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Fairness Map (recap)

TV = E[Y | x,] — E[Y | x,]
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Implications

Theorem (Zhang & Bareinboim, 2018). The total variation (TV) measure
admits a decomposition into counterfactual direct, indirect, and spurious
effects
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Implications

Theorem. The z-specific, v'-specific, and unit-level total effects admit a
decomposition into direct and indirect effects:

(V-TE (0 | V) = V-DE (3 | V) + VE, oy | V)
(unit-TE, , (y()) = unit-DE, x (y(u)) + unit-IE,  (y(w)))

A TV measure
decomposing 5 3
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FPCFA (with Identification)

Definition. Let i be a fairness measure defined over a space of SCMs

Q. Let O, ..., O, be a collection of structural fairness criteria. The
Fundamental Problem of Causal Fairness Analysis is to find a collection

of measures u,, ..., 4; S.t. the following properties are satisfied:

() uis decomposable w.r.t. y,...,, Decomposability

(i) i1, ..., 4 are admissible w.r.t. the structural fairness from
criteria Qy, Oy, ..., Ok Admissibility before
(iii) iy, - .., 4, are as powerful as possible. Power

(iv) iy, ..., 4y are identifiable from the SFM

and observational data. Identifiability



Example (Limitation of NDE). A new startup company is currently in
hiring season. The hiring decision (Y € {0,1 }indicating whether the
candidate is hired) is based on gender (X € {0,1}, female and male,
respectively), age (Z € {0,1}, younger and older than 40 years,

respectively), and education level (W € {0,1} which indicates whether
the applicant has a Ph.D. degree). Following the legal guidelines, the
startup is in this case obliged to avoid disparate treatment in hiring.

/ Age

Gender .~ Job offer

PhD




Example (Limitation of NDE). A new startup company is currently in
hiring season. The hiring decision (Y € {0,1 }indicating whether the
candidate is hired) is based on gender (X € {0,1}, female and male,
respectively), age (Z € {0,1}, younger and older than 40 years,

respectively), and education level (W € {0,1} which indicates whether
the applicant has a Ph.D. degree). Following the legal guidelines, the
startup is in this case obliged to avoid disparate treatment in hiring.

Admissibility

1) NDE admissible, but NDE, , (y) =0

Power

2) x-DE admissible, and x-DE,_ . (y) = 0.036

Power

3) z-DE admissible, and z-DE; . (y) = 0.2

Which of these can be identified from

observational data? (hew part of FPCFA)




Soundness of the SFM

Theorem. Under the Standard Fairness Model (SFM) the orientation of
edges within possibly multidimensional variable sets Z and W does not
change any of general, x-specific, or z-specific measures.

That is, if two causal diagrams G,and G, have the same projection
to the Standard Fairness Model, i.e.,

Nsem(Gy) = Tgpm(Gy) [ Section 4.4 J

Theorem 4.12

then any measure M(P(v), G) will satisfy
M(P(v), &) = M(P(v), &,) = M(P(v), SsFm),

where M(P(v), &) means that the measures are computed based on the
observational distribution P(v) and the causal diagram G.



Proof sketch

Since

Ispm(Gy) = lgpm(Gy)

G, —_— .
G __—— SFM Identification Iif 1D _Expression
2 Engine O(P(V))
P(V)orY

—> Any quantity ID just from the SFM is the same for G, G,



|dentifiability in the Fairness Map

TV = E[Y | x,] — E[Y | x,]
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SFM’s Identification

- |n words, identification in our context means that L2 and L3
quantities can be computed using obs. (L1) data:

