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Overview of Week 10Overview of Week 10

Solid Modeling
Sweeps
Boundary Representations
Spatial Partitioning
Constructive Solid Geometry (CSG)

Global Illumination (Part 1)
Ray-tracing
Advanced lighting models
Spatial data structures
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ModelingModeling

Modeling is the process of generating the description 
of a 2D or 3D shape

Approximation of a real shape, e.g. 3D capture or visualization
Creation or design of a new shape, e.g. CAD or DCC

The shape description has to satisfy several, often 
conflicting demands

Accuracy, i.e. match between model and real shape
Compactness
Consistency, e.g. no "impossible" shapes
Robustness, e.g. limited errors due to floating-point calculations
Support of editing and queries, e.g. to support interactive 
manipulation
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Desirable Properties of Desirable Properties of 
Modeling Data StructuresModeling Data Structures

Expressive Power
What kind of objects can be represented using the data structure ?
How accurately can objects be represented ?

Validity
Are all values of the data structure representing valid objects ?

Uniqueness
Does every valid object have exactly one representation ?

Conciseness
How large is the representation of interesting objects ?

Closure of operations
Do operations on the data structure always generate valid objects ?

Applicability and Computational Ease
What kind of algorithms are supported by the data structure ?
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Solid ModelingSolid Modeling



© Bengt-Olaf Schneider, 1999Computer Graphics – Week 10

Solid ModelingSolid Modeling

Representation of solid models, i.e. models filled with 
material
Manipulation of solids, e.g. combination or interaction 
of solid models

Used in various applications, e.g.
Manufacturing and CAD/CAM
Interference detection, e.g. robot path planning
Physical properties, e.g. a part's mass and center of gravity
Automatic instructions for machining of parts
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SolidsSolids

The representations we have discussed so far, allow to 
model solids but are not always describing solids
The vertex-edge-face descriptions can also describe 
non-solid objects

Dangling
Edge

Dangling
Face
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Taking apart a Solid (1)Taking apart a Solid (1)

Interior
Points that are entirely 
interior of the object
Points having a non-zero 
neighborhood with only 
interior points

Boundary
Points with zero distance 
from both the object and its 
complement
There is no non-zero 
neighborhood that contains 
only interior points

Interior

Boundary
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Taking apart a Solid (2)Taking apart a Solid (2)

Open Set
A set with only its interior point and none of its boundary points

Closed Set
A set with all its interior and boundary points

Closure
Union of a set with its boundary points

Regularization
Closure of the interior points
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Taking apart a Solid (3)Taking apart a Solid (3)

Object

Closure Closure(Interior)

Boundary Interior
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Combining Solids (1)Combining Solids (1)

Construction of more complicated solids can be 
accomplished through Boolean set operations

Standard set operations can create non-solid objects !
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Combining Solids (2)Combining Solids (2)

Instead of standard Boolean operations, we use 
regularized Boolean operations: 

Regularized Boolean operations produce the same 
result as standard Boolean operations if the resulting 
objects are solid

Otherwise, they eliminate lower-dimensional features
Dangling edge, faces, points

A op B A op B        * closure interior= b gc h
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Combining Solids (3)Combining Solids (3)

A A A

B B B

A B∩ A B∩ *

Example
Standard intersection operation retains a piece of shared boundary
Regularized intersection avoid the generation of a dangling edge
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Representing SolidsRepresenting Solids

Solids can be represented in several ways
Sweeps

Boundary representation (b-rep)

Decomposition representations

Constructive Solid Geometry (CSG)
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Sweep Representation (1)Sweep Representation (1)

Sweeps move an object along a trajectory
Simple and natural way to describe many objects
For example, the path of a cutting tool or a robot arm

A sweep is described by the object and a trajectory for 
the sweeping process

Generalized sweep
2D or 3D object
Arbitrary trajectory
Transformation of the object along the trajectory
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Sweep Representation (2)Sweep Representation (2)

Extrusion
Simplest sweep
The object is a 2D area
The trajectory is 
perpendicular to the object 
plane

Rotational sweep
Rotation of a 2D area about 
an axis

Object Sweep
Direction

Sweep
(Extrusion)
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Sweep Representations (3)Sweep Representations (3)

General sweeps can generate complex objects
Transformations can change the shape of the swept object
Complex trajectories may create self-intersecting object

Application of Boolean set operations to general 
sweeps is difficult

Sweeps are not closed under Boolean operations. 
E.g. the union of two sweep is generally not a sweep.
Sweeping a 2D object within its plane does not generate a solid.

