Transformers, parallel computation, and logarithmic depth

Daniel Hsu (Columbia)
Joint work with:
Clayton Sanford (Columbia)
Matus Telgarsky (NYU)

Context

What do we know about Transformers (TFs) [Vaswani et al, 2017]?

- TFs are universal approximators [Yun et al, 2020; Pérez et al, 2021; Strobl et al, 2024; ...]
- Many limitations of constant size/depth TFs
[Hahn, 2020; Merrill \& Sabharwal, 2022; Sanford et al, 2023; ...]

What distinguishes TFs from other neural architectures?

Self-attention and transformers

- Self-attention head:

$$
\mathrm{SA}^{Q, K, V}\left(x_{1}, \ldots, x_{N}\right)=\sum_{j=1}^{N} \alpha_{i, j} V\left(x_{j}\right)
$$

where

$$
\alpha_{i}=\operatorname{softmax}\left(Q\left(x_{i}\right) \cdot K\left(x_{1}\right), \ldots, Q\left(x_{i}\right) \cdot K\left(x_{N}\right)\right)
$$

- Embedding functions Q, K, V have embedding dimension m

- Self-attention layer: sum of H self-attention heads (width)
- Transformer: composition of L self-attention layers (depth)
- This work: $\log N$ precision numbers, poly (N) size alphabets, etc.

What we do

Goal: Use parallelism to distinguish TFs from other architectures

- Part I Relate TFs to Massively Parallel Computation
- Part II Distinguish TFs using " k-hop induction heads"

Part I: MPC vs TFs

Massively Parallel Computation (MPC)

- Culmination of theoretical models to study MapReduce, Hadoop, etc. [Karloff et al, 2010; Goodrich et al, 2011; Beame et al, 2013; Andoni et al, 2014]
- Input size: $n \quad[n \leq q \times s]$
- Number of machines: q
- Memory size per machine: $s \quad\left[s=\Theta\left(n^{\delta}\right)\right.$ for small $\left.\delta \in(0,1)\right]$

How many rounds R are needed?

MPC algorithms for many problems

- Broadcast
- Sorting
- Prefix sum

$$
R=O(1)
$$

$$
R=O(1)
$$

$$
R=O(1)
$$

- Problems on sparse graphs [Andoni et al, 2018, Behnezhad et al, 2019, ...]
- Connected components
$R=\log$ (Diameter)
- Minimum spanning forest $\quad R=\log$ (Diameter)
- Open question: $o(\log n)$ round algorithm for connectivity?

Example: MPC algorithm to broadcast a word

$s=\Theta\left(n^{\delta}\right), q=\operatorname{poly}(n)$
Propagate word using
$b=\Omega(s)$-ary broadcast tree

- \# Rounds: $R=O\left(\frac{\log q}{\log s}\right)=O\left(\frac{1}{\delta}\right)$

Two very deep thoughts

1. If TFs can simulate MPC algorithms efficiently, then an efficient MPC algorithm implies a small TF
2. If MPC algorithms can simulate TFs efficiently, then problems hard for MPC are also hard for TFs

TFs can simulate MPC algorithms

- Theorem [SHT'24]: If $f: \Sigma^{n} \rightarrow \Sigma^{n}$ can be computed by R-round MPC algorithm using $q=\Theta\left(n^{1-\delta}\right)$ machines and $s=\Theta\left(n^{\delta}\right)$ word memory/machine, then f can be computed by TF with
- $L=O(R)$ layers
- $H=O(\log \log n)$ heads/layer
- Embedding dimension $m=O\left(n^{4 \delta} \log n\right)$
- Corollary: \log (Diameter)-layer TF for connectivity in sparse graphs, ...

Two very deep thoughts

1. If TFs can simulate MPC algorithms efficiently, then an efficient MPC algorithm implies a small TF
2. If MPC algorithms can simulate TFs efficiently, then problems hard for MPC are also hard for TFs

MPC algorithms can simulate TFs

- Theorem [SHT'24]: If $f: \Sigma^{N} \rightarrow \Sigma^{N}$ can be computed by TF with L layers, H heads/layer, and embedding dimension m satisfying $m H=O\left(N^{\delta}\right)$, then for any $\gamma>0, f$ can be computed by MPC algorithm with
- $R=O(L / \gamma)$ rounds
- $q=O\left(N^{2}\right)$ machines
- $s=O\left(N^{\delta+\gamma}\right)$ word memory/machine

What problems are hard for MPC?

- 1-vs-2 cycle problem: Given graph G that is promised to be either cycle on n vertices or union of two cycles on $n / 2$ vertices each,

versus

decide if G is connected.
- 1-vs-2 cycle hypothesis: All MPC algorithms for this problem with $s=$ $O\left(n^{1-\epsilon}\right)$ for some $\epsilon>0$ and $q=\operatorname{poly}(n)$ use $R=\Omega(\log n)$ rounds

Logarithmic depth is necessary for TFs

- Corollary: Assuming 1 -vs- 2 cycle hypothesis, every TF with $m H=$ $O\left(n^{1-\epsilon}\right)$ for some $\epsilon>0$ that decides connectivity has $L=\Omega(\log n)$

Summary of Part I

- Efficient MPC algorithms give small TFs
- TFs face same limitations as MPC algorithms

Part II: k-hop induction heads

Induction heads

- Induction heads [Olsson et al, 2022] identified in existing pre-trained TFs solve a certain next-token prediction task
- Given baebcabebdea, what comes next?
- Answer: b

Multi-step induction heads task (" k-hop")

- Given baebcabebdea, what comes next?

baebcabebdea

- Answer ($k=2$): c
- Multi-step reasoning problem [Peng, Narayanan, Papadimitriou, 2024]:
- Prompt: "Jane is a teacher. Helen is a doctor. [...] The mother of John is Helen. The mother of Charlotte is Eve. [...] What's the profession of John's mother?"
- Answer: doctor

Why is k-hop important?

