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Fairness Map (recap)



Implications
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connection with 
Disparate Treatment

if  
connection with 

Disparate Impact

Ctf-DE = 0

Theorem (Zhang & Bareinboim, 2018). The total variation (TV) measure 
admits a decomposition into counterfactual direct, indirect, and spurious 
effects 

	
TVx0,x1(y) = Ctf-DEx0,x1(y ∣ x0)

direct

− Ctf-IEx1,x0(y ∣ x0)
indirect

+ Ctf-SEx1,x0(y)
spurious

.



Implications
Theorem. The -specific, -specific, and unit-level total effects admit a 
decomposition into direct and indirect effects:


z v′ 

z-TEx0,x1(y ∣ z) = z-DEx0,x1(y ∣ z) + z-IEx1,x0(y ∣ z)
v′ -TEx0,x1(y ∣ v′ ) = v′ -DEx0,x1(y ∣ v′ ) + v′ -IEx1,x0(y ∣ v′ )

unit-TEx0,x1(y(u)) = unit-DEx0,x1(y(u)) + unit-IEx1,x0(y(u))

5

decomposing 
works on 
different 
levels of 

precision in U



FPCFA (with Identification)
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Definition. Let  be a fairness measure defined over a space of SCMs 
. Let  be a collection of structural fairness criteria. The 

Fundamental Problem of Causal Fairness Analysis is to find a collection 
of measures  s.t. the following properties are satisfied: 

μ
Ω Q1, …, Qk

μ1, …, μk

(iii)  are as powerful as possible.μ1, …, μk

(i)  is decomposable w.r.t. μ μ1, …, μk

(ii)  are admissible w.r.t. the structural fairness          
criteria 

μ1, …, μk
Q1, Q2, …, Qk

Decomposability

Admissibility

Power

(iv)  are identifiable from the SFM  
and observational data.

μ1, …, μk
Identifiability

} from 
before
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W

X Y

Z

Gender Job offer

PhD

Age

Example (Limitation of NDE). A new startup company is currently in 
hiring season. The hiring decision ( indicating whether the 
candidate is hired) is based on gender ( , female and male, 
respectively), age ( , younger and older than 40 years, 
respectively), and education level (  which indicates whether 
the applicant has a Ph.D. degree). Following the legal guidelines, the 
startup is in this case obliged to avoid disparate treatment in hiring.

Y ∈ {0,1}
X ∈ {0,1}

Z ∈ {0,1}
W ∈ {0,1}

(Truth-Unobserved)

SCM M*  
(unobserved) 

U ← N(0,1)
X ← Bernoulli(expit(U))
Z ← Bernoulli(expit(U))

W ← Bernoulli(0.3)

Y ← Bernoulli( 1
5 (X + Z − 2XZ) + 1

6 W )
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Example (Limitation of NDE). A new startup company is currently in 
hiring season. The hiring decision ( indicating whether the 
candidate is hired) is based on gender ( , female and male, 
respectively), age ( , younger and older than 40 years, 
respectively), and education level (  which indicates whether 
the applicant has a Ph.D. degree). Following the legal guidelines, the 
startup is in this case obliged to avoid disparate treatment in hiring.

Y ∈ {0,1}
X ∈ {0,1}

Z ∈ {0,1}
W ∈ {0,1}

(Truth-Unobserved)

SCM M*  
(unobserved) 

U ← N(0,1)
X ← Bernoulli(expit(U))
Z ← Bernoulli(expit(U))

W ← Bernoulli(0.3)

Y ← Bernoulli( 1
5 (X + Z − 2XZ) + 1

6 W )

1) NDE admissible, but NDEx0,x1(y) = 0

2) -DE admissible, and x x-DEx0,x1(y) = 0.036

3) -DE admissible, and z z-DEx0,x1(y) = 0.2

Admissibility

Power

Power

Which of these can be identified from 
observational data? (new part of FPCFA)



Soundness of the SFM
Theorem. Under the Standard Fairness Model (SFM) the orientation of 
edges within possibly multidimensional variable sets  and  does not 
change any of general, -specific, or -specific measures.  
That is, if two causal diagrams and  have the same projection 
 to the Standard Fairness Model, i.e.,





then any measure  will satisfy


                     , 


where  means that the measures are computed based on the 
observational distribution  and the causal diagram .