Therefore, sweeps are converted to another representation first
Sweeps are supported because they are a natural way to model 
objects 
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Boundary Representation (B-rep)Boundary Representation (B-rep)

Only describe the boundary explicitly
Interior is defined implicitly via the boundary
B-reps were conceived as an extension of early ways to 
represent objects with vectors

The boundary can be described using several 
techniques

Polygon meshes we have discussed earlier
Higher-order or freeform surfaces 

We will first look at ways to describe polygon meshes, 
before we look at modeling solids using b-reps.
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Polygon MeshesPolygon Meshes

Polygons are popular 
primitives to 
approximate shapes

Linear approximation w/ 
easily controlled error
Conceptually simple, in 
particular for triangles
Efficient rendering with 
hardware support

Polygon meshes are 
connected sets of 
polygons
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Creating and Editing of ModelsCreating and Editing of Models

Moving of single vertex
Make sure all connected edges and triangles follow

Moving of an edge
Make sure that the delimiting vertices and triangles follow

Add or delete a triangle
Make sure that neighboring triangles and adjacent edges/vertices 
are updated

We need a data structure that supports such operations

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 10

Data Structures for Polygon MeshesData Structures for Polygon Meshes

Explicit representation

Indexed representation

Edge-based representations
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Explicit RepresentationExplicit Representation

The coordinates for every vertex are stored explicitely 
in the polygon representation

P = [(x1, y1, z1), (x2, y2, z2), (x3, y3, z3), ... , (xn, yn, zn)]

Problems
No concept of shared vertices, i.e. two polygons with shared 
vertices have to replicated the vertex coordinates
Difficult to maintain
Inefficient memory utilization
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Indexed RepresentationsIndexed Representations

To avoid the problem of replicated data, indexed 
representation use pointers to the actual data

For instance, indexed-face list in VRML
P = [V1, V2, V3, ... Vn]
V1 = (x1, y1, z1)
V2 = (x2, y2, z2)
V3 = (x3, y3, z3)
...

Advantages
More space-efficient than explicit representation
Shared vertices are stored only once
Easier to edit and maintain

Problems
Still not easy to find polygons sharing an edge or a vertex
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Edge-based RepresentationsEdge-based Representations

Polygons are represented by their enclosing edges
Edges are stored using pointers to end points and 
adjacent polygons

In typical meshes every edge has only 1 or 2 adjacent polygons
P = [E1, E2, E3, ... En]
V1 = (x1, y1, z1), V2 = (x2, y2, z2), V3 = (x3, y3, z3) ...
E1 = (V1, V2, P, -), E2 = (V2, V3, P, -), E3 = (V3, V4, P, Q) ...

Still does not support easy queries for ...
... all polygons adjacent to a vertex
... all vertices shared by 2 polygons
... all edges meeting at a vertex
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Winged-edge Data Structure (1)Winged-edge Data Structure (1)

Edges are (again) the central link between vertices and 
polygons

For each edge the following is stored
Pointers to the vertices V1 and V2, edge is Pointers to the vertices V1 and V2, edge is orientedoriented from V1 to V2 from V1 to V2
Pointers to the adjacent polygons (left and right defined by edge orientation)Pointers to the adjacent polygons (left and right defined by edge orientation)
Pointers to 4 additional edges (next edges cw and ccw at both ends)Pointers to 4 additional edges (next edges cw and ccw at both ends)

For each vertex a pointer to an edge sharing that vertex is stored
For each polygon a pointer to one of its edges is stored 
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Winged-Edge Data Structure (2)Winged-Edge Data Structure (2)

Determine all edges incident to a vertex !
Determine the edge associated with the vertex
Follow the edges around the vertex by reading the ccw next edge
Stop when the first edge is encountered 

Determine all faces sharing an edge !
Simply retrieve the adjacent faces from the edge information