- Captures natural + simple multi-step reasoning problem
- TFs can compute it efficiently
- Non-parallel architectures (e.g., RNNs) have difficulty with it

TFs can efficiently compute k-hop predictions

- Theorem [S너'24]: For any $k \in \mathbb{N}$, there is a causally-masked TF with $m=O(1), \quad H=1, \quad L \leq 2+\log _{2}(k)$ that computes k-hop predictions (at all positions)
- Solution exploits parallelism in manner similar to [Bietti et al, 2023]

Every layer doubles the "reach"

- Surprise: SGD empirically appears to find the same solution!

Bottleneck for non-parallel models

Small-state (multi-layer) RNNs

Efficient sequential k-party communication protocols

But k-hop is hard in this
communication model
(Consequence of [Assadi and N, 2021])

Pointer Chasing [Nisan \& Wigderson, 1993]

- Problem: Given k-layered graph $\left(\mathcal{V}_{1}, \ldots, \mathcal{V}_{k+1}, E_{1}, \ldots, E_{k}\right)$ and $u \in \mathcal{V}_{1}$, determine unique $v \in \mathcal{V}_{k+1}$ such that $u w \geqslant v$
$\frac{n}{k+1}$ vertices per layer
$0 \longrightarrow 0$

E_{i} is perfect matching between $\mathcal{V}_{i} \& \mathcal{V}_{i+1}$
- Proposition [SHT'24]: Can encode ($E_{k}, \ldots, E_{2}, E_{1}$) and $u \in \mathcal{V}_{1}$ as $x \in$ $\left[\frac{2 n}{k+1}\right]^{N}(N=\Theta(n))$ s.t. k-Pointer Chasing is equivalent to k-hop on x

Consequences of [Assadi \& N, 2021]

Corollary: Average case lower bounds for computing k-hop predictions

- L-layer RNN (e.g., Mamba) with s-bit hidden state:

$$
L \geq k \text { or } s=\widetilde{\Omega}\left(n / k^{6}\right)
$$

- TF using rank- r SA approximation:

$$
L \geq k \text { or } m H r=\widetilde{\Omega}\left(n / k^{6}\right)
$$

- Single SA layer with T "chain-of-thought" tokens:

$$
T \geq k \text { or } m H=\widetilde{\Omega}\left(n / k^{6}\right)
$$

Summary of Part II

k-hop induction heads task

- Captures natural and simple multi-step reasoning problem
- Can be solved by TFs with $O(\log k)$ depth and $O(1)$ width
- (This depth is necessary, assuming 1 -vs-2 cycle hypothesis)
- Cannot be solved by other "non-parallel" architectures unless they have $\Omega(k)$ "depth" or $\Omega\left(n / k^{6}\right)$ "size"

Closing

- Parallelism distinguishes TFs from other architectures
- Relies on log depth + sublinear width regime for TF
- Separation exhibited by natural multi-step reasoning problem
- Future work
- Finer-grain understanding of TFs that looks inside embedding functions
- Learning

Thank you!

Example: MPC algorithm for sorting

$s=\Theta\left(n^{2 / 3}\right), q=\Theta\left(n^{1 / 3}\right)$

1. Each machine marks each of its elements with probability $\Theta(s / n)$, then send marked elements to Machine 1
2. Machine 1 determines q "ranges" that partition inputs (approx.) evenly; broadcast specs to all machines
3. Each machine collects input elements in "range" it is responsible for, then sort elements locally

Key idea: self-attention head for routing

- Messages to be sent (received) by machine i (machine j):

$$
\text { Outbox }_{i} \subseteq \Sigma \times[q], \quad \operatorname{Inbox}_{j}=\left\{(\mathrm{msg}, i):\left(\mathrm{msg}^{\prime}, j\right) \in \text { Outbox }_{i}\right\}
$$

- MPC algorithm guarantees \mid Outbox $_{i} \mid=O(s)$ and \mid Inbox $_{j} \mid=O(s)$
- We design a small SA head such that

$$
\left(\text { Inbox }_{1}, \ldots, \operatorname{Inbox}_{q}\right)=S A\left(\text { Outbox }_{1}, \ldots, \text { Outbox }_{q}\right)
$$

- Uses "Sparse Averaging" [S누'23] + some redundancy:

$$
\text { SparseAveraging }\left(O_{1}, \ldots, O_{q}\right)_{j}=\frac{1}{\operatorname{deg}(j)} \sum_{i \rightarrow j} O_{i}
$$

Sequential multi-party communication

- Input split into k parts x_{1}, \ldots, x_{k}, given to k players
- Players communicate in round-robin fashion via public blackboard
- (k, R, s) protocol:
- For $r=1, \ldots, R$:
- For $i=1, \ldots, k$:
- Player i reads content of BB , appends $F_{r, i}\left(\mathrm{BB}, x_{i}\right) \in\{0,1\}^{s}$ to BB

- [Assadi \& N, 2021]: Every (k, R, s) protocol for k-Pointer Chasing, where Player i gets E_{k+1-i}, must have either $R \geq k$ or $s=\Omega\left(n / k^{6}\right)$

