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Motivating Example

Example (COMPAS Business Necessity). Courts at Broward County, Florida,
predict the risk of re-offending within 2 years, based on demographic

information Z (£, for gender, Z, for age), race X (x, denoting Majority, x;
Minority), juvenile offense counts J, prior offense count P, and degree of charge
D. A causal analysis using the Fairness Cookbook by ProPublica revealed that:

CH-IE, . (v | X)) = —5.7% £ 0.5 %,
CHf-SE, , (¥) = — 4.0% £ 0.9 %,

After the court hearing, the judge ruled that using the attributes age (£,), prior
count (P), and charge degree (D) were not discriminatory, but using the
attributes juvenile count (/) and gender (£;) was.

How can the ProPublica extend their findings based on this decision?
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Refining Spurious Effects

- We start by refining the spurious YR
effect notion Exp-SE ()

- What is our target in terms of
Structural Fairness? X

- How can we get a decomposition

BSE () = EESEN() + BRSEC) 7




New Primitive: Intuition
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Basic Idea: Integrated Submodel

-~

~

Definition. Let .Z be an SCM. Let Z' C Z be a subset of the exogenous variables. Define

by .#* the following SCM

%Z’:Z’ — Z P/%(Z' — Z,)%Z’zz’ .
V4

That s, in M* the variables 7' are sampled from the observational distribution of the
SCM, after which the submodel M ,_ is used to obtain all other observables V\Z'.

J

S
. @- @ v ‘Iike in a randomized control trial\




Basic Idea: Integrated Submodel

fixing Zs one-by-one

[ Z neither empty nor full = )
X, Y associated by some, but
not all Us




-Submodel: Example

- How are conditional probabilities computed?

P(y | x) in #* for

X

Py | x) = ) PP (y | x,do(z)))

{1

— Z P%z)P%(y | x,z;) (2nd rule of do-calculus)

<1 -

(Zl)P (% [ 21, )Py | X, 21, 25) -

Zl ,Z2 : NI ANl e
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Sampling-Evaluation Loop’s
Perspective

unit u = (u, s u,)




Spurious Decomposition

-

Theorem. Let U, ..
spurious trek between X and Y. Let Z;, denote the variables Z,, ..., Z; (5 denotes the

., U be the subset of exogenous variables that lie on top of a

empty set ). Then, using the term

A
Exp-SEXE(y) = P/ (y | x) = P (y | x),

we can decompose the experimental spurious effect as follows:

Exp-SEx(y) =P(y | x) = P(,)
k—1
= 3 Ep-selriny
=0

k—1
= 3 Py | ) — Py | ).
=0

~
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Decomposing Exp-SE ()




Decomposing Exp-SE ()

Zl_’ZQ Zl_)ZZ
N N
T >Y — > Y
Py | =) PMzi(y | x)

(a) Exp-SE2 71 (y).

N N

T )Y — h ;Y

PMzi(y | ) PMz1.2: (y | )

(b) Exp-SEZ1 121.22) (y)-
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Towards latent decompositions

We managed to decompose the spurious effect by attributing the variations
to observable Z, ..., Z,.

When expanding the SFM, however,
we might have bidirected confounding
arrows - can we extend our approach?

X
What is the best starting point?
& L - A
Look at attribution of variations to
g Ui, ..., U, in the Markovian case y
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Exogenous Integrated Submodel

a )

Definition. Let ./ be an SCM. Let U, C U be a subset of the exogenous variables.
Define by .# Y7 the following SCM

%UZ — ZP%(UZ —_ Mz)ﬂUzzuZ.

Uy

That is, in MYz the exogenous variables U, are determined from the distribution
P(U) of the SCM, after which the submodel U,=u, IS used to obtain the all the

Uz
observables V.

\_ )
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Exogenous Integrated Submodel

U, neither empty nor full —
X, Y associated by some, but
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Spurious Decomposition
(Exogenous)

-

Theorem. Let Uy, ..., U, be the subset of exogenous variables that lie on top of a

spurious trek between X and Y. Let U;, denote the variables U, ..., U; (U}, denotes the

empty set ). Then, using the term
AB(\\ — pAA /A
Exp-SE"(y) = P77 (y | x) — P (y | x),

we can decompose the experimental spurious effect as follows:

Exp-SE (y) = P(y | x) — P(y,)
k—1
= ) Exp-seL iy
=0

=Y Py | x) = Py | x).

~
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Spurious Decomposition
Equivalence

-

Theorem. Let Z,, ..., Z, be the confounders between variables X and Y, sorted in
any valid topological ordering. Denote the exogenous variables corresponding to

Zy,....20 as Uy, ..., U, respectively. Let Z,,, = {Z,, ..., Z;} and U, = { Uy, ..., U}
It then holds that

PV = PV,

that is, the induced distributions over the observables V for the integrated submodel
A4 and the exogenous integrated submodel .# Yin are equal.
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Spurious Decomposition
Equivalence

Exp-SE (y) = P“"(y | x) = P“"(y | ) + ... + PZ" "y | x) = P4y | ).

z, contribution z. contribution

same
{ numbers!

