On the sample complexity of parameter estimation in logistic regression with normal design

Daniel Hsu (Columbia)

COLT 2024

Arya Mazumdar (UCSD)

Data model for noisy binary classification

• Estimation goal: Given i.i.d. sample from P_{w^*} (w^* unknown), construct estimate \widehat{w} such that

 $\|\widehat{w} - w^\star\| \le \epsilon$

How large should the sample size be?

Clues from classical asymptotic theory?

• Maximum likelihood estimator given data $(x_i, y_i)_{i=1}^n$ $\widehat{w}_{\text{mle}} = \arg\min_{w} \sum_{i=1}^{\infty} \frac{\ln(1 + e^{-y_i \langle x_i, w \rangle})}{\text{MLE may not exist!}}$ • Asymptotically (as $n \to \infty$), $\sqrt{n}(\widehat{w}_{\text{mle}} - w^*) \xrightarrow{\text{dist.}} N(0, \mathcal{I}(w^*)^{-1})$ • Very roughly: $\mathbb{E} \| \widehat{w}_{\text{mle}} - w^* \| \rightarrow \sqrt{d/n}$ Dependence on $\| w^* \|$? • "Conclusion": sample complexity is d/ϵ^2 ???

Learning half-spaces

- As $||w^*|| \to \infty$, response *Y* is determined by *X*: $Y = \operatorname{sign}(\langle X, \theta^* \rangle)$ where $\theta^* = w^*/||w^*||$
- PAC learning homogeneous half-spaces under $X \sim \text{Uniform}(S^{d-1})$
- Long (1995, 2003): sample complexity is d/ϵ (cf. d/ϵ^2)
 - ... to guarantee classification error rate $\leq\epsilon$
 - ... which is proportional to **parameter error** $\|\hat{\theta} \theta^{\star}\|$
- AKA "1-bit compressed sensing"

Question

• What is the role of $||w^*||$?

• Fix $||w^*|| = \beta$, and only consider estimating $\theta^* = w^*/||w^*|| \in S^{d-1}$

• β is akin to **signal-to-noise ratio**, also called **inverse temperature**

$$\Pr_{\beta\theta^{\star}}(Y=1 \mid X=x) = \frac{1}{1 + \exp(-\beta \langle x, \theta^{\star} \rangle)}$$

- No signal ($\beta = 0$): hopeless
- No noise ($\beta = \infty$): PAC learning half-spaces
- **Revised goal**: Given i.i.d. sample from $P_{\beta\theta^*}$ for some unknown θ^* , construct estimate $\hat{\theta}$ such that

$$\|\hat{\theta} - \theta^{\star}\| \leq \epsilon$$

Main result

• Sample complexity* to ensure $\|\hat{\theta} - \theta^*\| \leq \epsilon$ (in expectation or w.h.p.):

$$n^{*}(d, \epsilon, \beta) \asymp \begin{cases} \frac{d}{\beta^{2} \epsilon^{2}} & \text{if } \beta \lesssim 1 & \text{"high temperature"} \\ \frac{d}{\beta \epsilon^{2}} & \text{if } 1 \lesssim \beta \lesssim 1/\epsilon & \text{"moderate temperature"} \\ \frac{d}{\epsilon} & \text{if } 1/\epsilon \lesssim \beta & \text{"low temperature"} \end{cases}$$

*up to logarithmic factors in d and $1/\epsilon$

Logistic loss

- Logistic loss (i.e., negative log-likelihood of $Ber(\beta \langle x, \theta \rangle)$ on (x, y)): $\ell(\theta; x, y) = \ln(1 + e^{-\beta y \langle x, \theta \rangle})$
- Excess risk with logistic loss: $\mathbb{E}[\ell(\theta; X, Y) - \ell(\theta^{\star}; X, Y)] = \mathbb{E}[\mathrm{KL}(\mathrm{Ber}(\beta \langle X, \theta^{\star} \rangle) || \mathrm{Ber}(\beta \langle X, \theta \rangle))]$
- Normal design \rightarrow very good estimates of expected KL divergence

Sample complexity lower bound

- To use Fano's inequality, suffices to prove good upper bound on $\mathbb{E}\left[\mathrm{KL}\left(\mathrm{Ber}(\beta\langle X, \theta^{\star}\rangle)\|\mathrm{Ber}(\beta\langle X, \theta\rangle)\right)\right]$
 - High temp ($\beta \lesssim 1$): textbook exercise

$$n^*(d,\epsilon,\beta) \gtrsim \frac{d}{\beta^2\epsilon^2}$$

• Moderate temp ($1 \leq \beta \leq 1/\epsilon$): not well-known?

