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Task 1.  
Bias Detection & Quantification



Fairness Cookbook



1) Obtain data on past decisions .𝒟

2) Determine the (possibly simplified) causal diagram  (w.r.t. underlying ).𝒢 ℳ*

4) Consider existence of Disparate Treatment: 

H(x-DE)
0 : x-DEx0,x1(y ∣ x0) = 0.

5) Consider existence of Disparate Impact:
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3) Determine the Business Necessity (BN) set ( ).∅, {Z}, {W}, {Z, W}

if(W ∉ BN-set) H(x-IE)
0 : x-IEx0,x1(y ∣ x0) = 0.

rejected

not rejected

evidence of 

disparate impact

go to next step

H(x-SE)
0 : x-SEx0,x1(y) = 0.if(Z ∉ BN-set)

rejected

not rejected

evidence of 

disparate impact

no evidence of 

disparate impact

5a) Indirect effect:

5b) Spurious effect:

no evidence of disparate 
treatment (population level)

evidence of disparate 
treatment (population level)

rejected

not rejected

Fairness Cookbook Section 5.1

Algorithm 1



Spectrum of Fairness Notions
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Disparate 
Treatment

Disparate 
Impact

Business Necessity 
Considerations

(extreme case)



Task 1A: One Step Bias 
Quantification (Census 2018)
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W

X Y

Z

Gender Salary

Education, Employment

Demographic variables

• Observed disparity:  
TVx0,x1(y) = $14,000/year

Vignette Time!
TV cannot 

distinguish causally 
different settings!



Task 1B: Multi-step Bias 
Quantification (College Admissions)

κ(t + 1) = 0.9κ(t)
λ(t + 1) = λ(t)(1 − β(t))
β(t + 1) = β(t)(1 − λ(t))f(t),

f(t) ∼ Unif[0.8,1.2]
α(t + 1) = 0.8α(t)

Time Evolution  θt→t+1

Example. A university in the United States admits applicants every year. The university is 
interested in quantifying discrimination in the admission process and track it over time, 
between 2010 and 2020. The data generating process changes over time, and can be 
described as follows. Let  denote gender (  female,  male). Let  be the age at time of 
application (  under 20 years,  over 20 years) and let  denote the department 
of application (  for arts & humanities,  for sciences). Finally, let  denote the 
admission decision.

X x0 x1 Z
Z = 0 Z = 1 W

W = 0 W = 1 Y

X ← 1(UX < 0.5 + 0.1UXZ)
Z ← 1(UZ < 0.5 + κ(t)UXZ)

W ← 1(UW < 0.5 + λ(t)X)
Y ← 1(UY < 0.1 + α(t)X + β(t)W + 0.1Z )

UXZ ∈ {0,1}, P(UXZ = 1) = 0.5,
UX, UZ, UW, UY ∼ Unif[0,1] .

SCM  ⟨ℱt, Pt(U)⟩
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Bias Quantification over time
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Vignette Time!



Task 1C: Bias Detection for  and  
(COMPAS)

Y ̂Y
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W

̂Y

Z

X

Northpointe’s 
prediction

Y
Recidivism

Prior Offenses

Race

Age, Gender

Original Causal Diagram 
(w.r.t M*, real world)



Recall: CPP Implications
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W

̂Y

Z

X

Y

¬BN

¬BN

BN

IE = arbitrary?

DE = 0

SE = 0

Requirements:
BN considerations:

IE( ̂y ) = IE(y)!
Causal PP

“Modelling” “Implementing”
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¬BN BN BN
Vignette Time!

Task 1C: Bias Detection for  and  
(COMPAS)

Y ̂Y



Task 2. Fair Predictions



Prediction Task
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W

̂Y

Z

Original Causal Diagram 
(w.r.t M*, real world)

X

Constructed 
prediction

• The first talk focused on bias 
detection, where we just analyze 
the “observed reality”, i.e., nature 
defines  


• When doing prediction, causally 
speaking, we are constructing a 
new mechanism  
that is under our control (i.e., we 
are selecting it)


• Typically, in ML, we are simply 
interested in learning 


• Does that carry over bias from ?

fY

̂Y ← f ̂Y (x, z, w)

P(y ∣ x, z, w)

fY

Y



From a biased reality towards a 
more fair one?
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Dataset

Real World 

Time T = t

ML

system

fair

Future World 

Time T = t + 1

unfair

?

training

(biased)

data 
collection



Fair Prediction
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W

̂Y

Z

X

Constructed 
prediction

Y

fairness 
constraint

• General answer: simply learning 
 will give biased 

predictions.


• To remove the bias, one might 
wish for  to satisfy a pre-
specified fairness constraint.


• A commonly considered constraint 
is to make .


• In practice, there are different ways 
to satisfying such a constraint: in 
particular, we distinguish post-
processing, in-processing, and 
pre-processing methods.

