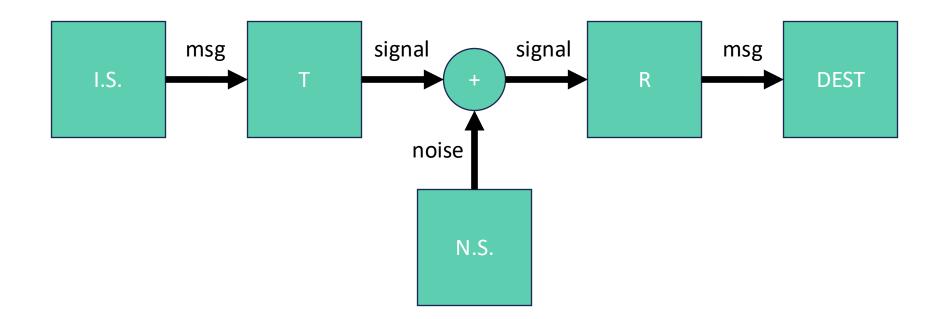
Information sources and measures

Daniel Hsu

COMS 6998-7 Spring 2025

Discrete information sources

Communication systems (Shannon, 1948)



Discrete information source

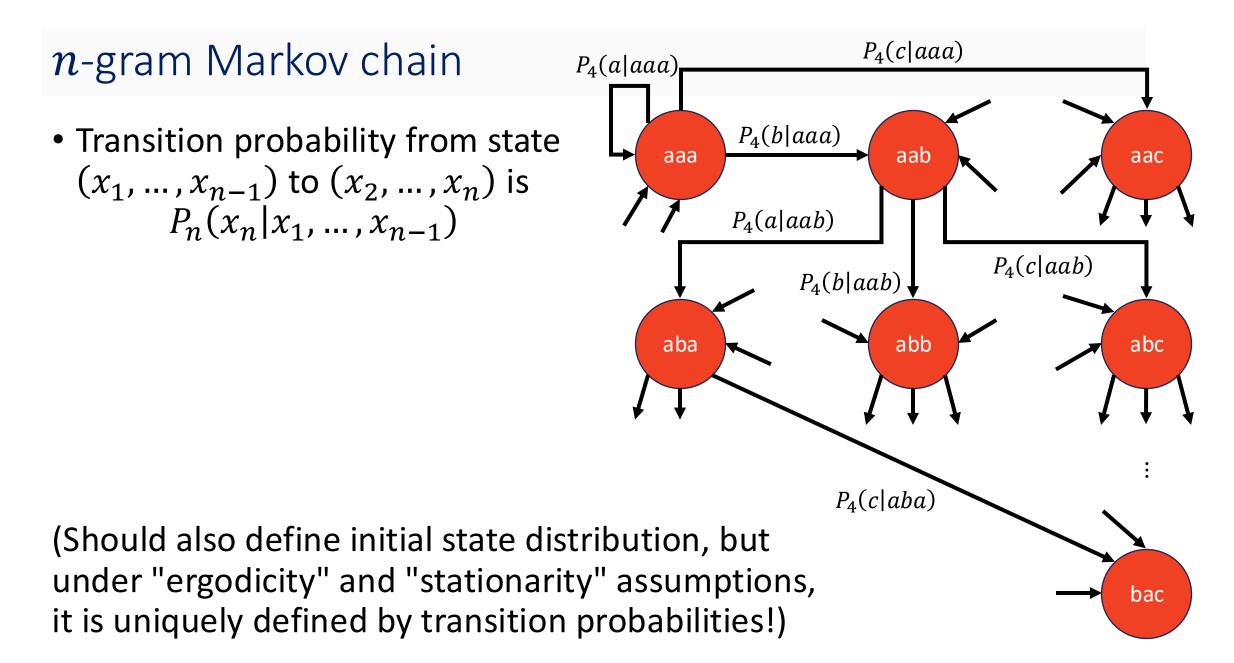
- Finite alphabet $\boldsymbol{\Sigma}$
- A discrete information source is a stochastic process $(X_t)_{t \in \mathbb{N}}$ where each X_t has range Σ
 - Regard t as "position" or "time"
 - X_t is *t*-th symbol in message
- Simplifying assumption: stochastic process is stationary e.g., (X_1, X_3, X_5) has same distribution as (X_{11}, X_{13}, X_{15})
 - Still arbitrarily complicated; no finite description

Tractable approximation: *n*-gram model

• Let P_n be law for symbols at n consecutive positions (for true I.S.)

