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Discrete information sources
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Communication systems (Shannon, 1948)
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Discrete information source

• Finite alphabet Σ

• A discrete information source is a stochastic process 𝑋𝑡 𝑡∈ℕ where 
each 𝑋𝑡 has range Σ
• Regard 𝑡 as "position" or "time"

• 𝑋𝑡 is 𝑡-th symbol in message

• Simplifying assumption: stochastic process is stationary
e.g., (𝑋1, 𝑋3, 𝑋5) has same distribution as (𝑋11, 𝑋13, 𝑋15)
• Still arbitrarily complicated; no finite description
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Tractable approximation: 𝑛-gram model

• Let 𝑃𝑛 be law for symbols at 𝑛 consecutive positions (for true I.S.)
• 𝑃𝑛 𝑥1, … , 𝑥𝑛 ≥ 0

• σ𝑥1,…,𝑥𝑛
𝑃𝑛 𝑥1, … , 𝑥𝑛 = 1

• For 𝑛′ < 𝑛, can get 𝑃𝑛′  from 𝑃𝑛 by marginalization

• Conditional law for 𝑛-th symbol given first 𝑛 − 1 symbols:

𝑃𝑛 𝑥𝑛 𝑥1, … , 𝑥𝑛 =
𝑃𝑛 𝑥1, … , 𝑥𝑛

𝑃𝑛−1 𝑥1, … , 𝑥𝑛−1

• The 𝒏-gram model is the Markov chain over state space Σ𝑛−1 defined 
in the "natural" way using this conditional law…
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𝑛-gram Markov chain

• Transition probability from state 
𝑥1, … , 𝑥𝑛−1  to 𝑥2, … , 𝑥𝑛  is

𝑃𝑛 𝑥𝑛 𝑥1, … , 𝑥𝑛−1

(Should also define initial state distribution, but 
under "ergodicity" and "stationarity" assumptions, 
it is uniquely defined by transition probabilities!)

aaa aab aac

aba abb abc

bac

𝑃4 𝑐 𝑎𝑏𝑎

⋮

𝑃4 𝑏 𝑎𝑎𝑎

𝑃4 𝑐 𝑎𝑎𝑎

𝑃4 𝑎 𝑎𝑎𝑏

𝑃4 𝑐 𝑎𝑎𝑏
𝑃4 𝑏 𝑎𝑎𝑏

𝑃4 𝑎 𝑎𝑎𝑎
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Specification of 𝑛-gram model

• For each state, specify transition probs. for Σ  possible next-states

• Meaning:
• 𝑛 = 1: remember nothing (no states)

• 𝑛 = 2: only remember last symbol (|Σ| states)

• 𝑛 = 3: only remember last two symbols ( Σ 2 states)
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Generation based on 𝑛-gram model

Given 𝑥1, … , 𝑥𝑇, generate next symbol according to 𝑛-gram model
• Only look at last 𝑛 − 1 symbols 𝑥𝑇−(𝑛−2), … , 𝑥𝑇

• Sample 𝑥𝑇+1 according to conditional law
𝑃𝑛 ⋅ 𝑥𝑇−(𝑛−2), … , 𝑥𝑇

• Same as starting in Markov chain state 𝑥𝑇−(𝑛−2), … , 𝑥𝑇  and taking one step
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Prediction based on 𝑛-gram model

Given 𝑥1, … , 𝑥𝑇, predict next symbol according to 𝑛-gram model
• Only look at last 𝑛 − 1 symbols 𝑥𝑇−(𝑛−2), … , 𝑥𝑇

• Predict 𝑥𝑇+1 to be
argmax𝑥∈Σ𝑃𝑛 𝑥 𝑥𝑇−(𝑛−2), … , 𝑥𝑇
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Measuring information
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How much "information" is in a source?

• How much information is in length 𝑇 sequences from the I.S.?