P(y ∣ x, z, w)

̂Y

TVx0,x1( ̂Y ) = 0

Original Causal Diagram 
(w.r.t M*, real world)



The Typical Approach
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Data 𝒟 ML optimization 
algorithm

predictor 
̂Y ← f ̂Y (x, z, w)

Typical ML framework:



Post-processing Methods
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Data 𝒟 ML optimization 
algorithm

predictor 
̂Y ← f ̂Y (x, z, w)

Typical ML framework:

 
using a transformation

̂Y fair ← T( f ̂Y (x, z, w))

Post-processing: 
massage the predictions 

to satisfy a constraint



In-processing Methods
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Data 𝒟 ML optimization 
algorithm

predictor 
̂Y ← f ̂Y (x, z, w)

Typical ML framework:

ML optimization 
algorithm with a 

fairness constraint

In-processing: 
include a fairness 

constraint in the learning 
step



Pre-processing Methods
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Data 𝒟 ML optimization 
algorithm

predictor 
̂Y ← f ̂Y (x, z, w)

Typical ML framework:

Transform  to  
that satisfies a 

fairness constraint

𝒟 𝒟̃

Pre-processing: 
change the data to 
satisfy a constraint 

apriori



Fair Prediction Theorem (FPT)
Theorem. Let SFM  be the SFM with  and . Let  denote the set of edges of SFM

. Further, let  be the space of linear SCMs (but for the variable , which is a Bernoulli) 
compatible with the SFM  and whose structural coefficients are drawn uniformly from .  

(nZ, nW) |Z | = nZ |W | = nW E
(nZ, nW) 𝒮linear

nZ,nW
X

(nZ, nW) [−1,1]|E|
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̂ffair = argminf linear E[Y − f(X, Z, W )]2

subject to TVx0,x1
( f ) = 0

also satifies

An SCM  is said to be -TV-compliant ifM ∈ 𝒮linear
nZ,nW

ϵ

|Ctf-DEx0,x1( ̂ffair ∣ x0) | ≤ ϵ,

|Ctf-IEx0,x1( ̂ffair ∣ x0) | ≤ ϵ,

|Ctf-SEx0,x1( ̂ffair) | ≤ ϵ .

Under the Lebesgue measure over , the set of 0-TV-compliant SCMs in SFM  has measure 0.
[−1,1]|E| (nZ, nW)

Furthermore, for any  there exists an  such thatnZ, nW ϵ = ϵ(nZ, nW) P(ℳ is ϵ-TV-compliant) ≤
1
4

.

X
Y

Z

W

̂Y

non-vanishing probability 
of things “going wrong”

Section 5.2

Theorem 5.1



FPT proof sketch
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Objective:
Y = ∑

Vi∈X,Z,W

aViYVi + ϵY, f(X, Z, W ) = ∑
Vi∈X,Z,W

ãViYVi .

ellipsoid

TVx0,x1
( f ) = (E[V ∣ x1] − E[V ∣ x0])TãVY = 0. what the 

constraint is

what we 

actually want

optimizing over ãVY

E[Y − f (X, Z, W )]2 = E[ ∑
Vi∈X,Z,W

(aViY − ãViY)Vi + ϵY]2

= E[ϵ2
Y] + E[ ∑

Vi,Vj∈X,Z,W

(aViY − ãViY)(aVjY − ãVjY)ViVj]

= 1 + (aVY − ãVY)TE[VVT](aVY − ãVY),

Ctf-DE = ãXY(x1 − x0) = 0,

Ctf-IE = ∑
Wi

ãWiY(E[Wi ∣ x1] − E[Wix0
∣ x1]) = 0,

Ctf-SE = ∑
Wi

ãWiY(E[Wix0
∣ x1] − E[Wi ∣ x0])+

∑
Zi

ãZiY(E[Zi ∣ x1] − E[Zi ∣ x0]) = 0.

X
Y

Z

W

̂Y

U
Graph:

U ← N(0,1)
X ← Bernoulli(expit(U ))
Z ← aUZU + aZZZϵZ

W ← aXW X + aZWZ + aWWW + ϵW

Y ← aXY X + aZYZ + aWYW + ϵY

Linear SCM:



FPT visualization
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What the constraint is: 



represents a hyperplane  
through origin.

TVx0,x1( ̂y ) = 0
What we want: 

3 linear constraints 
 

represents a single point
Ctf-DE = 0, Ctf-IE = 0, Ctf-SE = 0.

(αX, αW, αZ)

(0,0,0)

measuring the 
probability of ellipsoid 

hitting a point 

ellipsoid with characteristic 
matrix Σ = E[VVT]

normal vector



Fair Prediction Theorem in 
Practice (COMPAS dataset)
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Vignette Time!


