Transformers, parallel computation, and logarithmic depth

Daniel Hsu (Columbia)

<u>Joint work with</u>: Clayton Sanford (Columbia) Matus Telgarsky (NYU)

Context

What do we know about Transformers (TFs) [Vaswani et al, 2017]?

- TFs are universal approximators [Yun et al, 2020; Pérez et al, 2021; Strobl et al, 2024; ...]
- Many limitations of constant size/depth TFs [Hahn, 2020; Merrill & Sabharwal, 2022; Sanford et al, 2023; ...]

What distinguishes TFs from other neural architectures?

Self-attention and transformers

<u>Self-attention head</u>:

$$SA^{Q,K,V}(x_1,\ldots,x_N) = \sum_{j=1}^N \alpha_{i,j} V(x_j)$$

where

$$\alpha_i = \operatorname{softmax}(Q(x_i) \cdot K(x_1), \dots, Q(x_i) \cdot K(x_N))$$

- Embedding functions Q, K, V have embedding dimension m
- <u>Self-attention layer</u>: sum of *H* self-attention heads (width)
- <u>Transformer</u>: composition of *L* self-attention layers (depth)
- This work: log N precision numbers, poly(N) size alphabets, etc.

What we do

Goal: Use parallelism to distinguish TFs from other architectures

- **Part I** Relate TFs to Massively Parallel Computation
- **Part II** Distinguish TFs using "*k*-hop induction heads"

Part I: MPC vs TFs

Massively Parallel Computation (MPC)

- Culmination of theoretical models to study MapReduce, Hadoop, etc. [Karloff et al, 2010; Goodrich et al, 2011; Beame et al, 2013; Andoni et al, 2014]
 - Input size: $n \qquad [n \le q \times s]$
 - Number of machines: q
 - Memory size per machine: $s = \Theta(n^{\delta})$ for small $\delta \in (0,1)$]

How many rounds *R* are needed?

MPC algorithms for many problems

- Broadcast R = O(1)
- Sorting R = O(1)
- Prefix sum R = O(1)

...

...

- Problems on sparse graphs [Andoni et al, 2018, Behnezhad et al, 2019, ...]
 - Connected components $R = \log(\text{Diameter})$
 - Minimum spanning forest $R = \log(\text{Diameter})$

• **Open question**: $o(\log n)$ round algorithm for connectivity?

Example: MPC algorithm to broadcast a word

 $s = \Theta(n^{\delta}), q = \operatorname{poly}(n)$

• # Rounds:
$$R = O\left(\frac{\log q}{\log s}\right) = O\left(\frac{1}{\delta}\right)$$

Two very deep thoughts

- 1. If TFs can simulate MPC algorithms efficiently, then an efficient MPC algorithm implies a small TF
- 2. If MPC algorithms can simulate TFs efficiently, then problems hard for MPC are also hard for TFs

TFs can simulate MPC algorithms

- **Theorem** [S<u>H</u>T'24]: If $f: \Sigma^n \to \Sigma^n$ can be computed by *R*-round MPC algorithm using $q = \Theta(n^{1-\delta})$ machines and $s = \Theta(n^{\delta})$ word memory/machine, then f can be computed by TF with
 - L = O(R) layers
 - $H = O(\log \log n)$ heads/layer
 - Embedding dimension $m = O(n^{4\delta} \log n)$
- **Corollary**: log(Diameter)-layer TF for connectivity in sparse graphs, ...

Two very deep thoughts

- 1. If TFs can simulate MPC algorithms efficiently, then an efficient MPC algorithm implies a small TF
- 2. If MPC algorithms can simulate TFs efficiently, then problems hard for MPC are also hard for TFs

MPC algorithms can simulate TFs

- **Theorem** [S<u>H</u>T'24]: If $f: \Sigma^N \to \Sigma^N$ can be computed by TF with L layers, H heads/layer, and embedding dimension m satisfying $mH = O(N^{\delta})$, then for any $\gamma > 0$, f can be computed by MPC algorithm with
 - $R = O(L/\gamma)$ rounds
 - $q = O(N^2)$ machines
 - $s = O(N^{\delta + \gamma})$ word memory/machine

What problems are hard for MPC?

• 1-vs-2 cycle problem: Given graph G that is promised to be either cycle on n vertices or union of two cycles on n/2 vertices each,

decide if G is connected.

• 1-vs-2 cycle hypothesis: All MPC algorithms for this problem with $s = O(n^{1-\epsilon})$ for some $\epsilon > 0$ and q = poly(n) use $R = \Omega(\log n)$ rounds

Logarithmic depth is necessary for TFs

• **Corollary**: Assuming 1-vs-2 cycle hypothesis, every TF with $mH = O(n^{1-\epsilon})$ for some $\epsilon > 0$ that decides connectivity has $L = \Omega(\log n)$

Summary of Part I

- Efficient MPC algorithms give small TFs
- TFs face same limitations as MPC algorithms

Part II: *k*-hop induction heads

Induction heads

- <u>Induction heads</u> [Olsson et al, 2022] identified in existing pre-trained TFs solve a certain next-token prediction task
 - Given baebcabebdea, what comes next?
 - Answer: b

Multi-step induction heads task ("k-hop")

• Given baebcabebdea, what comes next?

