
Transformers,
parallel computation,
and logarithmic depth

Daniel Hsu (Columbia)
Joint work with:

Clayton Sanford (Columbia)
Matus Telgarsky (NYU)



Context

What do we know about Transformers (TFs) [Vaswani et al, 2017]?
• TFs are universal approximators

[Yun et al, 2020; Pérez et al, 2021; Strobl et al, 2024; …]

• Many limitations of constant size/depth TFs
[Hahn, 2020; Merrill & Sabharwal, 2022; Sanford et al, 2023; …]

What distinguishes TFs from other neural architectures?



Self-attention and transformers

• Self-attention head:

SA!,#,$ 𝑥%, … , 𝑥& ='
'(%

&

𝛼),'𝑉 𝑥'

where
𝛼) = softmax 𝑄 𝑥) ⋅ 𝐾 𝑥% , … , 𝑄 𝑥) ⋅ 𝐾 𝑥&

• Embedding functions 𝑄,𝐾, 𝑉 have embedding dimension 𝑚
• Self-attention layer: sum of 𝐻 self-attention heads (width)
• Transformer: composition of 𝐿 self-attention layers (depth)
• This work: log𝑁 precision numbers, poly 𝑁  size alphabets, etc.



What we do

Goal: Use parallelism to distinguish TFs from other architectures
• Part I Relate TFs to Massively Parallel Computation
• Part II Distinguish TFs using "𝑘-hop induction heads"



Part I: MPC vs TFs



Massively Parallel Computa;on (MPC)

• Culmination of theoretical models to study MapReduce, Hadoop, etc. 
[Karloff et al, 2010; Goodrich et al, 2011; Beame et al, 2013; Andoni et al, 2014]
• Input size: 𝑛 [ 𝑛 ≤ 𝑞×𝑠 ]
• Number of machines: 𝑞
• Memory size per machine: 𝑠 [ 𝑠 = Θ 𝑛!  for small 𝛿 ∈ 0,1  ]

Massively Parallel Computation (MPC) [Karloff et all 10
,

Andoni etal 14 ,

Beame et a l 13
,

Goodrich et al;11]

U : input size (n = gxs]

g : machines

s : memory size of each machine (s = @ (ns) for small S + (0,1)
↳S words sent

↑
I

& [ computationI↳u
arbitr, as

F-> CPU
2I

↓: in curCPU
G
-

&s words recod

Main question : how many ROUNDS of MPC are needed?

How many rounds 𝑅 are needed?



MPC algorithms for many problems

• Broadcast    𝑅 = 𝑂 1
• Sorting    𝑅 = 𝑂 1
• Prefix sum    𝑅 = 𝑂 1
• Problems on sparse graphs [Andoni et al, 2018, Behnezhad et al, 2019, …]

• Connected components  𝑅 = log Diameter
• Minimum spanning forest 𝑅 = log Diameter
…

…
• Open question: 𝑜 log 𝑛  round algorithm for connectivity?



Example: MPC algorithm to broadcast a word

𝑠 = Θ 𝑛* , 𝑞 = poly 𝑛

• # Rounds: 𝑅 = 𝑂 +,- .
+,- /

= 𝑂 %
*

Example: BROADCAST a word (s = 0 (nG
,
M= 0 (n

+3)]

litt
--- Propagate the word using

Ibines b = e(s) -ary broadcast tree↓ ---

-

T Tu
. Ku-- - KPUs

-

-----It thiY--

RA-MADIII-TL--

·

#Mounds = Depth of tree = 0 ( = 0(t)