Z W
x z

G1 G2

ΠSFM(G1) = ΠSFM(G2)

M(P(v), G)

M(P(v), '1) = M(P(v), '2) = M(P(v), 'SFM)

M(P(v), ')
P(v) G

8

Section 4.4 
Theorem 4.12



Proof sketch

9

G1

G2

GSFM

P(V ) or (

Identification 
Engine

Expression 
Φ(P(V ))

if ID

Since  
ΠSFM(G1) = ΠSFM(G2)

 Any quantity ID just from the SFM is the same for ⟹ G1, G2
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P(u)
P(u ∣ x)
P(u ∣ z)
P(u ∣ v)

δu

TV = E[Y ∣ x1] − E[Y ∣ x0]

NDE

x-DE

z-DE

v-DE

u-DE

NIE

x-IE

z-IE

v-IE

u-IE

Exp-SE

x-SE

TE
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⟹ ⟹ ⟹

Identifiability in the Fairness Map

Population-level, -specific, and -specific 
measures are identifiable under the .

x z
GSFM



SFM’s Identification
• In words, identification in our context means that L2 and L3 

quantities can be computed using obs. (L1) data:

11



Contrasts & Identification - recap

12

Contrasts that are 
identifiable under the SFM 

(without additional 
assumptions)

Contrasts that are not 
identifiable under the SFM 

(without additional 
assumptions)



Contrasts & Identification - recap

12

Contrasts that are 
identifiable under the SFM 

(without additional 
assumptions)

Contrasts that are not 
identifiable under the SFM 

(without additional 
assumptions)

It’s understood which contrasts are 
computable from the data,  
and which ones are harder. 

 
But how can they be estimated in practice?



Estimation



Recall from CI1: Inverse Probability 
Weighting (IPW) Derivation

• If  is a back-door set for , thenZ X, Y
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P(yx) = ∑
z

P(y |x, z)P(z)

= ∑
z

P(y, x, z)
P(x, z) P(z)

= ∑
z

P(y, x, z)
P(x ∣ z)P(z) P(z)

= ∑
z

P(y, x, z)
P(x ∣ z)

Entries of the joint distribution

Fit a function g(z) that  
approximates this probability

Holds true for the SFM!



P(yx) = ∑
z

P(y, x, z)
P(x ∣ z)

= ∑
z

1
N ∑N

i=1 1Yi=y,Xi=x,Zi=z

g(z)

= 1
N

N

∑
i=1

∑
z

1Yi=y,Xi=x,Zi=z

g(z)

= 1
N

N

∑
i=1

1Yi=y,Xi=x,Zi=z

g(z)

• Assuming we have N samples, we can compute

15

Requires time proportional to 
the number of samples N

Recall from CI1: Inverse Probability 
Weighting (IPW) Derivation



Inverse Probability Weighting 
(IPW)

• Thus, a typical way to compute  is to use inverse 
propensity weighting (IPW) and an estimator of the form 

E[yx]

16

1
n

n

∑
i=1

1(Xi = x)Yi

̂p (Xi ∣ Zi)
.

• The assumptions that we need (on top of the SFM)

Assumption (Positivity). The positivity assumption holds if ,  
is bounded away from , that is  

 

for some .

∀ x, z P(X = x ∣ Z = z)
0

δ < P(X = x ∣ Z = z) < 1 − δ,

δ > 0



Beyond IPW 
 Double Machine Learning⟹
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IPW term:    
 

1(Xi = x)Yi

̂p (Xi ∣ Zi)
< <

DML term: 
   

1(Xi = x)(Yi − ̂μ(Yi ∣ Zi, Xi))
̂p (Xi ∣ Zi)

+ ̂μ(Yi ∣ Zi, Xi)

+ sample splitting!
Only for  

Need also 
E[yx]
E[yx′ ,Wx

]

Mediation DML term:    
 

1(X = x1)px0
(Z, W )

px1(Z, W )px0(Z) [Y − μ(x1, W, Z)]

+ 1(X = x0)
px0(Z) [μ(x1, W, Z) − E[μ(x1, W, Z) ∣ X = x0, Z]]

+E[μ(x1, W, Z) ∣ X = x0, Z]

For :E[yx′ ,Wx
]



Relationship to previous literature

• How does the presented framework of Causal 
Fairness Analysis relate to previous literature?  