$$n^*(d,\epsilon,\beta) \gtrsim \frac{d}{\beta\epsilon^2}$$

• Low temp $(1/\epsilon \leq \beta)$: unclear how to get tight bound with Fano

Instead, extend Long's 1995 lower bound for $\beta = \infty$ to all $\beta \gtrsim 1/\epsilon$

Sample complexity upper bound

- Three different estimators, depending on temperature
 - High temp ($\beta \leq 1$): minimize average **linear loss** (Servedio, 1999: "Average" algorithm)

Also: Plan & Vershynin (2012) $\hat{\theta} = \underset{\theta \in S^{d-1}}{\arg \min} \sum_{i=1}^{n} -y_i \langle x_i, \theta \rangle$ • Moderate or low temp $(1 \leq \beta)$: minimize average **ReLU loss** Inspired by Kuchelmeister & van de Geer (2023) $\hat{\theta} = \underset{\theta \in S^{d-1}}{\arg \min} \sum_{i=1}^{n} \max\{0, -y_i \langle x_i, \theta \rangle\}$

• Low temp $(1/\epsilon \leq \beta)$: minimize average **0-1 loss**

$$\hat{\theta} = \underset{\theta \in S^{d-1}}{\arg\min} \sum_{i=1}^{n} 1\{y_i \langle x_i, \theta \rangle \le 0\}$$

What we couldn't get to work

- Minimize average **logistic loss** (i.e., MLE)
 - Taylor-expand the estimation error (Portnoy, 1988; He & Shao, 2000; ...)
 - Use self-concordance of logistic loss (Bach, 2010; Ostrovskii & Bach, 2021)
 - Our attempts gave suboptimal dependence on β

Recap and open problems

• Two "change points" in sample complexity for logistic regression

$$n^*(d, \epsilon, \beta) \asymp \begin{cases} \frac{d}{\beta^2 \epsilon^2} & \text{if } \beta \lesssim 1 & \text{"high temperature"} \\ \frac{d}{\beta \epsilon^2} & \text{if } 1 \lesssim \beta \lesssim 1/\epsilon & \text{"moderate temperature"} \\ \frac{d}{\epsilon} & \text{if } 1/\epsilon \lesssim \beta & \text{"low temperature"} \end{cases}$$

Thank you!

• Q: Efficient algorithms? MLE? Estimation of $||w^*||$?

Learning noisy half-spaces

- (Distribution-free) agnostic PAC learning half-spaces
- VC theory: To ensure $\leq \epsilon$ excess classification error rate $\operatorname{err}(\hat{\theta}) - \operatorname{err}(\theta^*) \leq \epsilon$ sample complexity is at most $d(1/\epsilon + \operatorname{err}(\theta^*)/\epsilon^2)$ (up to logs)
- But we want guarantee about **parameter error** $\|\hat{\theta} \theta^{\star}\|$
 - Can relate in low temp $(1/\epsilon \leq \beta)$ regime, but unclear otherwise
 - Useful fact: $\operatorname{err}(\theta^*) \approx 1/\beta$ when $\beta \gtrsim 1$

Bregman divergence

• Bernoulli distribution Ber (η) has "mean parameter" $g'(\eta) = \frac{1}{1+e^{-\eta}}$;

• $g(\eta) = \ln(1 + e^{\eta})$ is log partition function; g' is its derivative

- KL between Bernoulli distributions as Bergman divergence: $KL(Ber(\eta^*) ||Ber(\eta)) = g(\eta) - g(\eta^*) - g'(\eta^*)(\eta - \eta^*)$
- When $\eta^* = \beta \langle X, \theta^* \rangle$ and $\eta = \beta \langle X, \theta \rangle$ and $X \sim N(0, I_d)$: $\mathbb{E} \left[KL \left(Ber(\beta \langle X, \theta^* \rangle) \| Ber(\beta \langle X, \theta \rangle) \right) \right]$ $= \beta \mathbb{E} \left[g'(\beta \langle X, \theta^* \rangle) \langle X, \theta - \theta^* \rangle \right]$

ReLU loss

- Nice observation of Kuchelmeister and van de Geer (2023): $\ln(1 + e^{-\beta y \langle x, \theta \rangle}) = \operatorname{ReLU}(-\beta y \langle x, \theta \rangle) + \ln(1 + e^{-\beta |\langle x, \theta \rangle|})$
- (Scaled) excess risk with ReLU loss = excess risk with logistic loss
 - Uses spherical symmetry of $N(0, I_d)$
 - Caveat: optimization over the sphere

Adaptivity

- If β is unknown: suffices to coarsely distinguish "high temp" ($\beta \leq 1$) and "medium or low temp" ($1 \leq \beta$) regimes
 - Estimate classification error rate of θ^{\star}
 - Can use training error rate of ERM (with zero-one loss) on dataset of size d/ϵ
 - Based on outcome, decide whether to use linear loss or ReLU loss on full data