- Answer (k = 2): c
- Multi-step reasoning problem [Peng, Narayanan, Papadimitriou, 2024]:
 - Prompt: "Jane is a teacher. Helen is a doctor. [...] The mother of John is Helen. The mother of Charlotte is Eve. [...] What's the profession of John's mother?"
 - Answer: doctor

Why is *k*-hop important?

- Captures natural + simple multi-step reasoning problem
- TFs can compute it efficiently
- Non-parallel architectures (e.g., RNNs) have difficulty with it

TFs can efficiently compute *k*-hop predictions

- Theorem [SHT'24]: For any $k \in \mathbb{N}$, there is a causally-masked TF with m = O(1), H = 1, $L \le 2 + \log_2(k)$ that computes k-hop predictions (at all positions)
- Solution exploits parallelism in manner similar to [Bietti et al, 2023]

Every layer doubles the "reach"

• **Surprise**: SGD empirically appears to find the same solution!

Bottleneck for non-parallel models

Small-state (multi-layer) RNNs

Efficient sequential *k*-party communication protocols

But *k*-hop is hard in this communication model (Consequence of [Assadi and N, 2021])

Pointer Chasing [Nisan & Wigderson, 1993]

• **Problem**: Given *k*-layered graph $(\mathcal{V}_1, ..., \mathcal{V}_{k+1}, E_1, ..., E_k)$ and $u \in \mathcal{V}_1$, determine unique $v \in \mathcal{V}_{k+1}$ such that $u \rightsquigarrow v$

• **Proposition** [S<u>H</u>T'24]: Can encode $(E_k, ..., E_2, E_1)$ and $u \in \mathcal{V}_1$ as $x \in \left[\frac{2n}{k+1}\right]^N$ $(N = \Theta(n))$ s.t. *k*-Pointer Chasing is equivalent to *k*-hop on *x*

Consequences of [Assadi & N, 2021]

Corollary: Average case lower bounds for computing *k*-hop predictions

- L-layer RNN (e.g., Mamba) with s-bit hidden state: $L \ge k \text{ or } s = \widetilde{\Omega}(n/k^6)$
- TF using rank-*r* SA approximation:

• ...

 $L \ge k$ or $mHr = \widetilde{\Omega}(n/k^6)$

• Single SA layer with T "chain-of-thought" tokens: $T \ge k$ or $mH = \widetilde{\Omega}(n/k^6)$

Summary of Part II

k-hop induction heads task

- Captures natural and simple multi-step reasoning problem
- Can be solved by TFs with $O(\log k)$ depth and O(1) width
 - (This depth is necessary, assuming 1-vs-2 cycle hypothesis)
- Cannot be solved by other "non-parallel" architectures unless they have $\Omega(k)$ "depth" or $\Omega(n/k^6)$ "size"

Closing

- Parallelism distinguishes TFs from other architectures
 - Relies on log depth + sublinear width regime for TF
 - Separation exhibited by natural multi-step reasoning problem
- Future work
 - Finer-grain understanding of TFs that looks inside embedding functions
 - Learning

arXiv:2402.09268, to appear @ ICML 2024

Example: MPC algorithm for sorting

$$s = \Theta(n^{2/3}), q = \Theta(n^{1/3})$$

- 1. Each machine marks each of its elements with probability $\Theta(s/n)$, then send marked elements to Machine 1
- 2. Machine 1 determines q "ranges" that partition inputs (approx.) evenly; broadcast specs to all machines
- 3. Each machine collects input elements in "range" it is responsible for, then sort elements locally

Key idea: self-attention head for routing

- Messages to be sent (received) by machine *i* (machine *j*): $Outbox_i \subseteq \Sigma \times [q], \quad Inbox_j = \{(msg, i): (msg, j) \in Outbox_i\}$
- MPC algorithm guarantees $|Outbox_i| = O(s)$ and $|Inbox_j| = O(s)$
- We design a small SA head such that $(Inbox_1, ..., Inbox_q) = SA(Outbox_1, ..., Outbox_q)$
- Uses "Sparse Averaging" [SHT'23] + some redundancy: SparseAveraging $(O_1, ..., O_q)_j = \frac{1}{\deg(j)} \sum_{i \to j} O_i$

Sequential multi-party communication

- Input split into k parts x_1, \ldots, x_k , given to k players
- Players communicate in round-robin fashion via public blackboard
- <u>(k, R, s) protocol</u>:
 - For r = 1, ..., R:
 - For *i* = 1, ..., *k*:
 - Player *i* reads content of BB, appends $F_{r,i}(BB, x_i) \in \{0,1\}^s$ to BB

• [Assadi & N, 2021]: Every (k, R, s) protocol for k-Pointer Chasing, where Player i gets E_{k+1-i} , must have either $R \ge k$ or $s = \Omega(n/k^6)$