18

(i) Counterfactual Fairness (Kusner et. al., 2017)

 (ii) Individual Fairness (Dwork et. al., 2012)

• In particular, we discuss

(iii) Predictive Parity (Chouldechova, 2017)



Counterfactual Fairness
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Definition (Counterfactual Fairness, Kusner et. al., 2017).  
An outcome  is said to be counterfactually fair if and only if Y

P(yx(u) ∣ X = x, W = w) = P(yx′ 
(u) ∣ X = x, W = w), ∀x, x′ , w .

Note: if the  is fixed, there are no probabilistic statements involved.u

Note: if the  is not fixed, averaging over posterior .u P(u ∣ X = x, W = w)

W

X = x0 Y

W

X = x1 Y

Yx0,Wx1
|X = x0 Yx0,Wx0

|X = x0



Counterfactual Fairness
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Definition (Counterfactual Fairness, Kusner et. al., 2017).  
An outcome  is said to be counterfactually fair if and only if Y

P(yx(u) ∣ X = x, W = w) = P(yx′ 
(u) ∣ X = x, W = w), ∀x, x′ , w .

W

X = x0 Y

W

X = x1 Y

Yx0,Wx1
|X = x0 Yx0,Wx0

|X = x0

Intuition: granular measure of total effect.
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Definition (Counterfactual Fairness, Kusner et. al., 2017).  
An outcome  is said to be counterfactually fair if and only if Y

P(yx(u) ∣ X = x, W = w) = P(yx′ 
(u) ∣ X = x, W = w), ∀x, x′ , w .

yx(u) − yx′ (u) = 0, ∀x, x′ , u ∈ '
unit-level across units

P(yx ∣ X = x, W = w) = P(yx′ ∣ X = x, W = w)
consistent with authors’ claim:


“emphasize that counterfactual fairness is an 
individual-level definition, which is substantially 
different from comparing different individuals 
that happen to share the same “treatment” 

 and coincide on the values of ”X = x W = w

also consistent with authors’ claim:

“the distribution over possible predictions for 
an individual should remain unchanged in a 

world where an individual’s protected attributes 
had been different”

Counterfactual Fairness

the paper leaves space for 
ambiguity in interpretation
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Definition (Counterfactual Fairness, Kusner et. al., 2017).  
An outcome  is said to be counterfactually fair if and only if Y

P(yx(u) ∣ X = x, W = w) = P(yx′ 
(u) ∣ X = x, W = w), ∀x, x′ , w .

yx(u) − yx′ (u) = 0, ∀x, x′ , u ∈ -
unit-level across units

P(yx ∣ X = x, W = w) = P(yx′ ∣ X = x, W = w)
consistent with authors’ claim:


“emphasize that counterfactual fairness is an 
individual-level definition, which is substantially 
different from comparing different individuals 
that happen to share the same “treatment” 

 and coincide on the values of ”X = x W = w

also consistent with authors’ claim:

“the distribution over possible predictions for 
an individual should remain unchanged in a 

world where an individual’s protected attributes 
had been different”

Counterfactual Fairness

Luckily, both of these measures are 
covered by the Fairness Map!

the paper leaves space for 
ambiguity in interpretation



22Direct Indirect Spurious

P(u)
P(u ∣ x)
P(u ∣ z)
P(u ∣ v)

δu

TV = E[Y ∣ male] − E[Y ∣ female]

NDE

x-DE

z-DE

v-DE
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z-TE

v-TE

u-TE

Causal

⟹ ⟹ ⟹ ⟹

Counterfactual fairness  
(Kusner et. al., 2017)



22Direct Indirect Spurious

P(u)
P(u ∣ x)
P(u ∣ z)
P(u ∣ v)

δu

TV = E[Y ∣ male] − E[Y ∣ female]

NDE
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v-DE

u-DE
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Causal

⟹ ⟹ ⟹ ⟹

∧
decomposable!

inadmissible!

