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Discrete information sources



Communication systems (Shannon, 1948)




Discrete information source

* Finite alphabet X
* A discrete information source is a stochastic process (X;) ey Where

each X; has range X
* Regard t as "position" or "time"
* X, is t-th symbol in message

* Simplifying assumption: stochastic process is stationary
e.g., (X1,X3, X5) has same distribution as (X141, X3, X15)

e Still arbitrarily complicated; no finite description



Tractable approximation: n-gram model

* Let P,, be law for symbols at n consecutive positions (for true 1.S.)
* P.(xq, ., %) =0
* le,...,xn Pn(xl) "';xn) —_ 1

* Forn’ < n, can get P/ from P,, by marginalization

e Conditional law for n-th symbol given first n — 1 symbols:
Pn(xb ---;xn)
Pn—l(xll '")xn—l)
* The n-gram model is the Markov chain over state space X" ! defined
in the "natural” way using this conditional law...

Pn(xnlxll bl xn) —



n-gram Markov chain P(alaaa) Pu(claaa)

* Transition probability from state

(X1, ey Xp_1) 1o (X5, ..., X;,) iS
P.(x,|xq, ) Xp—1)

P,(claba)
(Should also define initial state distribution, but

under "ergodicity" and "stationarity" assumptions,
it is uniquely defined by transition probabilities!)



Specification of n-gram model

* For each state, specify transition probs. for |X| possible next-states

* Meaning:
* n = 1: remember nothing (no states)
* n = 2: only remember last symbol (|X| states)
e n = 3: only remember last two symbols (|X|? states)



Generation based on n-gram model

Given x4, ..., X7, generate next symbol according to n-gram model
* Only look at last n — 1 symbols xr__2), ..., Xr
* Sample xr, 4 according to conditional law
Pn(- |xT_(n_2), ...,xT)
* Same as starting in Markov chain state xr_,_2), ..., X7 and taking one step



1. Zero-order approximation (symbols independent and equiprobable).

XFOML RXKHRIJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD QPAAMKBZAACIBZL-
HJQD.

2. First-order approximation (symbols independent but with frequencies of English text).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA
NAH BRL.

3. Second-order approximation (digram structure as in English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TU-
COOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE.

4. Third-order approximation (trigram structure as in English).

IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONS-
TURES OF THE REPTAGIN IS REGOACTIONA OF CRE.



Prediction based on n-gram model

Given x4, ..., x, predict next symbol according to n-gram model
* Only look at last n — 1 symbols xr__2), ..., Xr
* Predict x4 to be

argmax,.es P, (x|xT_(n_2), e xT)



Measuring information
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How much "information" is in a source?

* How much information is in length T sequences from the I.S.?

e Hartley (1928): it's related to the number of possible messages, and

the logarithm of that number is "natural”
log(|Z]")

e But this doesn't take into account relative frequencies of messages



Shannon's entropy

e Let N be total number of possible messages (e.g., N = |Z|1)
* Let p = (pq, ..., Py) Where p; is probability of i-th possible message
* Entropy of p (or entropy of X ~ p):

N
1
H(p) =HX) = E p; log—
i=1 Pi

e Shannon derived this formula by:

* Writing down some axioms that any reasonable measure of information
should satisfy

* Deriving the formula as the only possible formula that satisfies the axioms



Example

» H((0.5,0.5)) = 0.5log2 + 0.5log 2 = log 2

» H((0.25,0.75)) = 02510g4 +0.75log 1.333 ... < log 2

*H((e,1—¢)) = Elog + (1 —¢€)log—— - 10?/16/(:'

* Uniform distribution on N p055|ble messages:

1
H(p) = z Pi logp— log N

l




Axioms from Aczel, Forte, Ng (1974)

* Expansible: H(('pl, ...,'pN)) = H((pl, i, DN O))
 Symmetric: unaffected by relabeling the messages

 Additive: If X and Y are independent, then H(X,Y) = H(X) + H(Y)
* Subadditive: H(X,Y) < H(X) + H(Y)
* Small for small probabilities: lim H((e, 1— e)) =0

e—>0t

* Normalized: H((O.S,O.S)) = log 2

Only Shannon's entropy satisfies these axioms!