• Hartley (1928): it's related to the number of possible messages, and 
the logarithm of that number is "natural"

log Σ 𝑇

• But this doesn't take into account relative frequencies of messages

12



Shannon's entropy

• Let 𝑁 be total number of possible messages (e.g., 𝑁 = Σ 𝑇)

• Let 𝑝 = 𝑝1, … , 𝑝𝑁  where 𝑝𝑖 is probability of 𝑖-th possible message

• Entropy of 𝑝 (or entropy of 𝑋 ∼ 𝑝):

𝐻 𝑝 = 𝐻(𝑋) = ෍

𝑖=1

𝑁

𝑝𝑖 log
1

𝑝𝑖

• Shannon derived this formula by:
• Writing down some axioms that any reasonable measure of information 

should satisfy

• Deriving the formula as the only possible formula that satisfies the axioms
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Example

• 𝐻 0.5,0.5 = 0.5 log 2 + 0.5 log 2 = log 2

• 𝐻 0.25,0.75 = 0.25 log 4 + 0.75 log 1.333 … < log 2

• 𝐻 𝜖, 1 − 𝜖 = 𝜖 log
1

𝜖
+ 1 − 𝜖 log

1

1−𝜖 
=

log 1/𝜖

1/𝜖
+ 1 − 𝜖 log

1

1−𝜖 

• Uniform distribution on 𝑁 possible messages:

𝐻 𝑝 = ෍

𝑖=1

𝑁

𝑝𝑖 log
1

𝑝𝑖
= log 𝑁
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Axioms from Aczel, Forte, Ng (1974)

• Expansible: 𝐻 𝑝1, … , 𝑝𝑁 = 𝐻 𝑝1, … , 𝑝𝑁 , 0

• Symmetric: unaffected by relabeling the messages

• Additive: If 𝑋 and 𝑌 are independent, then 𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻(𝑌)

• Subadditive: 𝐻 𝑋, 𝑌 ≤ 𝐻 𝑋 + 𝐻(𝑌)

• Small for small probabilities: lim
𝜖→0+

𝐻 𝜖, 1 − 𝜖 = 0

• Normalized: 𝐻 0.5,0.5 = log 2

Only Shannon's entropy satisfies these axioms!
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Additivity

𝐻 𝑋, 𝑌 = ෍

𝑥,𝑦

𝑝𝑥,𝑦 log
1

𝑝𝑥,𝑦

= ෍

𝑥,𝑦

𝑝𝑥,𝑦 log
1

𝑝𝑥𝑝𝑦

= ෍

𝑥,𝑦

𝑝𝑥,𝑦 log
1

𝑝𝑥
+ log

1

𝑝𝑦

= ෍

𝑥

𝑝𝑥 log
1

𝑝𝑥
+ ෍

𝑦

𝑝𝑦 log
1

𝑝𝑦
= 𝐻 𝑋 + 𝐻(𝑌)
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Properties of entropy

• 𝐻 𝑝 ≥ 0
• 𝐻 𝑝 = 0  iff  𝑋 ∼ 𝑝 is a constant

• 𝐻 𝑝 ≤ log 𝑁 for all 𝑋 ∼ 𝑝 on 𝑁 possible values
• 𝐻 𝑝 = log 𝑁  iff  𝑝 is uniform distribution

• 𝐻(𝑝) is (strictly) concave function of 𝑝

• If 𝐴 is doubly-stochastic 𝑁 × 𝑁 matrix, then 𝐻 𝑝 ≤ 𝐻(𝐴𝑝)
• Here we regard 𝑝 as an 𝑁-vector

• 𝐻 𝑝 = 𝐻(𝐴𝑝)  iff  𝐴 is a permutation matrix
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Conditional entropy

Define conditional entropy 𝐻 𝑌 𝑋  to be average of conditional 
distribution of 𝑌 given 𝑋 = 𝑥 for each 𝑥 but weighted by 𝑝𝑥:

𝐻 𝑌 𝑋 = ෍

𝑥

𝑝𝑥 ෍

𝑦

𝑝𝑦|𝑥 log
1

𝑝𝑦|𝑥

= ෍

𝑥,𝑦

𝑝𝑥,𝑦 log
1

𝑝𝑦|𝑥

• On average (over 𝑋), how much information is in 𝑌 when 𝑋 is known

• If 𝑋 and 𝑌 are independent, then 𝑝𝑦|𝑥 = 𝑝𝑦 and 𝑝𝑥,𝑦 = 𝑝𝑥𝑝𝑦, so
𝐻 𝑌 𝑋 = 𝐻(𝑌)
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Another intuitive way to think about conditional entropy

𝐻 𝑌 𝑋 = ෍

𝑥,𝑦

𝑝𝑥,𝑦 log
1

𝑝𝑦|𝑥

= ෍

𝑥,𝑦

𝑝𝑥,𝑦 log
𝑝𝑥

𝑝𝑥,𝑦

= ෍

𝑥,𝑦

𝑝𝑥,𝑦 log
1

𝑝𝑥,𝑦
− ෍

𝑥,𝑦

𝑝𝑥,𝑦 log
1

𝑝𝑥

= 𝐻 𝑋, 𝑌 − 𝐻 𝑋

• How much information of 𝑋, 𝑌  is left after taking out that from 𝑋
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Effect of conditioning

• Using subadditivity of entropy,
𝐻 𝑋 + 𝐻 𝑌 ≥ 𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 𝑋

• Therefore,
𝐻 𝑌 ≥ 𝐻 𝑌 𝑋

• Conditioning can only reduce entropy
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Regarding (conditional) entropy as expected values

• If 𝑋 ∼ 𝑝, then

𝐻 𝑋 = 𝔼 log
1

𝑝𝑋

• If 𝑋, 𝑌 ∼ 𝑝, then

𝐻 𝑌 𝑋 = 𝔼 log
1

𝑝𝑌|𝑋
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Entropy rate of a source
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Entropy rate

• Consider information source 𝑋𝑡 𝑡∈ℕ

• Shorthand: 𝑋1:𝑇 = 𝑋1, … , 𝑋𝑇

• If symbols are IID, then
𝐻 (𝑋1:𝑇) = 𝑇 ⋅ 𝐻 𝑋1

• Grows linearly with sequence length

• Entropy rate (i.e., per-symbol entropy):
1

𝑇
𝐻 𝑋1:𝑇

• Interested in this for large 𝑇 (or limit 𝑇 → ∞)
• Larger 𝑇 means more "structure" about I.S. is captured

• Easy upper bound for all sources: log Σ
• E.g., for Σ = {a, b, c, … , z}, upper bound is ≈ 4.7
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Limiting entropy rate

• Conditional entropy of a symbol given the preceding symbols:
𝐹𝑘 ≔ 𝐻 𝑋𝑘 𝑋1:𝑘−1 = 𝐻 𝑋1:𝑘 − 𝐻 𝑋1:𝑘−1

• Can write 𝐻 𝑋1:𝑇  as telescoping sum:
𝐻 𝑋1:𝑇 = 𝐹1 + 𝐹2 + ⋯ + 𝐹𝑇

so entropy rate is average of these conditional entropies

• By stationarity and "conditioning can only reduce entropy":
𝐻 𝑋1 = 𝐻 𝑋2 ≥ 𝐻 𝑋2 𝑋1

• Therefore
𝐹1 ≥ 𝐹2 ≥ ⋯ ≥ 𝐹𝑇

• By monotone convergence, there's a limit: 𝐹∞ = lim
𝑇→∞

𝐹𝑇

• So 𝐻(𝑋1:𝑇)/𝑇 ≥ 𝐹∞ as well
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Using the 𝑛-gram approximation

• Shannon (1948, 1951) wanted to know entropy rate of printed English
• But this information source is too unwieldy

• What if we use an 𝑛-gram approximation?