Measure ID expression
TEz),2, (y) > [Py | z1,2) — P(y | 20, 2)|P(2)
£ BoSEw S, Py | 2, 2)[P(2) — P(z | o))
©|  NDEg . (1) 5, WP | 71, 2,0) — P(y | 0, 2,w)|P(w | 20, 2)P(2)
NIE,, ., (4) 5,0 P | 30,2, w)[P(w | 21,2) — P(w | 20,2)|P(2)
| ETTu(y]2) S, [P(y | 21,2) — Ply | 20,2 P(z | )
“: CH-SE gy 0, (1) S, Ply | @0, 2)[P(z | 20) = P(z | 21)
§ | CHDEsum (y12) | ¥, [P a1,2,w) = Py | 7o, 2,w)|P(w | 70, 2)P(z | 2)
Cti1Bayen(y | 2) | 3,0 P | 30, 2,0)[P(w | 21,2) — P(w | 20,2)|P(z | o)
2| 2T (v]2) Py 21,2) — Ply | 20,2)
2| DBay,(v] 2) L [P(y | 21, 2,w) — Py | 20,2 w)]P(w | 20,2
| B 3, P(y | 30, 2,)[P(w | 21, ) — P(w | 20, 2)
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Contrasts & Identification - recap

Measure Co C1 Ey FEq
Ton,:cl 0 ) Lo I
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e unit-TE, 5, Z0 75| U U
S| unit-DEgy 2 | 2o | 21, Wg, | u U
unit-1E;, ., o | Zo, Wy, U U

Contrasts that are
identifiable under the SFM
(without additional
assumptions)

Contrasts that are not
identifiable under the SFM
(without additional
assumptions)
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Contrasts & ldentification - recap

Measure Co C1 Ey FEq
TVazo,acl ) ) Lo Il

ES( TEwo,wl L0 Il @ @
S| Exp-SE, T x 0 T
% NDEgy o, | 2o | 21, Way| 0 0
NIE,, «, o | o, Wz, | 0 0

o ETT., 2, x( ] T T
I th‘SEa:o,a;l o o To T
> | Cti-DEg, 2, ro | 1, W, T T
Cti-IEz, 2, zo | To,Wg, | = 13

N 2-TEyz, o, Z0 T1 z z
l 2-DEg; z, zo | T1, Wg, z Z
N 2-1Ezq 2, o xo, Wg, z Z
> | v'-TEg, 5, 0 1 v v
\U| v'-DEg, 2, Ty | X1, Wy | v v
| V-1Eg, 4, zry | o, Wy, | 0 v’
- unit-TE, 5, Z0 T U U
= unit-DEg, », xo | x1, Wg, U U
unit-1E;, 5, o | Zo, Wy, U U

NAntracte that ara

It’s understood which contrasts are
computable from the data,
and which ones are harder.

But how can they be estimated in practice?

identifiable under the SFM
(without additional
assumptions)
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Estimation



Recall from CI1: Inverse Probability

Weighting (IPW) Derivation

(_Holds true for the SFM! )
o If Z is a back-door set for X, Y, then

P(y) = ) P(y|x.2)P(z)

P(y,x, z)

B - P(x | z)P(z) He)

f X, Z“) —3y Entries of the joint distribution

—P(x | 2) 2(z)

14



Recall from CI1: Inverse Probability
Weighting (IPW) Derivation

e Assuming we have N samples, we can compute

B P(y,Xx,z)
P(y,) = Z Px | 2)

Z

1 N 1
Z N i=1  Y=Y.X=X,Z;=17

g(z)
1 N

. 1Yl-=y,Xl-=X,Zl-=z
P>

Z___ \‘?FZ)

4 1 Yi=y’Xi=X’Zi=z

- >’Requires time proportional to

| s

/7 the number of samples N

15



Inverse Probability Weighting
(IPW)

- Thus, a typical way to compute Ly, ] is to use inverse

propensity weighting (IPW) and an estimator of the form
(" )

1 - 11X, =x)Y,
ey pX;|Z)
- J

- The assumptions that we need (on top of the SFM)

-~

-

)

Assumption (Positivity). The positivity assumption holds if V x,7, PX =x | Z =2
is bounded away from 0, that is

O<PX=x|Z=2<1-0,

for some 6 > 0. J

16



Beyond IPW
—> Double Machine Learning

+ sample splitting!




Relationship to previous literature

- How does the presented framework of Causal
Fairness Analysis relate to previous literature?