Propagate word using
𝑏 = Ω 𝑠 -ary broadcast tree



Two very deep thoughts

1. If TFs can simulate MPC algorithms efficiently, then an efficient MPC 
algorithm implies a small TF

2. If MPC algorithms can simulate TFs efficiently, then problems hard 
for MPC are also hard for TFs



TFs can simulate MPC algorithms

• Theorem [SHT'24]: If 𝑓: Σ0 → Σ0 can be computed by 𝑅-round MPC 
algorithm using 𝑞 = Θ 𝑛%1*  machines and 𝑠 = Θ 𝑛*  word 
memory/machine, then 𝑓 can be computed by TF with
• 𝐿 = 𝑂(𝑅) layers
• 𝐻 = 𝑂 log log 𝑛  heads/layer
• Embedding dimension 𝑚 = 𝑂 𝑛"! log 𝑛

• Corollary: log Diameter -layer TF for connectivity in sparse graphs, …



Two very deep thoughts

1. If TFs can simulate MPC algorithms efficiently, then an efficient MPC 
algorithm implies a small TF

2. If MPC algorithms can simulate TFs efficiently, then problems hard 
for MPC are also hard for TFs



MPC algorithms can simulate TFs

• Theorem [SHT'24]: If 𝑓: Σ& → Σ&  can be computed by TF with 𝐿 layers, 
𝐻 heads/layer, and embedding dimension 𝑚 satisfying 𝑚𝐻 = 𝑂 𝑁* , 
then for any 𝛾 > 0, 𝑓 can be computed by MPC algorithm with
• 𝑅 = 𝑂 𝐿/𝛾  rounds
• 𝑞 = 𝑂(𝑁#) machines
• 𝑠 = 𝑂 𝑁!$%  word memory/machine



What problems are hard for MPC?

• 1-vs-2 cycle problem: Given graph 𝐺 that is promised to be either 
cycle on 𝑛 vertices or union of two cycles on 𝑛/2 vertices each,

decide if 𝐺 is connected.
• 1-vs-2 cycle hypothesis: All MPC algorithms for this problem with 𝑠 =
𝑂(𝑛%12) for some 𝜖 > 0 and 𝑞 = poly 𝑛  use 𝑅 = Ω log 𝑛  rounds

versus



Logarithmic depth is necessary for TFs

• Corollary: Assuming 1-vs-2 cycle hypothesis, every TF with 𝑚𝐻 =
𝑂 𝑛%12  for some 𝜖 > 0 that decides connectivity has 𝐿 = Ω log 𝑛



Summary of Part I

• Efficient MPC algorithms give small TFs
• TFs face same limitations as MPC algorithms



Part II: 𝑘-hop induction heads



Induc;on heads

• Induction heads [Olsson et al, 2022] identified in existing pre-trained TFs 
solve a certain next-token prediction task
• Given baebcabebdea, what comes next?
• Answer: b

     baebcabebdea



Multi-step induction heads task ("𝑘-hop")

• Given baebcabebdea, what comes next?

    baebcabebdea

• Answer (𝑘 = 2): c
• Multi-step reasoning problem [Peng, Narayanan, Papadimitriou, 2024]:
• Prompt: "Jane is a teacher. Helen is a doctor. […] The mother of John is Helen. 

The mother of Charlotte is Eve. […] What's the profession of John's mother?"
• Answer: doctor



Why is 𝑘-hop important?

• Captures natural + simple multi-step reasoning problem
• TFs can compute it efficiently
• Non-parallel architectures (e.g., RNNs) have difficulty with it



TFs can efficiently compute 𝑘-hop predictions

• Theorem [SHT'24]: For any 𝑘 ∈ ℕ, there is a causally-masked TF with
𝑚 = 𝑂 1 , 	𝐻 = 1, 𝐿 ≤ 2 + log! 𝑘

that computes 𝑘-hop predictions (at all positions)

• Solution exploits parallelism in manner similar to [Bietti et al, 2023]

Every layer doubles the "reach"
• Surprise: SGD empirically appears to find the same solution!

Theorem For any KEN
there is (causally -masked) TF with

m= 0 (1) , H
= 1

,
L = 2 + logz(k)

that solves K-hop Induction Heads task (at all positions)

ConstructionSimilar to (Biettictal 23] to exploit parallelism
Cur
baebcabebdea
&&

Every layer doubles the "reach" of pointers



BoKleneck for non-parallel models

Small-state (multi-layer) RNNs Efficient sequential 𝑘-party 
communication protocols

Why is hehop hard for small-state sequential models (e.g.RNNs) ?

