Transformers,
parallel computation,
and logarithmic depth

Daniel Hsu (Columbia)

Joint work with:
Clayton Sanford (Columbia)
Matus Telgarsky (NYU)

Context

What do we know about Transformers (TFs) [Vaswani et al, 2017]?

* TFs are universal approximators
[Yun et al, 2020; Pérez et al, 2021; Strobl et al, 2024; ...]

* Many limitations of constant size/depth TFs
[Hahn, 2020; Merrill & Sabharwal, 2022; Sanford et al, 2023; ...]

What distinguishes TFs from other neural architectures?

Self-attention and transformers

t

e Self-attention head: fMatMuI“
N SoftMax
SAQ’ ’ (xl, ...,XN) = z ai’j (X]) Maskf(opt.)
j=1 chle
where 1
MatMul
a; = softmax(Q(xl-) - K(x1), 0, Q(x;) - (XN)) g P1<)

* Embedding functions O, K,V have embedding dimension m

e Self-attention layer: sum of H self-attention heads (width)

* Transformer: composition of L self-attention layers (depth)

* This work: log N precision numbers, poly(N) size alphabets, etc.

What we do

Goal: Use to distinguish TFs from other architectures
* Part | Relate TFs to
* Part Il Distinguish TFs using "k-hop induction heads"

Part |; \MIPC vs TFs

* Culmination of theoretical models to study MapReduce, Hadoop, etc.
[Karloff et al, 2010; Goodrich et al, 2011; Beame et al, 2013; Andoni et al, 2014]
* Input size:n [n < gXs]

* Number of machines: g

* Memory size per machine: s

[s = @(n‘g) for small § € (0,1)]
=S wieds sent
V. R0 — Fu] —— [,

L \
N 7R) Crdy How many rounds R are needed?
U
T \ : :

R Fu] = [

<SS woeds reevd

algorithms for many problems

* Broadcast R=0(1)

* Sorting R=0(1)

* Prefix sum R=0(1)

* Problems on sparse graphs [Andoni et al, 2018, Behnezhad et al, 2019, ...]
* Connected components R = log(Diameter)
* Minimum spanning forest R = log(Diameter)

* Open question: o(logn) round algorithm for connectivity?

Example: algorithm to broadcast a word

s = 0(n%), g = poly(n)

Propagate word using |CPu, ‘

b = Q(s)-ary broadcast tree /j, >\“@

* #Rounds: R = 0 (IIZEZ) =0 (l)

Two very deep thoughts

1. If TFs can simulate algorithms efficiently, then an efficient
algorithm implies a small TF

TFs can simulate algorithms

* Theorem [SHT'24]: If f:Z™ — X" can be computed by R-round
algorithm using g = @(n1‘5) machines and s = @(n5) word
memory/machine, then f can be computed by TF with

* L = O(R) layers
 H = O(loglogn) heads/layer
» Embedding dimension m = 0(n*° logn)

* Corollary: log(Diameter)-layer TF for connectivity in sparse graphs, ...

Two very deep thoughts

2. If algorithms can simulate TFs efficiently, then problems hard
for are also hard for TFs

algorithms can simulate TFs

* Theorem [sHT24]: If f: 2N — I can be computed by TF with L layers,
H heads/layer, and embedding dimension m satisfying mH = 0(N5),
then forany y > 0, f can be computed by algorithm with

* R=0(L/y) rounds
e g = O(N?) machines
» s = O(N°*") word memory/machine

What problems are hard for ?

e 1-vs-2 cycle problem: Given graph G that is promised to be either
cycle on n vertices or union of two cycles on n/2 vertices each,

s 1707
decide if G is connected.

* 1-vs-2 cycle hypothesis: All algorithms for this problem with s =
0(n'~¢) for some € > 0 and g = poly(n) use R = Q(logn) rounds

Logarithmic depth is necessary for TFs

* Corollary: Assuming 1-vs-2 cycle hypothesis, every TF with mH =
0(n'~¢) for some € > 0 that decides connectivity has L = Q(logn)

Summary of Part |

* Efficient algorithms give small TFs
* TFs face same limitations as algorithms

Part Il: k-hop induction heads

Induction heads

* Induction heads [Olsson et al, 2022] identified in existing pre-trained TFs
solve a certain next-token prediction task

* Given baebcabebdea, what comes next?