» |n particular, we discuss

18



Counterfactual Fairness

Definition (Counterfactual Fairness, Kusner et. al., 2017).
An outcome Y is said to be counterfactually fair if and only if

Py | X=x,W=w) =Py @) | X=x, W=w), Vx,x,w.

YX(),WX] |X — xO YXo,WxO | X = XO

Note: if the u is fixed, there are no probabilistic statements involved.

Note: if the u is not fixed, averaging over posterior P(u | X = x, W = w).

19



Counterfactual Fairness

Definition (Counterfactual Fairness, Kusner et. al., 2017).
An outcome Y is said to be counterfactually fair if and only if

Py | X=x,W=w) =Py @) | X=x, W=w), Vx,x,w.

@
X=)\ ! X =X r

%4 W

YXo,le |X — xO YX(),WXO | X = XO

Intuition: granular measure of total effect.

20



Counterfactual Fairness

Definition (Counterfactual Fairness, Kusner et. al., 2017).
An outcome Y is said to be counterfactually fair if and only if

Py, )| X=x,W=w)=Py(u) | X=x,W=w), Vx,x,w.

the paper leaves space for

ambiguity in interpretation

unit-level across units
/
y) —y(u) =0, Vx,x', u €% Py | X=x,W=w)=Py,|X=x,W=w)
consistent with authors’ claim:
“emphasize that counterfactual fairness is an also consistent with authors’ claim:
individual-level definition, which is substantially “the distribution over possible predictions for
different from comparing different individuals an individual should remain unchanged in a
that happen to share the same “treatment” world where an individual’s protected attributes

X = x and coincide on the values of W = w” had been different”
21



Counterfactual Fairness

Definition (Counterfactual Fairness, Kusner et. al., 2017).
An outcome Y is said to be counterfactually fair if and only if

Py, )| X=x,W=w)=Py(u) | X=x,W=w), Vx,x,w.
the paper leaves space for
ambiguity in interpretation

Luckily, both of these measures are

covered by the Fairness Map!

X = x and coincide on the values of W = w” had been different”
21



Counterfactual fairness
(Kusner et. al., 2017)

TV = E[Y | male] — E[Y | female]
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Counterfactual fairness
(Kusner et. al., 2017)

decomposable!

ﬂ T[ inadmissible! ﬂ w

Causal Direct Indirect Spurious

22



unit-level is
very hard to
identify

Counterfactual fairness

(Kusner et. al., 2017)

Causal

Direct

Indirect

Spurious

22



Ctf-fair, Issue 1: Inadmissibility

Proposition. The unit-level total effect (unit-TExO,xl(y)) and the (x, w)-specific

total effect ((x, w)-TExO,xl(y | x, w)) are not admissible w.r.t. the structural
direct, indirect, and spurious criteria. Formally, we write

Str-DE-fair &= unit-TE-fair, Str-DE-fair = (x, w)-TE-fair

Str-IE-fair= unit-TE-fair, Str-IE-fair &= (x, w)-TE-fair
Str-SE-fair#= unit-TE-fair, Str-SE-fair = (x, w)-TE-fair.

Counterfactual Fairness is inadmissible,

therefore not suitable to reason about
direct, indirect, or spurious effects.

23



Ctf-fair, Issue 2: Spurious Effects

Assumption: ancestral closure of set X.

COMPAS: age L race rejected (p < 0. 001) COMPAS: race L sex rejected (p < 0. 001)
0.05 1 1 100%
| race
H White
0.04 ‘
Non-White 75%
o . redlining
§ 5 so%
S g
0.02 - a o i
religious segregation
0.01
0.00+ 0%
25 50 75 White Non-White ru ral/u rban balance
age race - =
Adult: age L sex rejected (p < 0. 001) Adult: race L sex rejected (p < 0. 001) Of genders in Ch I na
100%
Sex
0.04 ‘
Female
H Male 75%
0.03 4
- 5 race
[ § sou
S 0.02- &
Qo
0.01+ 25%
0.00 1 0%
25 50 75 Female Male 24

age sex



Ctf-fair, Issue 2: Spurious Effects

Assumption: ancestral closure of set X

) a
However, is this a realistic assumption? Vignette Time! '
COMPAS: age L race rejected (p < 0. 001) COMPAS: race L sex rejected (p < 0. 001)

race
White
Non-White

redlining

eeeeee

religious segregation

¥ Counterfactual Fairness does not account g
(mclude) spurious variations, which may be
present in some practical settings.