Small state = Efficient K-party sea
multi-layer RNNs communication protocols

Y , YN42

y ↑
-.. D
-

i ↑ *
D+D- ... D
↑ Y
DeDe ...
↑ Y
X, X2 XN But K-hop is hard in this

communication model

Corollary : Any L-layer RNN with hidden state of m bits

fark-hop requires L3k or m = (i)

Why is hehop hard for small-state sequential models (e.g.RNNs) ?

Small state = Efficient K-party sea
multi-layer RNNs communication protocols

Y , YN42

y ↑
-.. D
-

i ↑ *
D+D- ... D
↑ Y
DeDe ...
↑ Y
X, X2 XN But K-hop is hard in this

communication model

Corollary : Any L-layer RNN with hidden state of m bits

fark-hop requires L3k or m = (i)

⇒

But 𝑘-hop is hard in this 
communication model
(Consequence of [Assadi and N, 2021])



Pointer Chasing [Nisan & Wigderson, 1993]

• Problem: Given 𝑘-layered graph (𝒱%, … , 𝒱34%, 𝐸%, … , 𝐸3) and 𝑢 ∈ 𝒱%, 
determine unique 𝑣 ∈ 𝒱34% such that 𝑢 ⇝ 𝑣

• Proposition [SHT'24]: Can encode 𝐸3 , … , 𝐸5, 𝐸%  and 𝑢 ∈ 𝒱% as 𝑥 ∈
50
34%

&
 (𝑁 = Θ(𝑛)) s.t. 𝑘-Pointer Chasing is equivalent to 𝑘-hop on 𝑥

Pointer-chasing (Nisan & Wigderson'93)

O 0 -0

-
1 vertices O>O

898

O

-
O

SXk+1 per layer ↑ G&G G
&

G

O O O 0- 0

wa - m

V, E, V E2 Vs Um Em Uk+

eGiven he layered graph ( .. ....
Um

,
El

, . . . ,
Ek) and NEW

,

determine unique veUrH sit.u me v

Can encode (Er . ... ,
Ev

,El) and ner, as XE41....
N
(N = OG)

so PC is equivalent to k-hop on X

!
"#$

 vertices per layer 𝐸% is perfect matching 
between 𝒱% & 𝒱%#$



Consequences of [Assadi & N, 2021]

Corollary: Average case lower bounds for computing 𝑘-hop predictions
• 𝐿-layer RNN (e.g., Mamba) with 𝑠-bit hidden state:

   𝐿 ≥ 𝑘 or 𝑠 = HΩ 𝑛/𝑘&
• TF using rank-𝑟 SA approximation:

   𝐿 ≥ 𝑘 or 𝑚𝐻𝑟 = HΩ 𝑛/𝑘&
• Single SA layer with 𝑇 "chain-of-thought" tokens:

   𝑇 ≥ 𝑘 or 𝑚𝐻 = HΩ 𝑛/𝑘&
• …



Summary of Part II

𝑘-hop induction heads task
• Captures natural and simple multi-step reasoning problem
• Can be solved by TFs with 𝑂 log 𝑘  depth and 𝑂 1  width
• (This depth is necessary, assuming 1-vs-2 cycle hypothesis)

• Cannot be solved by other "non-parallel" architectures unless they 
have Ω 𝑘  "depth" or Ω 𝑛/𝑘8  "size"



Closing

• Parallelism distinguishes TFs from other architectures
• Relies on log depth + sublinear width regime for TF
• Separation exhibited by natural multi-step reasoning problem

• Future work
• Finer-grain understanding of TFs that looks inside embedding functions
• Learning

arXiv:2402.09268, to appear @ ICML 2024



Example: MPC algorithm for sorting

𝑠 = Θ 𝑛!/# , 𝑞 = Θ 𝑛$/#

1. Each machine marks each of its elements 
with probability Θ 𝑠/𝑛 , then send marked 
elements to Machine 1

2. Machine 1 determines 𝑞 "ranges" that 
partition inputs (approx.) evenly; broadcast 
specs to all machines

3. Each machine collects input elements in 
"range" it is responsible for, then sort 
elements locally

Example : SORT n elements (S = @(n2) , g
= (3)

1
.

