Preference learning

Daniel Hsu COMS 6998-7 Spring 2025

Story so far

Q: How well can we capture structure of natural language?

- Shannon's N-gram model and basic learning objective
 - Very easy to understand, but quite limited in power
- Neural language models
 - Exploit word embeddings + neural computation models
 - Some coarse- and fine-grained understanding of what they can do
 - Fairly robust understanding of learnability/generalization theory
 - Very preliminary understanding of efficient training algorithms (commensurate with how well we understand training for other neural nets)

LLM training

- Pre-training
 - Shannon's objective (a special case of "self-supervised learning")
- <u>Training</u>
- Post-training
 - Supervised fine-tuning
 - Labeled examples (prompt x, response y)
 - Train model to predict desired responses to prompts
 - Instruction-tuning
 - Labeled examples (instructions i, prompt x, format f)
 - Train model so predicted responses match the desired format as instructed
 - Both of these "post-training" methods are (just) standard supervised learning

E.g., questions are not always followed-up with correct answers in natural language text

Handle custom instructions and response formats

Preference-tuning

How to make a language model polite?

- <u>Solution 1</u>: supervised fine-tuning on prompts with polite answers
 - Requires a polite person to write these polite answers
- Solution 2: supervised fine-tuning that rewards polite answers
 - Requires a polite person to judge whether answers are polite or not
 - How polite is polite enough? What is politeness level 7?
 - People tend to be better at comparing answers than giving absolute grades
 - Use pairwise preference comparisons to learn a reward function, which in turn is used with supervised learning

Reward model

• <u>Classical models (like BTL)</u>: parameterized by quality score $w_i \ge 0$ for each item *i*

$$\Pr(i \succ j) = \frac{w_i}{w_i + w_j}$$

• <u>Models with features</u>: each item *i* has a feature vector v_i , and (log) quality score is $\log w_i = \langle \theta, v_i \rangle$ for some model parameter vector θ

$$\Pr(i \succ j) = \frac{1}{1 + \exp(-\langle \theta, v_i - v_j \rangle)}$$

Models with context-dependent features:

$$\Pr(i \succ j | x) = \frac{1}{1 + \exp(-\langle \theta, \phi(v_i, x) - \phi(v_j, x) \rangle)}$$

• ...