\ .

age

eeeeee Male 24
sex



Ctf-fair, Issue 3: Identifiability

Proposition. Suppose that .#is a Markovian model and that & is the
associated causal diagram. Assume that the set of mediators between X

and Y is non-empty, W # @. Then, the measures unit-TExO,xl(y) and
(x, w)—TExO,xl(y | x, w) are not identifiable from observational data, even if

the fully specified diagram & is known.

Counterfactual Fairness requires strong

assumptions for identification.

25



Ctf-fair, Issue 3: Identifiability
(Example)

Example. The startup company from our previous example has closed the hiring season.
In the hiring process, the company achieved demographic parity, which means in this
context that 50% of new hires were female. Now, the company needs to decide on each
employee's salary. In order to be “fair”, each employee is evaluated on how well they

perform their tasks. The salary Y is then determined based on this information, but,
due to a possibly subconscious bias of the executives while determining employees’
salaries, gender may also affects how salaries are determined.




Ctf-fair, Issue 3: Identifiability
(Example)

[ seM (F.pw)y )

X « Uy
Y « X+ W+ Uy.

-

\

Yo @) =y, ) =1+ (-1+u,)+u)—0+(=0+u,)+u)=0.

Ve, (1) Ve (1)

~

J

QW’ Uy ~ N(O,1). J
7 SCM (7, PU) )

X <« Uy
W< — X+ (-1)*Uy
Y <« X+ W+ Uy.

he same observational
same grap + distribution P(V)

/

-

\_

~
Yo @) =y, @) =1+ (-=1-u,)+u)—-0+(-0+u,)+u)=-2u,#0

Y, (10) Vi) whenever u,, # 0.)

U, € {0,1},P(Uy,=1) = 0.5,

QW’ Uy, ~ NO,1). J
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Counterfactual Fairness Summary

In summary, counterfactual fairness is:

e decomposable & inadmissible (w.r.t DE, IE, SE),

* not identifiable in general, and

* oblivious to spurious effects (and corresponding
business necessity requirements).

28



Relationship to previous literature




Individual Fairness

Definition (Individual Fairness, Dwork et. al., 2012). ( Individual Level )

Let d be a fairness metricon X X £ X % . An outcome Y is said to
satisfy individual fairness if

[P0 52w PO ¥ 2] £ Ay (7 2w Vv 7]

Intuition: individuals similar w.r.t d should have similar outcomes.

we call this

U-space

IF condition

d((x,w, z), (x",w’,Z')) small
—
P(y | x,z,w) — P(y | x,z/, w') small

[‘\ (X,, W,, Z/)
(x, w, 2)

change in outcome
when moving to a
nearby point in U-space
=> metric-dependent

30




Quick Detour: Optimal Transport

- What is optimal transport?

N |

piles of rubble

empty pits

Lo N |

&

Monge (1781): how do we optimally
transport the rubble into the pits?

~

J

- How do we define OT formally?

Given a measure u over X and v over Y the optimal transport problem is given by

min J c(x, y)dn(x,y)
XxXY

where c(x, y) is the cost function (L, L,) and r a transport plan with marginals y, v

31



Quick Detour: Optimal Transport

- What do optimal transport plans look like?

el 70%-quantile

10%-quantile \¢/ 10%-quantile

-~ e— - - -

In general, dimension d > 1, OT plans are not easy to find!

32



Individual Fairness:
Local to Global

Proposition (OT bounds TV, Dwork et. al., 2012).  (__ Global Level )

Suppose that the IF condition holds. Let the optimal transport cost
between Z, W | X = x; and Z, W | X = x,, be denoted by

OTCY .. ((Z, W)). Then, it holds that

| TV, ()| < C;*OTCE  (Z,W)).