Each machine marks each of its elts. w. p . In ciu , 1 @CPU,
111

CPUz ↓

:

Send marked elts
.

to Machine 1
CPUg'
↑

· 0 .000) a -
umun

2. Machine 1 determines o "ranges" that con,

"100a
CPU, ---

Ug

will partition input (approx .) evenly ; -

inSend specs . to all machines ↓
CPUg

3. Each machine collects input elts .

In the CPU ,

le for CPUz"range" it is responsib --- ·

Example : SORT n elements (S = @(n2) , g
= (3)

1
.

Each machine marks each of its elts. w. p . In ciu , 1 @CPU,
111

CPUz ↓

:

Send marked elts
.

to Machine 1
CPUg'
↑

· 0 .000) a -
umun

2. Machine 1 determines o "ranges" that con,

"100a
CPU, ---

Ug

will partition input (approx .) evenly ; -

inSend specs . to all machines ↓
CPUg

3. Each machine collects input elts .

In the CPU ,

le for CPUz"range" it is responsib --- ·

Example : SORT n elements (S = @(n2) , g
= (3)

1
.

Each machine marks each of its elts. w. p . In ciu , 1 @CPU,
111

CPUz ↓

:

Send marked elts
.

to Machine 1
CPUg'
↑

· 0 .000) a -
umun

2. Machine 1 determines o "ranges" that con,

"100a
CPU, ---

Ug

will partition input (approx .) evenly ; -

inSend specs . to all machines ↓
CPUg

3. Each machine collects input elts .

In the CPU ,

le for CPUz"range" it is responsib --- ·



Key idea: self-attention head for routing

• Messages to be sent (received) by machine 𝑖 (machine 𝑗):
Outbox' ⊆ Σ× 𝑞 , Inbox( = msg, 𝑖 : msg, 𝑗 ∈ Outbox'

• MPC algorithm guarantees Outbox) = 𝑂(𝑠) and Inbox' = 𝑂(𝑠)
• We design a small SA head such that

Inbox%, … , Inbox. = SA Outbox%, … , Outbox.

• Uses "Sparse Averaging" [SHT'23] + some redundancy:

SparseAveraging 𝑂%, … , 𝑂. '
=

1
deg 𝑗

'
)→'

𝑂)



Sequential multi-party communication

• Input split into 𝑘 parts 𝑥%, … , 𝑥3, given to 𝑘 players
• Players communicate in round-robin fashion via public blackboard
• (𝑘, 𝑅, 𝑠) protocol:
• For 𝑟 = 1,… , 𝑅:
• For 𝑖 = 1,… , 𝑘:
• Player 𝑖 reads content of BB,

appends 𝐹),' BB, 𝑥' ∈ 0,1 + to BB
• [Assadi & N, 2021]: Every (𝑘, 𝑅, 𝑠) protocol for 𝑘-Pointer Chasing, 

where Player 𝑖 gets 𝐸34%1), must have either 𝑅 ≥ 𝑘 or 𝑠 = Ω 𝑛/𝑘8

Why is hehop hard for small-state sequential models (e.g.RNNs) ?

Small state = Efficient K-party sea
multi-layer RNNs communication protocols

Y , YN42

y ↑
-.. D
-

i ↑ *
D+D- ... D
↑ Y
DeDe ...
↑ Y
X, X2 XN But K-hop is hard in this

communication model

Corollary : Any L-layer RNN with hidden state of m bits

fark-hop requires L3k or m = (i)

BB