• Let 𝑋𝑡 𝑡∈ℕ be stochastic process that describes printed English

• Let 𝑌𝑡 𝑡∈ℕ be stochastic process governed by 𝑛-gram approximation

• Question:
1

𝑇
𝐻 𝑋1:𝑇 ≈

1

𝑇
𝐻 𝑌1:𝑇 ?

• For 𝑘 ≤ 𝑛, law of 𝑘 consecutive 𝑌𝑡's is same as that for 𝑋𝑡's
𝐻 𝑌1:𝑘 − 𝐻 𝑌1:𝑘−1 = 𝐻 𝑋1:𝑘 − 𝐻 𝑋1:𝑘−1 = 𝐹𝑘

• What about 𝑘 > 𝑛?

25



Where does the 𝑛-gram approximation go wrong?

• For 𝑘 > 𝑛: 𝑌𝑘  only depends on previous 𝑛 − 1 symbols
𝐻 𝑌𝑘 𝑌1:𝑘−1 = 𝐻 𝑌𝑘 𝑌𝑘− 𝑛−1 :𝑘−1 = 𝐹𝑛

• If we write entropy rate of 𝑛-gram approximation as average of 
conditional entropies (just like before), we get (for 𝑇 ≥ 𝑛)

1

𝑇
𝐻 𝑌1:𝑇 =

1

𝑇
𝐹1 + 𝐹2 + ⋯ + 𝐹𝑛 + 𝐹𝑛 + ⋯ + 𝐹𝑛

• Since 𝐹1 ≥ 𝐹2 ≥ ⋯ ≥ 𝐹𝑇, we also have
1

𝑇
𝐻 𝑌1:𝑇 ≥

1

𝑇
𝐹1 + 𝐹2 + ⋯ + 𝐹𝑛 + 𝐹𝑛+1 + ⋯ + 𝐹𝑇 =

1

𝑇
𝐻 𝑋1:𝑇

• So 𝑛-gram approximation's entropy rate is an upper-bound

𝑇 − 𝑛 times
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Does the 𝑛-gram approximation work in the "limit"?

1

𝑇
𝐻 𝑌1:𝑇 =

1

𝑇
𝐹1 + 𝐹2 + ⋯ + 𝐹𝑛 + 𝐹𝑛 + ⋯ + 𝐹𝑛

≤ 𝐹𝑛 +
𝑛 𝐹1 − 𝐹𝑛

𝑇
• If we take 𝑇 → ∞ and then 𝑛 → ∞, we have

1

𝑇
𝐻 𝑌1:𝑇 → 𝐹∞

• By sandwiching, 𝐹∞ is (true) limiting entropy rate

• Shannon opts to simply use (estimate of) 𝐹𝑛 as an upper-bound on 𝐹∞
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Entropy rate of printed English

• Plug-in existing frequency tables for 1-grams, 2-grams, 3-grams:
𝐹𝑛 = 𝐻 𝑃𝑛 − 𝐻(𝑃𝑛−1)

• No 𝑛-gram tables for 𝑛 > 3, but have word frequency tables
• Estimate: 𝑘-th most frequent word in English has frequency 0.1/𝑘 (Zipf's law)

• To have this normalize properly, only consider 12366 words

• Plug-in to formula to get entropy of English word distribution:
9.72

• Average English word has 4.5 letters, so get per-letter entropy estimate:
9.72

4.5
= 2.16

𝑭𝟎 𝑭𝟏 𝑭𝟐 𝑭𝟑

4.7 4.14 3.56 3.3
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Shannon's prediction game

• Thesis: English speakers implicitly know/use distribution of English

• Game (simple version):
• Choose passage of English text 𝑥1:𝑇

• For 𝑡 = 1, … , 𝑇:
• Speaker guesses 𝑥𝑡

• If correct, tell the speaker to record a null symbol ▮

• Else, reveal 𝑥𝑡 to speaker

• Example run of the game:
THE ROOM WAS NOT VERY LIGHT A SMALL OBLONG READING LAMP ON THE DESK SHED 