Local to Global: Intuition

take (x;, 2, W), (%, 2, W) |distribution of attributes Z, W]
sam‘efor X, X groups |

small

IF condition yields disparity

P()’l ]9Z9) P(y ‘XO,Z, W) f,, °

PO I x) = X PG | 3, 2P w | x)
W

— Z P(y | xg, 2, W)P(z,w | x)) = ZP()/ | X0, 2, WP(z, w | xp) = P(y | xp)

34
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Individual Fairness
(Dwork. et. al., 2012)

Causal Fairness Analysis implications on

IF:

~

_

Section 4.5.2

~

_J
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IF, Issue 1: Ignoring Causal

Examples.
A B
X +— Uxy X «—Uxz

F Z «— Uy Z «—Uxz+Ugzy
S Y « X —Uxy + Z+ Uy Y « Uzy + Uy
=
@,
N

Uxy ~ Bernoulli(0.5), Ux z ~ Bernoulli(0.5),

P(U) Uz, Uy ~ N(O, 1) UZY)UY ~ N(O7 1)
- Z o Z e
5| g S g
o0 ¥ "
_g X,& B —"’///?,Y X

metric
d((x,2),(x,2)) =|z—=7]

37



IF, Issue 1: Insensitive to
the Causal Structure

Example A: We can compute that

E%y | x,z] = E#AX = Uyy + Z+ Uy | x,7]

= E#AX — Uygy | x,2) + E74[Z | x,2] + E74[Uy | x,7]
. , ‘ IF holds, but direct

=0 as X=Uyy =0 effect still exists

=Z.

— ‘E%A[y|x1,z] —E‘/%A[ylxo,z’]‘ =|z—-72]

Example B: We can compute that

E““ly | x,2] = E“s[Uzy + Uy | x,2]
= E5[Z — Uy, | x, 2] + E%5[Uy | x,7]
xz | k ! | J IF does not hold, but
=0 direct effect does not

=E%[Z-X|xz]=2—x. exist

— ‘E‘%B[y | x1, 2] — E%5[y | xp, 2]

=|z—-1-27|
38



IF, Issue 1: Insensitive to
the Causal Structure

Example A: We can compute that

E%\y | x,z] = E"AX = Uyy + Z+ Uy | x,7]

= E#AX — Uygy | x,2) + E74[Z | x,2] + E74[Uy | x,7]
. ) . IF holds, but direct

=0 as X=Uyy =0 effect still exists

— <.

_____________________ IF is oblivious to the underlying causal
=2 structure, which translates in lack of both
EH] necessity and sufficiency w.r.t. DE.

YV , i UV ,

g , IF does not hold, but
= direct effect does not

=E%[Z-X|xz]=2—x. exist

— ‘E‘/”B[y | x, 2] — Eoly | %0, 21| = 2—1 =2

38



IF, Issue 2: Direct Effect
(under suitable assumptions)

Proposition. Suppose that the metric d does not depend on
the X variable, that is,

d((x, 2, w), (x', 2, w')) = d((z, w), (Z’, w)).

Then, under the assumptions of the Standard Fairness Model,
the IF criterion implies that Ctf-DE equals 0, that is

F => Ctf-DE,(y | x) = 0.

IF captures the direct effect - but under

the assumptions entailed by the SFM

39



IF, Issue 3: Sparse metrics d
suffer from decomposability issue

Example.
X <« Uy, Z
Z €« — UXZ + UZ / ’
W« X+Z+ Uy /
F*, P¥(U) = Y « 1(Uy < expit(W)), y
X > W > Y
U, Uy, Uy ~ Unif{0,1], G @@ 2wl 0520w = [ — 1w
We can compute that |P(y | x,z,w) — P(y | X', 2, w')| = | expit(w) — expit(w’) |
1
< le —w’| = IF holds!
However: TVxO,xl(y ) — x'DExO,xl(y | x()) _ x'IExl,xO(y | XO) _ X'SExl,xo(y )

= (0%) —[(14%) — (- 14%).