Exp-SE (y) = P7(y | x) = Py | x) + ... + Py | x) = PPy | x).

u, contribution u, contribution



Spurious Decomposition
Equivalence

fixing Zs one-by-one

Zi

Can we use the same latent Note that we have a primitive that

attribution approach to extend to can attribute variations to the
Semi-Markovian models? latent Us!
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Semi-Markovian Models: Treks
s R

Definition. Let & be the causal diagram of a Semi-Markovian model.

A trek 7 from X to Y is an ordered pair of causal paths (g;, ) with a common
exogenous source U; € U. Thatis, g,isacausalpath U, - ... > Xand g,isa
causalpath U, — ... = Y.

The common source U, is called the top of the trek (ToT), denoted top(g;, g,)- A
trek is called spurious if g, is a causal path from U. to Y, i.e., not intercepted by X.

- J

U Us Spurious Treks:
l l X7 <« U, - Z — Ywith top U,
Zl ’ZZ X« Z7Z,« U,— Z,— Ywith top U,

“/)Q‘ X< Z «<U -7 - Z,— Ywith top U,
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Exogenous Set-Specific Effects

-

~

Definition. Let U ., C U be the set of trek tops. Suppose A C B C U 7,7~ The

exogenous experimental spurious effect is defined as

A
Exp-SEAB(y) = P#'(y | x) — Py | x).

UA UA

UB\X UB\X
/ \ N\

X > Y X

PMA(y | x) PM5(y | x)
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Admissibility with respect to
Structural Fairness Measures

-

Lemma. Let Uy, C U be a subset of the exogenous confounders of X, Y that fall
under business necessity. Let U gN denote the exogenous ancestors of X that do
not fall under business necessity, that is UgN = an®X(X)\ Ugy- Then the
measures Exp-SE?’UgN(y), Exp-SEfC]BN’U(y) are admissible with respect to the

structural criterion Str-SE(Upy ) (Y ), that is

(Str-SE-BNy(Y) = 0) => (Exp-SEZ"V(y) = 0)

(Str-SE-BNx(Y) = 0) = (Exp-SE.**"(y) = 0).




Semi-Markovian Spurious
Decomposition

-~

Theorem. Let Uy, ..., U, be the subset of exogenous variables that lie on top of a

spurious trek between X and Y. Let U;, denote the variables U, ..., U; (U}, denotes the

empty set ). The experimental spurious effect can be decomposed as follows:

Exp-SE (v) = P(y | x) — P(y,)
k—1
Y Exp-selntiniy)

T
_— O

P4y | x) = P2y | x) .

|
)

~
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Semi-Markovian Spurious
Decomposition

Exp-SE (v) LR T
Xp- N — —
y \\: \\EY
7, . Z 7, Z
= 1\2\: _— 1\2\
T >Y T > Y
7, . Zs 7, Z
+:1:K \\SY T \\‘iY



|ldentification of Spurious

l
Definition (Anchor Set). AS(U,,...,U) = U ch(U)\X. o©bservables
i=1 “touched” by U

f Definition (Precedence Relation). Ut loaicallv bef U
; topologically before U,

\ U, ? U < AS(UJ-) N {AS(U;)Uan(AS(U))} # O .

-

NN\

Theorem (ID of Spurious Effects). P/%A(y | x) is identifiable from observationa
data P(V) if the following hold:

(i) Y &€ AS(A) Y not touched
(i) AS(A) N AS(U,;,+\A) = @ touched observables disjoint

PR
(iii) there is no U; € Uy,,7\A such that 3 U; € A for which U; < U..

\ no precedence between set elements J
27




that is, PV1x(V) is identifiable

A —3 4o

Uix » =
/ _ ~ U
P/ p - g 2X PYx(V) is not

since Uy < U,y

X Y

4 )

Theorem (ID of Spurious Effects). P‘/%A(y | x) is identifiable from observational
data P(V) if the following hold:

(i) Y &€ AS(A) Y not touched
(i) AS(A) N AS(U,;,+\A) = @ touched observables disjoint

PR
(iii) there is no U; € Uy,,7\A such that 3 U; € A for which U; < U..

\ no precedence between set elements J
28




x-specific spurious?

( Definition (Exogenous x-specific Integrated Submodel). Define by .Z fC]Z the following
SCM:

M=) PUUy=uy | X =x)My_,,.

Uz

Definition (Exogenous x-specific spurious).

A B
Ctf-SERE () = Pa(y | xg) — P™"u(y | xp) .