Counterfactual fairness  
(Kusner et. al., 2017)



22Direct Indirect Spurious

P(u)
P(u ∣ x)
P(u ∣ z)
P(u ∣ v)

δu

TV = E[Y ∣ male] − E[Y ∣ female]

NDE
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v-IE
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Exp-SE
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x-TE

z-TE

v-TE

u-TE

Causal

⟹ ⟹ ⟹ ⟹

unit-level is 
very hard to


identify

Counterfactual fairness  
(Kusner et. al., 2017)



Ctf-fair, Issue 1: Inadmissibility
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Proposition. The unit-level total effect (unit-TE ) and the -specific 
total effect ( -TE ) are not admissible w.r.t. the structural 
direct, indirect, and spurious criteria. Formally, we write 

       

x0,x1
(y) (x, w)

(x, w) x0,x1
(y ∣ x, w)

Str-DE-fair /⟹ unit-TE-fair, Str-DE-fair /⟹ (x, w)-TE-fair
Str-IE-fair /⟹ unit-TE-fair, Str-IE-fair /⟹ (x, w)-TE-fair

Str-SE-fair /⟹ unit-TE-fair, Str-SE-fair /⟹ (x, w)-TE-fair .

Counterfactual Fairness is inadmissible, 
therefore not suitable to reason about 
 direct, indirect, or spurious effects.
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Assumption: ancestral closure of set .X

redlining 

religious segregation 

rural/urban balance 
of genders in China

Ctf-fair, Issue 2: Spurious Effects 
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Assumption: ancestral closure of set .X
However, is this a realistic assumption?

redlining 

religious segregation 

rural/urban balance 
of genders in China

Ctf-fair, Issue 2: Spurious Effects 

Counterfactual Fairness does not account 
(include) spurious variations, which may be 

present in some practical settings.

Vignette Time!



Ctf-fair, Issue 3: Identifiability
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Proposition. Suppose that is a Markovian model and that  is the 
associated causal diagram. Assume that the set of mediators between  
and  is non-empty, . Then, the measures unit-TE  and 

-TE  are not identifiable from observational data, even if 
the fully specified diagram  is known.

ℳ '
X

Y W ≠ ∅ x0,x1
(y)

(x, w) x0,x1
(y ∣ x, w)

'

Counterfactual Fairness requires strong 
assumptions for identification.

Proposition. Suppose that is a Markovian model and that  is the 
associated causal diagram. Assume that the set of mediators between  
and  is non-empty, . Then, the measures unit-TE  and 

-TE  are not identifiable from observational data, even if 
the fully specified diagram  is known.

ℳ '
X

Y W ≠ ∅ x0,x1
(y)

(x, w) x0,x1
(y ∣ x, w)

'



Ctf-fair, Issue 3: Identifiability 
(Example)
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Example. The startup company from our previous example has closed the hiring season.   
In the hiring process, the company achieved demographic parity, which means in this 
context that 50% of new hires were female. Now, the company needs to decide on each 
employee's salary. In order to be “fair”,  each employee is evaluated on how well they 
perform their tasks. The salary  is then determined based on this information, but,         
due to a possibly subconscious bias of the executives while determining employees’ 
salaries, gender may also affects how salaries are determined.

Y

X ← UX
W ← − X + UW
Y ← X + W + UY .

UX ∈ {0,1}, P(UX = 1) = 0.5,
UW, UY ∼ N(0,1) .

SCM  ⟨ℱ1, P1(U)⟩

X ← UX

W ← − X + (−1)XUW
Y ← X + W + UY .

UX ∈ {0,1}, P(UX = 1) = 0.5,
UW, UY ∼ N(0,1) .

SCM  ⟨ℱ2, P2(U)⟩



Ctf-fair, Issue 3: Identifiability 
(Example)
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X ← UX
W ← − X + UW
Y ← X + W + UY .