•
$$P_n(x_1, \ldots, x_n) \ge 0$$

- $\sum_{x_1,\dots,x_n} P_n(x_1,\dots,x_n) = 1$
- For n' < n, can get $P_{n'}$ from P_n by marginalization
- Conditional law for *n*-th symbol given first n 1 symbols: $P_n(x_n | x_1, \dots, x_n) = \frac{P_n(x_1, \dots, x_n)}{P_{n-1}(x_1, \dots, x_{n-1})}$
- The *n*-gram model is the Markov chain over state space Σ^{n-1} defined in the "natural" way using this conditional law...



Specification of *n*-gram model

- For each state, specify transition probs. for $|\Sigma|$ possible next-states
- Meaning:
 - n = 1: remember nothing (no states)
 - n = 2: only remember last symbol ($|\Sigma|$ states)
 - n = 3: only remember last two symbols ($|\Sigma|^2$ states)

Generation based on *n*-gram model

Given x_1, \ldots, x_T , generate next symbol according to *n*-gram model

- Only look at last n 1 symbols $x_{T-(n-2)}, \dots, x_T$
- Sample x_{T+1} according to conditional law $P_n(\cdot | x_{T-(n-2)}, ..., x_T)$
- Same as starting in Markov chain state $x_{T-(n-2)}$, ..., x_T and taking one step

1. Zero-order approximation (symbols independent and equiprobable).

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD QPAAMKBZAACIBZL-HJQD.

2. First-order approximation (symbols independent but with frequencies of English text).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA NAH BRL.

3. Second-order approximation (digram structure as in English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TU-COOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE.

4. Third-order approximation (trigram structure as in English).

IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONS-TURES OF THE REPTAGIN IS REGOACTIONA OF CRE.

Prediction based on *n*-gram model

Given x_1, \ldots, x_T , predict next symbol according to *n*-gram model

- Only look at last n 1 symbols $x_{T-(n-2)}, \dots, x_T$
- Predict x_{T+1} to be

$$\operatorname{argmax}_{x \in \Sigma} P_n(x | x_{T-(n-2)}, \dots, x_T)$$

Measuring information

How much "information" is in a source?

- How much information is in length T sequences from the I.S.?
- Hartley (1928): it's related to the number of possible messages, and the logarithm of that number is "natural" $\log(|\Sigma|^T)$
- But this doesn't take into account relative frequencies of messages

Shannon's entropy

- Let N be total number of possible messages (e.g., $N = |\Sigma|^T$)
- Let $p = (p_1, \dots, p_N)$ where p_i is probability of *i*-th possible message
- Entropy of p (or entropy of $X \sim p$):

$$H(p) = H(X) = \sum_{i=1}^{N} p_i \log \frac{1}{p_i}$$

- Shannon derived this formula by:
 - Writing down some axioms that any reasonable measure of information should satisfy
 - Deriving the formula as the only possible formula that satisfies the axioms

Example

- $H((0.5,0.5)) = 0.5 \log 2 + 0.5 \log 2 = \log 2$
- $H((0.25, 0.75)) = 0.25 \log 4 + 0.75 \log 1.333 \dots < \log 2$

•
$$H((\epsilon, 1-\epsilon)) = \epsilon \log \frac{1}{\epsilon} + (1-\epsilon) \log \frac{1}{1-\epsilon} = \frac{\log 1/\epsilon}{1/\epsilon} + (1-\epsilon) \log \frac{1}{1-\epsilon}$$