N ———

direct indirect Spurious 40




IF, Issue 3: Sparse metrics d
suffer from decomposability issue

Example.

X <« Uy, Z
Z <~ —=Uy,+ U,

IF can be decomposed

‘ whenever the metric d is sparse
W (complete metrics d addressed later)

However: Ton,xl(y ) — X'DExO,xl(y | x()) _ X-|Ex1,x0(y | x()) _ X'SExl,xo(y )

v ~

direct indirect SPUTIOUS 40



IF, Issue 4: complete metric d
does not allow for business necessity

4 N

Partl. If d((x,z,w), (X", 2, w") = |lz = Z|| + ||[w — w/|

then OTC{  (Z,W) =0 = X L Z W.

\_ ),
A
Part Il. If IF condition holds, then for Y binary
XU1LY|ZW.
\_ _

Gart ma+m. XLZW A XLY|ZzWw = (XLZWY)

41



IF, Issue 4: complete metric d
does not allow for business necessity

Partl. If d((x,z,w), (X", 2, w") = |lz = Z|| + ||[w — w/|

then OTC{  (Z,W) =0 = X L Z W.
_ Y,

Part Il. If IF condition holds, then for Y binary

A complete metric d implies X is

e independent of all other attributes,
‘ which iIs a strict requirement.
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Relationship to previous literature




Predictive Parity (PP)

-

Definition. Let ? be the predictor of Y. We say that ? satisfies predictive parity
(PP) with respect to X, Y if

P(y|x1,57\)=P(y|xO,j7) VS/\

Alternatively, the PP criterion can also be written as a conditional independence
statement

X has no more information about

YL X|Y. Y once we know Y

Finally, define the predictive parity measure to be

PPM, . (v | Y) =Py | x,Y) =Py | x5 Y).

43



l.e.

PP Intuition

Calibration:

Average Y in this group should be 40%

~

W,

-

2

x,z,w: Y(x,z,w)=y

~

Py |x,z,w)P(x,z,w | y) =73

W

44



Two key results on PP

Proposition 1 (PP & Efficient Learning). Suppose that the predictor ? is based
on the features X, Z, W. Suppose also that Y is an efficient learner, meaning that:

?(x,z,w) =Py |x,z,w).

_ A~ o o _ PP happens “naturally”
Then, it follows that Y satisfies predictive parity w.r.t for good learners!

-

Proposition 2 (PP & DP Impossibility).The fairness criteria of predictive parity
and demographic parity,

PP and DP are from different
planets!

are mutually exclusive except for in degenerate cases, when Y
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What is PP really doing?

E(Qy, | X1, ) = E(yy, | %1, V) = axyoyy + ayxy

E(yxo | X1 yxl) _ E(yxo | X1 yxo) - = (aXWaWY + aXY)a
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What is PP really doing?

E(y,, | x1 yx) E(yx | X1, yx) = — (AxwOyy + Oxy)s

)7

-

\-

).




Causal Predictive Parity (CPP)

Definition. Let ? be a predictor of the outcome Y, and let X be the protected
attribute. Then we say that Y satisfies causal predictive parity (CPP) with respect

to a counterfactual contrast (C,, Cy, E, E) if

Elyc, | E1 - Elyc, | E1 = E[S¢ | E1- E[9¢, | El.

Furthermore, we say that ? satisfies CPP with respect to a factual contrast
(C,CEy), E)) if

Elyc | E\] = Elyc | E)l = E[Yc | E\] = E[Yc | Eol-
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CPP implications?

“Modelling™ “Implementing”

BN considerations:
Requirements:

IE(Y) = IE(y)!
Causal PP
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CPP implications?

“Modelling” “Implementing”

BN considerations:

Completes the picture on

Business Necessity!

Causal PP
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Fairness Tasks

Modeling &
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SCM M*

(unobserved reality)

Doctrines &
Social norms

Disparate Treatment

Disparate Impact

Business Necessity

Structural
Measures

Fairness
Measures

Empirical

Measures

Data
Collection

Dataset
D

Tasks

1. Bias
Detection
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