UX ∈ {0,1}, P(UX = 1) = 0.5,
UW, UY ∼ N(0,1) .

SCM  ⟨ℱ1, P1(U)⟩

yx1
(u) − yx0

(u) = (1 + (−1 + uw) + uy)
yx1(u)

− (0 + (−0 + uw) + uy)
yx0(u)

= 0.

X ← UX

W ← − X + (−1)XUW
Y ← X + W + UY .

UX ∈ {0,1}, P(UX = 1) = 0.5,
UW, UY ∼ N(0,1) .

SCM  ⟨ℱ2, P2(U)⟩

yx1
(u) − yx0

(u) = (1 + (−1 − uw) + uy)
yx1(u)

− (0 + (−0 + uw) + uy)
yx0(u)

= − 2uw ≠ 0
whenever uw ≠ 0.

same graph ' same observational 
distribution P(V )



Counterfactual Fairness Summary
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• decomposable & inadmissible (w.r.t DE, IE, SE),

 In summary, counterfactual fairness is:

• not identifiable in general, and

• oblivious to spurious effects (and corresponding 
business necessity requirements). 



Relationship to previous literature

• How does the presented framework of Causal 
Fairness Analysis relate to previous literature?  

29

(i) Counterfactual Fairness (Kusner et. al., 2017)

 (ii) Individual Fairness (Dwork et. al., 2012)

• In particular, we discuss

 (iii) Predictive Parity (Chouldechova, 2017)



Definition (Individual Fairness, Dwork et. al., 2012).  
Let  be a fairness metric on . An outcome  is said to 
satisfy individual fairness if




 

d 6 × 8 × 9 Y

|P(y ∣ x, z, w) − P(y ∣ x′ , z′ , w′ ) | ≤ d((x, z, w), (x′ , z′ , w′ )) ∀ x, x′ , w, w′ , z, z′ 

Individual Fairness

30

Intuition: individuals similar w.r.t  should have similar outcomes.d

Individual Level

U-space

change in outcome 
when moving to a 

nearby point in U-space 
=> metric-dependent

(x, w, z)

(x′ , w′ , z′ )
 small




 small

d((x, w, z), (x′ , w′ , z′ ))
⟹

P(y ∣ x, z, w) − P(y ∣ x′ , z′ , w′ )

we call this  
IF condition



Quick Detour: Optimal Transport
• What is optimal transport?

31

• How do we define OT formally?

piles of rubble

empty pits

Monge (1781): how do we optimally 
transport the rubble into the pits?

Given a measure  over  and  over  the optimal transport problem is given byμ X ν Y

min∫X×Y
c(x, y)dπ(x, y)

where  is the cost function ( ) and  a transport plan with marginals  .c(x, y) L1, L2 π μ, ν



Quick Detour: Optimal Transport
• What do optimal transport plans look like?

32

• In general, dimension , OT plans are not easy to find!d > 1

Summary:  
Optimal Transport gives an intuitive way of measuring a 

distance between distributions which has been shown as 
useful in many sciences (mathematics, physics, statistics, etc.)
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Individual Fairness:  
Local to Global

Global LevelProposition (OT bounds TV, Dwork et. al., 2012).  
  
Suppose that the IF condition holds. Let the optimal transport cost 
between  be denoted by 

. Then, it holds that


        

 

Z, W ∣ X = x1 and Z, W ∣ X = x0
OTCd

x0,x1((Z, W ))

|TVx0,x1(y) | ≤ Cd * OTCd
x0,x1((Z, W )) .

   (1) IF criterion


   (2) Small OTCd
x0,x1((Z, W))

⟹
     Small TV 

DE ? 
IE  ?

SE ?