• Uniform distribution on N possible messages:

$$H(p) = \sum_{i=1}^{N} p_i \log \frac{1}{p_i} = \log N$$

Axioms from Aczel, Forte, Ng (1974)

- Expansible: $H((p_1, ..., p_N)) = H((p_1, ..., p_N, 0))$
- Symmetric: unaffected by relabeling the messages
- Additive: If X and Y are independent, then H(X,Y) = H(X) + H(Y)
- Subadditive: $H(X, Y) \le H(X) + H(Y)$
- Small for small probabilities: $\lim_{\epsilon \to 0^+} H((\epsilon, 1 \epsilon)) = 0$
- Normalized: $H((0.5, 0.5)) = \log 2$

Only Shannon's entropy satisfies these axioms!

Additivity

$$H(X,Y) = \sum_{x,y} p_{x,y} \log \frac{1}{p_{x,y}}$$
$$= \sum_{x,y} p_{x,y} \log \frac{1}{p_x p_y}$$
$$= \sum_{x,y} p_{x,y} \left(\log \frac{1}{p_x} + \log \frac{1}{p_y} \right)$$
$$= \sum_x p_x \log \frac{1}{p_x} + \sum_y p_y \log \frac{1}{p_y} = H(X) + H(Y)$$

Properties of entropy

- $H(p) \ge 0$
 - H(p) = 0 iff $X \sim p$ is a constant
- $H(p) \leq \log N$ for all $X \sim p$ on N possible values
 - $H(p) = \log N$ iff p is uniform distribution
- H(p) is (strictly) concave function of p
- If A is doubly-stochastic $N \times N$ matrix, then $H(p) \leq H(Ap)$
 - Here we regard p as an N-vector
 - H(p) = H(Ap) iff A is a permutation matrix

Conditional entropy

Define **conditional entropy** H(Y|X) to be average of conditional distribution of Y given X = x for each x but weighted by p_x :

$$H(Y|X) = \sum_{x} p_x \sum_{y} p_{y|x} \log \frac{1}{p_{y|x}}$$
$$= \sum_{x,y}^{x} p_{x,y} \log \frac{1}{p_{y|x}}$$

- On average (over X), how much information is in Y when X is known
- If X and Y are independent, then $p_{y|x} = p_y$ and $p_{x,y} = p_x p_y$, so H(Y|X) = H(Y)

Another intuitive way to think about conditional entropy

$$H(Y|X) = \sum_{x,y} p_{x,y} \log \frac{1}{p_{y|x}}$$
$$= \sum_{x,y} p_{x,y} \log \frac{p_x}{p_{x,y}}$$
$$= \sum_{x,y} p_{x,y} \log \frac{1}{p_{x,y}} - \sum_{x,y} p_{x,y} \log \frac{1}{p_x}$$
$$= H(X,Y) - H(X)$$

• How much information of (X, Y) is left after taking out that from X

Effect of conditioning

- Using subadditivity of entropy, $H(X) + H(Y) \ge H(X,Y) = H(X) + H(Y|X)$
- Therefore,

 $H(Y) \ge H(Y|X)$

• Conditioning can only reduce entropy

Regarding (conditional) entropy as expected values

• If *X* ~ *p*, then

$$H(X) = \mathbb{E}\left[\log\frac{1}{p_X}\right]$$

• If (*X*, *Y*) ~ *p*, then

$$H(Y|X) = \mathbb{E}\left[\log\frac{1}{p_{Y|X}}\right]$$

Entropy rate of a source

Entropy rate

- Consider information source $(X_t)_{t \in \mathbb{N}}$
 - Shorthand: $X_{1:T} = (X_1, ..., X_T)$
 - If symbols are IID, then

$$H((X_{1:T})) = T \cdot H(X_1)$$

- Grows linearly with sequence length
- Entropy rate (i.e., per-symbol entropy): $\frac{1}{T}H((X_{1:T}))$
 - Interested in this for large T (or limit $T \to \infty$)
 - Larger T means more "structure" about I.S. is captured
 - Easy upper bound for all sources: $\log |\Sigma|$
 - E.g., for $\Sigma = \{a, b, c, ..., z\}$, upper bound is ≈ 4.7