▮▮▮▮ROO▮▮▮▮▮▮NOT▮V▮▮▮▮▮I▮▮▮▮▮▮SM▮▮▮▮OBL▮▮▮▮REA▮▮▮▮▮▮▮
▮▮▮O▮▮▮▮▮▮D▮▮▮▮SHED▮
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Redacted sequence is a perfect encoding

• Theorem: For any sequence 𝑥1:𝑇, resulting "redacted" sequence 
produced by in game has same information as original sequence

• Proof: Can perfectly recover any redacted symbol 𝑥𝑡 using the 
Speaker and redacted prefix

• (Shannon also has another version of the game based on ranks)
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ML version of Shannon's game

• Construct NN: Σ∗ → Δ Σ  (say, using deep learning)
• Write NN 𝑥 𝑥1:𝑡−1  for probability assigned to 𝑥 by evaluating NN on 𝑥1:𝑡−1

• Choose passage of English text 𝑥1:𝑇 (not used in construction of NN)

• For 𝑡 = 1, … , 𝑇:

• Record log-loss of NN on 𝑡-th symbol 𝑥𝑡

log
1

NN 𝑥𝑡 𝑥1:𝑡−1

• Average log-loss on entire passage 𝑥1:𝑇:

1

𝑇
෍

𝑡=1

𝑇

log
1

NN 𝑥𝑡 𝑥1:𝑡−1

31



Why log-loss?

• Let 𝑝 be probability distribution, and 𝑋 ∼ 𝑝

• Let 𝑞 be another probability distribution

• Then

𝔼 log
1

𝑞𝑋
= ෍

𝑥

𝑝𝑥 log
𝑝𝑥

𝑞𝑥
+ log

1

𝑝𝑥
= ෍

𝑥

𝑝𝑥 log
𝑝𝑥

𝑞𝑥
+ 𝐻(𝑝)

• … where RE 𝑝, 𝑞  is relative entropy (a.k.a. Kullback-Leibler (KL) divergence) 
from 𝑝 to 𝑞

• Gibb's inequality: RE 𝑝, 𝑞 ≥ 0 with equality  iff  𝑝 = 𝑞

• So, as function of 𝑞, expected log-loss is minimized by 𝑞 = 𝑝

32
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Why average los-loss over sequence?

• Log loss on 𝑡-th symbol 𝑋𝑡, in expectation:

𝔼 log
1

NN 𝑋𝑡 𝑋1:𝑡−1
= 𝔼 𝔼 log

1
NN 𝑋𝑡 𝑋1:𝑡−1

𝑋1:𝑡−1

≥ 𝔼 𝔼 log
1

𝑃𝑡 𝑋𝑡 𝑋1:𝑡−1
𝑋1:𝑡−1

= 𝐻 𝑋𝑡 𝑋1:𝑡−1 = 𝐹𝑡

• So average log-loss, in expectation, is

≥
1

𝑇
෍

𝑡=1

𝑇

𝐹𝑡 =
1

𝑇
𝐻 𝑃𝑇

• Average log-loss, in expectation, gives upper-bound on entropy rate
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Recap

• Entropy rate of source – per symbol entropy over long sequences

• Can upper-bound using:
• Entropy rate of 𝑛-gram approximations

• Average of log-losses in sequential prediction (in expectation)
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Proof of Gibbs' inequality

• Let 𝑋 ∼ 𝑝, and by (strict) convexity of negative logarithm:

RE 𝑝, 𝑞 = 𝔼 log
𝑝𝑋

𝑞𝑋
= 𝔼 − log

𝑞𝑋

𝑝𝑋

≥ − log 𝔼
𝑞𝑋

𝑝𝑋

= − log ෍

𝑥

𝑞𝑥

= − log 1 = 0

• Equality holds iff 𝑞𝑋/𝑝𝑋 is constant function (i.e., 𝑝 = 𝑞)
35
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