Local to Global: Intuition

34

IF condition OTC  
small

Z, W ∣ x1 → Z, W ∣ x0 = TV small

{ {

take ,  (x1, z, w) (x0, z, w)
IF condition yields  
P(y ∣ x1, z, w) − P(y ∣ x0, z, w) = 0.
i.e., observational direct effect is 0.

distribution of attributes 

same for  groups

Z, W
x0, x1

small

disparity

P(y ∣ x1) = ∑
z,w

P(y ∣ x1, z, w)P(z, w ∣ x1)

= ∑
zw

P(y ∣ x0, z, w)P(z, w ∣ x1) = ∑
z,w

P(y ∣ x0, z, w)P(z, w ∣ x0) = P(y ∣ x0)
IF condition OTC = 0

i.e., TV = 0



Z, W ∣ X = x0
Z, W ∣ X = x1

transport τ



Individual Fairness  
(Dwork. et. al., 2012)

Causal Fairness Analysis implications on IF:

36

• IF captures the direct effect only under the SFM.
Section 4.5.2

• IF is oblivious to the underlying causal mechanisms. 

• IF with a sparse metric  is not admissible. d

• IF with a complete metric  doesn’t account for business 
necessity. 

d



IF, Issue 1: Ignoring Causal 
Structure

37

A B

d((x, z), (x′ , z′ )) = |z − z′ |
metric

Examples.



IF, Issue 1: Insensitive to 
 the Causal Structure

38

Example A: We can compute that  
  
EℳA[y ∣ x, z] = EℳA[X − UXY + Z + UY ∣ x, z]

= EℳA[X − UXY ∣ x, z]
=0 as X=UXY

+ EℳA[Z ∣ x, z] + EℳA[UY ∣ x, z]
=0

= z .

⟹ EℳA[y ∣ x1, z] − EℳA[y ∣ x0, z′ ] = |z − z′ |

IF holds, but direct 
effect still exists

Example B: We can compute that  
  
EℳB[y ∣ x, z] = EℳB[UZY + UY ∣ x, z]

= EℳB[Z − UXZ ∣ x, z] + EℳB[UY ∣ x, z]
=0

= EℳB[Z − X ∣ x, z] = z − x .
⟹ EℳB[y ∣ x1, z] − EℳB[y ∣ x0, z′ ] = |z − 1 − z′ |

IF does not hold, but 
direct effect does not 

exist



IF, Issue 1: Insensitive to 
 the Causal Structure

38

Example A: We can compute that  
  
EℳA[y ∣ x, z] = EℳA[X − UXY + Z + UY ∣ x, z]

= EℳA[X − UXY ∣ x, z]
=0 as X=UXY

+ EℳA[Z ∣ x, z] + EℳA[UY ∣ x, z]
=0

= z .

⟹ EℳA[y ∣ x1, z] − EℳA[y ∣ x0, z′ ] = |z − z′ |

IF holds, but direct 
effect still exists

Example B: We can compute that  
  
EℳB[y ∣ x, z] = EℳB[UZY + UY ∣ x, z]

= EℳB[Z − UXZ ∣ x, z] + EℳB[UY ∣ x, z]
=0

= EℳB[Z − X ∣ x, z] = z − x .
⟹ EℳB[y ∣ x1, z] − EℳB[y ∣ x0, z′ ] = |z − 1 − z′ |

IF does not hold, but 
direct effect does not 

exist

IF is oblivious to the underlying causal 
structure, which translates in lack of both 

necessity and sufficiency w.r.t. DE.



IF, Issue 2: Direct Effect 
(under suitable assumptions)

39

Proposition. Suppose that the metric  does not depend on 
the  variable, that is,


      

 
Then, under the assumptions of the Standard Fairness Model,  
 the IF criterion implies that Ctf-DE equals 0, that is 

                     

d
X

d((x, z, w), (x′ , z′ , w′ )) = d((z, w), (z′ , w′ )) .

IF ⟹ Ctf-DEx0,x1(y ∣ x) = 0.

IF captures the direct effect - but under 
the assumptions entailed by the SFM



IF, Issue 3: Sparse metrics   
suffer from decomposability issue

d
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ℱ*, P*(U) := {
X ← UXZ
Z ← − UXZ + UZ

W ← X + Z + UW
Y ← 1(UY < expit(W )),

UXZ ∈ {0,1}, P(UXZ = 1) = 0.5,
UZ, UW, UY ∼ Unif[0,1],

Example.

metric  d((x, z, w), (x′ , z′ , w′ )) = |w − w′ | .

|P(y ∣ x, z, w) − P(y ∣ x′ , z′ , w′ ) | = |expit(w) − expit(w′ ) |

≤ 1
4 |w − w′ | ⟹  IF holds! 