Additivity

1
H(X,Y) = z Dy log—
Px,y
X,y

1
= Dy v 1O
Z i gpxpy
X,y

S (1 L 1)
= p 08 — 08 —
i Dy Dy
x,y

1 1
= E p, log— + E pylog— = H(X) + H(Y)
~ Dx ~ Py



Properties of entropy

*H(p) =0
* H(p) = 0 iff X ~ pisa constant

« H(p) <logN forall X ~ p on N possible values
* H(p) =logN iff pis uniform distribution

* H(p) is (strictly) concave function of p
* If A is doubly-stochastic N X N matrix, then H(p) < H(Ap)

 Here we regard p as an N-vector
« H(p) = H(Ap) iff Ais a permutation matrix



Conditional entropy

Define conditional entropy H(Y|X) to be average of conditional
distribution of Y given X = x for each x but weighted by p,.:

1

H(YIX) = Z pxz Py l0g
pylx

p log
Z i py|x

* On average (over X), how much information is in Y when X is known

* If X and Y are independent, then py,, = py and py,, = PxPy, SO
H(Y|X) = H(Y)



Another intuitive way to think about conditional entropy

1

H(YIX) = prylog

Py|x

Dy v 108 ——
2 X,y gpxy

— szylog__szy Og_

Px,y
X,y
= H(X,Y) — H(X)

« How much information of (X, Y) is left after taking out that from X



Effect of conditioning

* Using subadditivity of entropy,
HX)+HY)>HX,Y) =HX) + HY|X)

* Therefore,
H(Y) = H(Y|X)

e Conditioning can only reduce entropy



Regarding (conditional) entropy as expected values

*If X ~ p, then

1
HX)=E [log—
Px

* If (X,Y) ~ p, then
1
HY|X)=E [log—]
Py |x
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Entropy rate of a source



Entropy rate

* Consider information source (X;) ey
e Shorthand: Xl:T — (Xl' ...,XT)

* |If symbols are IID, then
H((Xl:T)) =T- H(X1)

* Grows linearly with sequence length

* Entropy rate (i.e., per-symbol entropy):
1
?H((XlT))

* Interested in this for large T (or limit T — oo)
* Larger T means more "structure" about I.S. is captured

* Easy upper bound for all sources: log|X]
* Eg., forX ={ab,c, .., z}, upper boundis = 4.7



Limiting entropy rate

* Conditional entropy of a symbol given the preceding symbols:
Fio = H(Xp|X1.-1) = HX1.x) — HX1.5-1)

 Can write H(X,.7) as telescoping sum:
H(Xl:T) —_ Fl + FZ + .-+ FT
so entropy rate is average of these conditional entropies

e By stationarity and "conditioning can only reduce entropy":
H(X;) = H(X;) = H(X,|X,)

e Therefore
F12F222FT

* By monotone convergence, there's a limit: F,, = lim F

T—o0
*So H(X1.7)/T = F, as well



Using the n-gram approximation

e Shannon (1948, 1951) wanted to know entropy rate of printed English

e But this information source is too unwieldy
 What if we use an n-gram approximation?

* Let (X;);en be stochastic process that describes printed English
* Let (Y;) ey be stochastic process governed by n-gram approximation

* Question:
1 1
?H(Xl:T) ~ ?H(YlT)?

* For k < n, law of k consecutive Y;'s is same as that for X;'s
H(Yi.) — H(Yyk—1) = HXq1) — HXp.4—1) = Fy

e What about k > n?



Where does the n-gram approximation go wrong?

* For k > n:Y; only depends on previous n — 1 symbols
H(YelY1-1) = H(Ye|Yee(n-1):k-1) = Fy
* If we write entropy rate of n-gram approximation as average of
conditional entropies (just like before), we get (for T = n)

1 1
?H(Yl:T) — ?(Fl + FZ + .-+ FTl + F’I’l + -+ FTL)

Y
T — n times

* Since F; = F, = --- = Fy, we also have

1 1 1
~H(Yir) 2 Z(Fy+ Fy 4 ot Byt Fopg + 0+ Fr) = ZH(Xyp)

* So n-gram approximation's entropy rate is an upper-bound



Does the n-gram approximation work in the "limit"?