Limiting entropy rate

- Conditional entropy of a symbol given the preceding symbols: $F_k \coloneqq H(X_k | X_{1:k-1}) = H(X_{1:k}) - H(X_{1:k-1})$
 - Can write $H(X_{1:T})$ as telescoping sum: $H(X_{1:T}) = F_1 + F_2 + \dots + F_T$ so entropy rate is average of these conditional entropies
- By stationarity and "conditioning can only reduce entropy": $H(X_1) = H(X_2) \ge H(X_2|X_1)$

• Therefore

$$F_1 \ge F_2 \ge \dots \ge F_T$$

- By monotone convergence, there's a limit: $F_{\infty} = \lim_{T \to \infty} F_T$
- So $H(X_{1:T})/T \ge F_{\infty}$ as well

Using the *n*-gram approximation

- Shannon (1948, 1951) wanted to know entropy rate of printed English
 - But this information source is too unwieldy
 - What if we use an *n*-gram approximation?
- Let $(X_t)_{t\in\mathbb{N}}$ be stochastic process that describes printed English
- Let $(Y_t)_{t \in \mathbb{N}}$ be stochastic process governed by *n*-gram approximation
- Question:

$$\frac{1}{T}H(X_{1:T}) \approx \frac{1}{T}H(Y_{1:T})?$$

- For $k \le n$, law of k consecutive Y_t 's is same as that for X_t 's $H(Y_{1:k}) H(Y_{1:k-1}) = H(X_{1:k}) H(X_{1:k-1}) = F_k$
- What about k > n?

Where does the *n*-gram approximation go wrong?

- For k > n: Y_k only depends on previous n 1 symbols $H(Y_k | Y_{1:k-1}) = H(Y_k | Y_{k-(n-1):k-1}) = F_n$
- If we write entropy rate of *n*-gram approximation as average of conditional entropies (just like before), we get (for $T \ge n$) $\frac{1}{T}H(Y_{1:T}) = \frac{1}{T}(F_1 + F_2 + \dots + F_n + \underbrace{F_n + \dots + F_n}_{T-n \text{ times}})$
- Since $F_1 \ge F_2 \ge \dots \ge F_T$, we also have $\frac{1}{T}H(Y_{1:T}) \ge \frac{1}{T}(F_1 + F_2 + \dots + F_n + F_{n+1} + \dots + F_T) = \frac{1}{T}H(X_{1:T})$
- So *n*-gram approximation's entropy rate is an upper-bound

Does the *n*-gram approximation work in the "limit"?

$$\frac{1}{T}H(Y_{1:T}) = \frac{1}{T}(F_1 + F_2 + \dots + F_n + F_n + \dots + F_n)$$

$$\leq F_n + \frac{n(F_1 - F_n)}{T}$$

- If we take $T \to \infty$ and then $n \to \infty$, we have $\frac{1}{T}H(Y_{1:T}) \to F_{\infty}$
- By sandwiching, F_{∞} is (true) limiting entropy rate
- Shannon opts to simply use (estimate of) F_n as an upper-bound on F_∞

Entropy rate of printed English

• Plug-in existing frequency tables for 1-grams, 2-grams, 3-grams: $F_n = H(P_n) - H(P_{n-1})$