                  

TVx0,x1(y) = x-DEx0,x1(y ∣ x0) − x-IEx1,x0(y ∣ x0) − x-SEx1,x0(y)

= (0%)
⏟
direct

− (14%)
indirect

− (−14%)
spurious

,

We can compute that  

However: 
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ℱ*, P*(U) := {
X ← UXZ
Z ← − UXZ + UZ

W ← X + Z + UW
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metric  d((x, z, w), (x′ , z′ , w′ )) = |w − w′ | .

|P(y ∣ x, z, w) − P(y ∣ x′ , z′ , w′ ) | = |expit(w) − expit(w′ ) |

≤ 1
4 |w − w′ | ⟹  IF holds! 

                  

TVx0,x1(y) = x-DEx0,x1(y ∣ x0) − x-IEx1,x0(y ∣ x0) − x-SEx1,x0(y)

= (0%)
⏟
direct

− (14%)
indirect

− (−14%)
spurious

,

We can compute that  

However: 

IF can be decomposed 
whenever the metric  is sparse 

(complete metrics  addressed later)
d

d



IF, Issue 4: complete metric   
does not allow for business necessity

d

41

Part I. If 

 
then . 

d((x, z, w), (x′ , z′ , w′ )) = ∥z − z′ ∥ + ∥w − w′ ∥

OTCd
x0,x1((Z, W )) = 0 ⟹ X ⊥⊥ Z, W

Part II. If IF condition holds, then for  binary

 

. 

Y

X ⊥⊥ Y ∣ Z, W

Part III (I + II).      X ⊥⊥ Z, W ∧ X ⊥⊥ Y ∣ Z, W ⟹ X ⊥⊥ Z, W, Y

W

X Y

Z



IF, Issue 4: complete metric   
does not allow for business necessity

d

41

Part I. If 

 
then . 

d((x, z, w), (x′ , z′ , w′ )) = ∥z − z′ ∥ + ∥w − w′ ∥

OTCd
x0,x1((Z, W )) = 0 ⟹ X ⊥⊥ Z, W

Part II. If IF condition holds, then for  binary

 

. 

Y

X ⊥⊥ Y ∣ Z, W

Part III (I + II).      X ⊥⊥ Z, W ∧ X ⊥⊥ Y ∣ Z, W ⟹ X ⊥⊥ Z, W, Y

W

X Y

Z

A complete metric  implies  is 
independent of all other attributes,  

which is a strict requirement.

d X



Relationship to previous literature

• How does the presented framework of Causal 
Fairness Analysis relate to previous literature?  

42

(i) Counterfactual Fairness (Kusner et. al., 2017)

 (ii) Individual Fairness (Dwork et. al., 2012)

• In particular, we discuss

 (iii) Predictive Parity (Chouldechova, 2017)



Predictive Parity (PP)
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Definition. Let  be the predictor of . We say that  satisfies predictive parity 
(PP) with respect to  if 

 
   

Alternatively, the PP criterion can also be written as a conditional independence 
statement 

 
                 

 
Finally, define the predictive parity measure to be 
 
                                 

̂Y Y ̂Y
X, Y

P(y ∣ x1, ̂y ) = P(y ∣ x0, ̂y ) ∀ ̂y .

Y ⊥⊥ X ∣ ̂Y .

PPMx0,x1(y ∣ ̂y ) = P(y ∣ x1, ̂y ) − P(y ∣ x0, ̂y ) .

 has no more information about 
 once we know 

X
Y ̂Y



PP Intuition
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U space

(x, w, z) :
̂Y = 40 %

Calibration: 
Average  in this group should be 40%Y

∑
x,z,w: ̂Y(x,z,w)= ̂y

P(y ∣ x, z, w)P(x, z, w ∣ ̂y ) = ̂yi.e.