1 1
?H(Yl:T) —_ _(Fl + FZ + + Fn + FTL + + Fn)

T
n(Fl_Fn)
<E + =

e If we take T — o0 and then n — oo, we have

1
TH(Yl:T) - Foo

* By sandwiching, F, is (true) limiting entropy rate
* Shannon opts to simply use (estimate of) F, as an upper-bound on F,



Entropy rate of printed English

* Plug-in existing frequency tables for 1-grams, 2-grams, 3-grams:
E, = H(Pn) — H(Py_1)

4.14 3.56

* No n-gram tables for n > 3, but have word frequency tables
 Estimate: k-th most frequent word in English has frequency 0.1/k (Zipf's law)
* To have this normalize properly, only consider 12366 words

* Plug-in to formula to get entropy of English word distribution:
9.72

* Average English word has 4.5 letters, so get per-letter entropy estimate:

972_216
5 7
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Shannon's prediction game

* Thesis: English speakers implicitly know/use distribution of English

 Game (simple version):
* Choose passage of English text x;.7
e Fort=1,..,T:
* Speaker guesses x;
* |If correct, tell the speaker to record a null symbol
* Else, reveal x; to speaker
* Example run of the game:
THE ROOM WAS NOT VERY LIGHT A SMALL OBLONG READING LAMP ON THE DESK SHED

BEEERROCONNEEREENOTHVERREN REEEEESVERRNCELHRREREARDNENDDEDN
BEEEONRREEEOEENEESHEDN
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Redacted sequence is a perfect encoding

* Theorem: For any sequence x,.r, resulting "redacted" sequence
produced by in game has same information as original sequence

* Proof: Can perfectly recover any redacted symbol x; using the
Speaker and redacted prefix

* (Shannon also has another version of the game based on ranks)



ML version of Shannon's game

e Construct NN: X* — A(Z) (say, using deep learning)
* Write NN(x|x,.,—1) for probability assigned to x by evaluating NN on x;.;_

* Choose passage of English text x1.7 (not used in construction of NN)

*Fort=1,..,T:

* Record log-loss of NN on t-th symbol x;
1

NNCxelxq.e-1)

log

 Average log-loss on entire passage x.r:
1

T
0l
— 0
T e 5 NN(xt |x1:t—1)




Why log-loss?

* Let p be probability distribution, and X ~ p
* Let g be another probability distribution

* Then
[log—] z Do (log— + log ) Z Do log— + H(p)
RE(p, q)
* ...where RE(p, q) is relative entropy (a.k.a. Kullback-Leibler (KL) divergence)
fromp to g

* Gibb's inequality: RE(p, g) = 0 with equality iff p = ¢
* So, as function of g, expected log-loss is minimized by g = p



Why average los-loss over sequence?

* Log loss on t-th symbol X, in expectation:
1

1
E|lo =E|E [lo
[ gNN(Xt|X1:t—1)] [ gNN(thxlrt—l)
1
> [E IEI[lo Xar ]
[ gPt(Xt|X1:t—1) 1it-1 ]
— H(Xt|X1:t—1) — Ft

* So average log-loss, in expectation, is

T
1 1
> ?; F = - H(Pr)

* Average log-loss, in expectation, gives upper-bound on entropy rate

-




Recap

* Entropy rate of source — per symbol entropy over long sequences

e Can upper-bound using:
* Entropy rate of n-gram approximations
* Average of log-losses in sequential prediction (in expectation)



Proof of Gibbs' inequality

* Let X ~ p, and by (strict) convexity of negative logarithm:

RE(p,q) = E [log— =

= —log (Z qx>

X

= —log(1) =0
* Equality holds iff gy /px is constant function (i.e., p = q)
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