 Answer: b
£\

baebcabebdea

Multi-step induction heads task ("k-hop")

e Given baebcabebdea, what comes next?

baebcabebdea

* Answer (k = 2):

* Multi-step reasoning problem [Peng, Narayanan, Papadimitriou, 2024]:

 Prompt: "Jane is a teacher. Helen is a . [...] The mother of John is Helen.
The mother of Charlotte is Eve. [...] What's the profession of John's mother?"

e Answer:

Why is k-hop important?

* Captures natural + simple multi-step reasoning problem
* TFs can compute it efficiently
* Non-parallel architectures (e.g., RNNs) have difficulty with it

TFs can efficiently compute k-hop predictions

 Theorem [SHT'24]: For any k € N, there is a causally-masked TF with
m = 0(1), H =1, L<2+log,(k)
that computes k-hop predictions (at all positions)

 Solution exploits parallelism in manner similar to [Bietti et al, 2023]

4 N\
Bo’\fe,\k{a?\geﬂ;o\e,o\

NS

Every layer doubles the "reach"
 Surprise: SGD empirically appears to find the same solution!

Bottleneck for non-parallel models

Small-state (multi-layer) RNNs Efficient sequential k-party
Y, Ya y{ communication protocols
T
——7D-—47 1D o
R = A &
D >\ —7 - é o
L, o, %
Y-~ - 1 o
.) 'S
8 X1 XN

But k-hop is hard in this

communication model
(Consequence of [Assadi and N, 2021])

Pointer Chasing [Nisan & Wigderson, 1993]

* Problem: Given k-layered graph (V4, ..., V41, E1, ..., E,) and u € V;,
determine unique v E Vk+1 such thatu w v

o ——©
o
o E; is perfect matching
— vertlces per layer
betweenV; & V4

o—*"O

\)’ E-l V EL 4 U—k E Vi,
* Propasition [SHT'24]: Can encode (Ey,...,E;,E;)andu €V, asx €
[k+1 (N = O(n)) s.t. k-Pointer Chasing is equivalent to k-hop on x

Consequences of [Assadi & N, 2021]

Corollary: Average case lower bounds for computing k-hop predictions
* L-layer RNN (e.g., Mamba) with s-bit hidden state:
L>kors=Q(n/k®)

* TF using rank-r SA approximation:
L > kormHr = Q(n/k®)

* Single SA layer with T "chain-of-thought" tokens:
T >k ormH = Q(n/k®)

Summary of Part |

k-hop induction heads task
e Captures natural and simple multi-step reasoning problem
* Can be solved by TFs with O(log k) depth and O(1) width

* (This depth is necessary, assuming 1-vs-2 cycle hypothesis)

e Cannot be solved by other "non-parallel” architectures unless they
have Q(k) "depth" or Q(n/k®) "size"

Closing

. distinguishes TFs from other architectures
e Relies on log depth + sublinear width regime for TF
e Separation exhibited by natural multi-step reasoning problem

* Future work
* Finer-grain understanding of TFs that looks inside embedding functions
* Learning

arXiv:2402.09268, to appear @ ICML 2024

Example: algorithm for sorting

S = @(n2/3), q - @(Tll/S) Py, @ 7@0\. 1
1. Each machine marks each of its elements @;hfﬂ/‘
with probability (s /n), then send marked CPYyT
elements to Machine 1
oo | oo |oe o
2. Machine 1 determines g "ranges" that SR
partition inputs (approx.) evenly; broadcast ﬂ—"’@u\
specs to all machines \d’“z et
3. Each machine collects input elements in U, 5 — s 2y
"range" it is responsible for, then sort a0 XK o,
elements locally
CPU‘_EI Qf’u.‘l:l

Key idea: self-attention head for

* Messages to be sent (received) by machine i (machine j):
Outbox; € 2X]q], Inbox; = {(msg, i): (msg, j) € Outbox;}

. algorithm guarantees |Outbox;| = O(s) and ‘Inboxj‘ = 0(s)

* We design a small SA head such that
(Inboxl, e Inboxq) = SA(Outboxl, e Outboxq)

e Uses "Sparse Averaging' [SHT'23] + some redundancy:

1
SparseAveraging(Ol, . 0q)j = deg(7) z 0;

1—]

Sequential multi-party communication

* Input split into k parts x4, ..., x;,, given to k players
* Players communicate in round-robin fashion via

. : ®
(k,R,S)_protocoI. % X
e Forr=1,..,R:
e Fori=1,..,k: i o)
* Player i reads content of BE, © X
appends F, ; (BB, x;) € {0,1}° to K

* [Assadi & N, 2021]: Every (k, R, s) protocol for k-Pointer Chasing,
where Player i gets E,,. ;_;, must have either R = k or s = Q(n/k°)