10 %

20 %

60 %

80 %



Two key results on PP
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Proposition 1 (PP & Efficient Learning). Suppose that the predictor  is based 
on the features . Suppose also that  is an efficient learner, meaning that: 

     

Then, it follows that  satisfies predictive parity w.r.t.  and .

̂Y
X, Z, W ̂Y

̂Y(x, z, w) = P(y ∣ x, z, w) .

̂Y X Y
PP happens “naturally” 

 for good learners!

Proposition 2 (PP & DP Impossibility).The fairness criteria of predictive parity   
and demographic parity, 

                   

are mutually exclusive except for in degenerate cases, when . 

Y ⊥⊥ X ∣ ̂Y ,
̂Y ⊥⊥ X,

Y ⊥⊥ X

PP and DP are from different 
planets!



What is PP really doing?
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Theorem (PP Causal decomposition). Suppose the set of confounders . 
PPM can then be decomposed into its causal and spurious anti-causal variations 
as follows: 

            

 
Under the additional assumptions of (i) linearity and (ii) efficiency, we have: 

 

     

Z = ∅

P(y ∣ x1, ̂y ) − P(y ∣ x0, ̂y ) = P(yx1
∣ x1, ̂y ) − P(yx0

∣ x1, ̂y )
+P(yx0

∣ ̂y x1
) − P(yx0

∣ ̂y x0
) .

E(yx1
∣ x1, ̂y ) − E(yx0

∣ x1, ̂y ) = αXWαWY + αXY

E(yx0
∣ x1, ̂y x1

) − E(yx0
∣ x1, ̂y x0

) = − (αXWαWY + αXY),

W
̂Y

X
YαXY

αXW
αWY

αW ̂Y

αX ̂Y



What is PP really doing?
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Theorem (PP Causal decomposition). Suppose the set of confounders . 
PPM can then be decomposed into its causal and spurious anti-causal variations 
as follows: 

            

 
Under the additional assumptions of (i) linearity and (ii) efficiency, we have: 

 

     

Z = ∅

P(y ∣ x1, ̂y ) − P(y ∣ x0, ̂y ) = P(yx1
∣ x1, ̂y ) − P(yx0

∣ x1, ̂y )
+P(yx0

∣ ̂y x1
) − P(yx0

∣ ̂y x0
) .

E(yx1
∣ x1, ̂y ) − E(yx0

∣ x1, ̂y ) = αXWαWY + αXY

E(yx0
∣ x1, ̂y x1

) − E(yx0
∣ x1, ̂y x0

) = − (αXWαWY + αXY),

W
̂Y

X
YαXY

αXW
αWY

αW ̂Y

αX ̂Y

Not in control of the decision-maker! Just the 2nd term is!



Causal Predictive Parity (CPP)
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Definition. Let  be a predictor of the outcome , and let  be the protected 
attribute. Then we say that  satisfies causal predictive parity (CPP) with respect 
to a counterfactual contrast  if 

 
 

Furthermore, we say that satisfies CPP with respect to a factual contrast 
 if 
 

̂Y Y X
̂Y

(C0, C1, E, E)

E[yC1
∣ E] − E[yC0

∣ E] = E[ ̂y C1
∣ E] − E[ ̂y C0

∣ E] .

̂Y
(C, C, E0, E1)

E[yC ∣ E1] − E[yC ∣ E0] = E[ ̂y C ∣ E1] − E[ ̂y C ∣ E0] .



CPP implications?

48
W

̂Y

Z

X

Y

¬BN

¬BN

BN

IE = arbitrary?

DE = 0

SE = 0

Requirements:
BN considerations:

IE( ̂y ) = IE(y)!
Causal PP

“Modelling” “Implementing”



CPP implications?

48
W

̂Y

Z

X

Y

¬BN

¬BN

BN

IE = arbitrary?

DE = 0

SE = 0

Requirements:
BN considerations:

IE( ̂y ) = IE(y)!
Causal PP

“Modelling” “Implementing”

Completes the picture on 
Business Necessity!



Fairness Tasks  
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