( Theorem (x-specific exogenous spurious decomposition).

m—1

th-SExO,xl (y) — Z th-SE.i][l;lU[l-i_l](y)

0
i=0

29



Refining Indirect Effects

. Target: refine the quantity NIE, , ()

- What is our target in terms of Structural
Fairness?

graph G:

Wi

- How can we get a decomposition

30



Set-specific indirect

~

Definition (Set-specific indirect effect). Let W,, W be nested subsets of the
mediators W, so thatW, C Wj. Let W, and Wyc denote the complements of

W,, Wy in W. We then define the E-specific indirect effect with respect to sets
W,, Wy as

E-1E)*Ws(y) =

X0sX1

31



Admissibility with respect to
Structural Measures

Lemma. Let Wy, € W be a subset of the mediators that fall under business
necessity. Then the measure E-IE,%) xlBN(y) iIs admissible with respect to the
structural criterion Str-IE(Wy,)y(Y), that is

(Str-IE-BNy(Y) = 0) = (E-IEZ; WBN(y) =0),

(Str-IE-BNx(Y) = 0) => (E-IE. %" (y) = 0).




Decomposition of Indirect

-~

Theorem. Let W, ..., W, denote the set of mediators, sorted in a topological order.

Define W, as the set {W,, ..., W;} and W_; as{W_, ..., W, }. The E-specific indirect
effect can then be decomposed as

E-lE,x(y) = POy w, | E) = P(yy, | E)

T
[

E- /EW[i]’W[iH](y)

X0sX1

T
_— O

P(nya(W[Hl])xl9(W—[i+1])x0 | E) - P(yxoa(W[i])xls(W—[i])xO | E).

|
o

J
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Lack of symmetry

A lack of symmetry arises because we can consider either a
Xp — X, or x; = X, transition, and similarly for the BN transition.

As a consequence, note that:

and analogously for th'|Ex1,x0()’ | x), and also for the spurious.
How can we fix this problem?

— Take an average over the transitions! ”



Lack of symmetry

-~

Definition. Define the x-specific indirect and spurious measures
under business necessity as

1
x-IESYM-BN(y, | 1) = y <th IEZ WBN(y | x) + CH-IE) 2" (y | x)—
Cf-IEY WBN(y | x) — CHf-IE 2" (y | x))

1
x-SESYMEN(y) = — (th SEZUin(y) + Ctf-SE/ ! (y)-

Ctf- SE@ UBN(y) _ Ctf-SEYsv (y)>

XO.X
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Population Axis

Extended Fairness Map

Mechanisms Axis

Causal

general

X =x

VICV| | Z=z

unit

Spurious

Direct

Indirect

Spurious-BN  Indirect-BN

Str-TE

Str-SE

Exp-SE-BN

Str-SE-BN

Str-1IE-BN
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Task 1 (Extended)



Extended Fairness Cookbook

1) Obtain data on past decisions <.

2) Determine the (possibly simplified) causal diagram & (w.r.t. underlying 4 *).

3) Determine the Business Necessity (BN) set (now arbitrary!).

4) Test the following two hypotheses:

evidence of

3 disparate impact
/ —
not no evidence of

"Clectey disparate impact

3 disparate impact
/ —
not no evidence of

"Clectey disparate impact

38




Task 2 (Extended)



Fairadapt: Sequential
Transp()rt Plecko & Meinshausen, ~

e joint optimal transport induces a dependency of W on
Y, therefore breaking the causal structure

* instead, we perform the Optimal Transport sequentially

for V; € de(A) in topological order do
learn function V; < f;(pa(V;), U;)
infer quantiles U; associated with the variable V;
transform values as V;(/P) « fi(pa(Vi)(fp), U)
end

return V/P)

40



Recap: Fair Prediction Theorem on
COMPAS

@ TV, x(¥) decomposition: Random Forest on COMPAS (@ TV, . (§) decomposition: Reweighing on COMPAS
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0.1 0.1

! -0.1

-0.1

N N 3 N
S \x\.\.c 6\.\.0 §
&A 4+ @qur‘_\ @+\ :"b %®+\
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O«Q K @)
A ey . A . . .
@ TV, () decomposition: Reductions on COMPAS () TV, «(¥) decomposition: Reject-option on COMPAS
0.2 0.2
0.1 0.1
00 ; —T1 E i 0.0 B —
-0.1 -0.1
D D D A A N\
S $ ® @8
« +Q.+\ +\:‘_m fb s « Q_+\ \:‘.c 'CQ i+
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Fairadapt: Result on COMPAS

TVy, x,(y) decomposed for Compas dataset

0.04

-0.02
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Complexity Cascade

Bow graph

- -
.......
- ~

X Y
q measure more variables W, W,
cluster variables

Q

—_—

better resolution
insert more domain
knowledge




Lectures’ Recap - L1




Lectures’ Recap - L2




Lectures’ Recap - L3




Lectures’ Recap - L4 & 5




Lectures’ Recap - L4 & 5




Lectures’ Recap - L6