F ₀	F ₁	F ₂	F ₃
4.7	4.14	3.56	3.3

- No *n*-gram tables for n > 3, but have word frequency tables
 - Estimate: k-th most frequent word in English has frequency 0.1/k (Zipf's law)
 - To have this normalize properly, only consider 12366 words
 - Plug-in to formula to get entropy of English word distribution: 9.72
 - Average English word has 4.5 letters, so get per-letter entropy estimate: 972

$$\frac{9.72}{4.5} = 2.16$$

Shannon's prediction game

- Thesis: English speakers implicitly know/use distribution of English
- Game (simple version):
 - Choose passage of English text $x_{1:T}$
 - For t = 1, ..., T:
 - Speaker guesses x_t
 - If correct, tell the speaker to record a null symbol
 - Else, reveal x_t to speaker
- Example run of the game:

THE ROOM WAS NOT VERY LIGHT A SMALL OBLONG READING LAMP ON THE DESK SHED

ROO ROO ROO

Redacted sequence is a perfect encoding

- <u>Theorem</u>: For any sequence $x_{1:T}$, resulting "redacted" sequence produced by in game has same information as original sequence
- <u>Proof</u>: Can perfectly recover any redacted symbol x_t using the Speaker and redacted prefix
- (Shannon also has another version of the game based on ranks)

ML version of Shannon's game

- Construct NN: $\Sigma^* \to \Delta(\Sigma)$ (say, using deep learning)
 - Write $NN(x|x_{1:t-1})$ for probability assigned to x by evaluating NN on $x_{1:t-1}$
- Choose passage of English text $x_{1:T}$ (not used in construction of NN)
- For t = 1, ..., T:
 - Record **log-loss** of NN on *t*-th symbol x_t

$$\operatorname{og} \frac{1}{\operatorname{NN}(x_t | x_{1:t-1})}$$

• Average log-loss on entire passage $x_{1:T}$:

$$\frac{1}{T} \sum_{t=1}^{T} \log \frac{1}{NN(x_t | x_{1:t-1})}$$

Why log-loss?

- Let p be probability distribution, and $X \sim p$
- Let q be another probability distribution

• Then

$$\mathbb{E}\left[\log\frac{1}{q_X}\right] = \sum_x p_x \left(\log\frac{p_x}{q_x} + \log\frac{1}{p_x}\right) = \sum_x p_x \log\frac{p_x}{q_x} + H(p)$$
RE(p,q)

- ... where RE(p,q) is relative entropy (a.k.a. Kullback-Leibler (KL) divergence) from p to q
- **Gibb's inequality**: $RE(p,q) \ge 0$ with equality iff p = q
- So, as function of q, expected log-loss is minimized by q = p

Why average los-loss over sequence?

- Log loss on *t*-th symbol X_t , in expectation: $\mathbb{E}\left[\log \frac{1}{NN(X_t | X_{1:t-1})}\right] = \mathbb{E}\left[\mathbb{E}\left[\log \frac{1}{NN(X_t | X_{1:t-1})} | X_{1:t-1}\right]\right]$ $\geq \mathbb{E}\left[\mathbb{E}\left[\log \frac{1}{P_t(X_t | X_{1:t-1})} | X_{1:t-1}\right]\right]$ $= H(X_t | X_{1:t-1}) = F_t$
- So average log-loss, in expectation, is

$$\geq \frac{1}{T} \sum_{t=1}^{T} F_t = \frac{1}{T} H(P_T)$$

• Average log-loss, in expectation, gives upper-bound on entropy rate

Recap

- Entropy rate of source per symbol entropy over long sequences
- Can upper-bound using:
 - Entropy rate of *n*-gram approximations
 - Average of log-losses in sequential prediction (in expectation)

Proof of Gibbs' inequality

• Let $X \sim p$, and by (strict) convexity of negative logarithm:

$$\operatorname{RE}(p,q) = \mathbb{E}\left[\log\frac{p_X}{q_X}\right] = \mathbb{E}\left[-\log\frac{q_X}{p_X}\right]$$
$$\geq -\log\left(\mathbb{E}\left[\frac{q_X}{p_X}\right]\right)$$
$$= -\log\left(\sum_x q_x\right)$$
$$= -\log(1) = 0$$

• Equality holds iff q_X/p_X is constant function (i.e., p = q)