Determine the adjacent faces for a vertex !
Determine all edges incident to the vertex (see above)
For all edges:
Report left (right) face if edge starts (ends) at the vertex
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Winged-Edge Data Structure (3)Winged-Edge Data Structure (3)

Winged-edge data 
structures describes 
2-manifolds

2-manifolds are surfaces 
where every point on the 
surface has a (arbitrarily 
small) neighborhood that is a 
topological disk

Non-manifold surfaces 
can be described using 
the radial-edge data 
structure
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Only describe the boundary explicitly
Interior is defined implicitly via the boundary

Computation of Boolean set operations is somewhat 
complex because of the many elements involved

Solids in Boundary Representation (1)Solids in Boundary Representation (1)

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 10

Properties
Generally, there is no unique b-rep for a given solid, i.e. the same 
solid can be described by different b-reps
Validity of B-reps is difficult to establish and enforce, e.g. dangling 
faces, non-manifolds, "open" objects or self-intersecting objects.

Topological integrity can be assured by data structures, e.g. winged edge data Topological integrity can be assured by data structures, e.g. winged edge data 
structurestructure
However, there is still the possibility of geometric integrity, e.g. self-intersection.However, there is still the possibility of geometric integrity, e.g. self-intersection.

B-reps typically produce only approximations and therefore suffer 
from accuracy problems
B-reps are not as compact as other representations but are 
convenient for graphics and therefore efficient to display
B-rep models are tedious to generate and edit. However, there are 
algorithms that can convert other representations into B-rep.

Solids in Boundary Representation (2)Solids in Boundary Representation (2)
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Decomposition RepresentationsDecomposition Representations

Solids are described by combining basic building 
blocks.

The type of building blocks leads to various 
representations

Exhaustive Enumeration (Voxel Representations)
Cell Decomposition
Space Subdivision

Quadtrees and OctreesQuadtrees and Octrees
Binary Space-Partitioning Trees (BSP Trees)Binary Space-Partitioning Trees (BSP Trees)
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Exhaustive EnumerationExhaustive Enumeration

The solid is decomposed into identical cells on a 
regular grid

Grid cells are called voxels or (less often) cuberille
Decomposition is similar to scan-conversion of 2D primitives

Voxels
Binary voxels only indicate whether they are occupied (1) or not (0)
Multi-valued voxels can represent several values, e.g. color, 
transparency, or material properties
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Exhaustive Enumeration: ExampleExhaustive Enumeration: Example

Viewpoint

Boundary representation
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Exhaustive Enumeration: ExampleExhaustive Enumeration: Example

Viewpoint

Voxel representation
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Exhaustive Enumeration: PropertiesExhaustive Enumeration: Properties

Only approximates the actual shape (sampling !)
Represents always valid solids (if connectedness is not 
a requirement)
Voxel representations are unambiguous and unique
Voxel representations are close under Boolean 
operations
Not very compact
Algorithms are typically simple but slow because of the 
size of the data. 

Simplicity and regularity of algorithms allow easy parallelization.
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Cell DecompositionCell Decomposition

Generalization of the exhaustive enumeration
Instead of identical voxels, cells can be of different shape

Cells must be topological spheres, i.e. must not contain holes
Cells can be "glued" together to describe a solid
Cells may touch but must not have common interior points, i.e. 
must not intersect
Topologically, cells are either disjoint or touch in exactly one 
corner, edge or face

Various cell types are possible, e.g.
PolyhedraPolyhedra
Curved polyhedra, i.e. a polyhedron bounded by bi-quadratic or bi-cubic patches Curved polyhedra, i.e. a polyhedron bounded by bi-quadratic or bi-cubic patches 
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Cell Decomposition: PropertiesCell Decomposition: Properties

Cell decomposition can be very accurate up to the 
degree of the cell boundaries (typically quadratic)
Hard to establish valid decompositions. Requires test 
for intersection between all pairs of cells !

There is not structural support as in voxel reps or octrees.
Cell decompositions are not unique.
Can be fairly compact
Cell decompositions are usually not close under 
Boolean set operations

Only few general algorithms for manipulating cell decompositions
Cell decomposition is mostly used for analysis purposes, e.g. FEA
Cell decompositions are usually generated from another 
representation of the solid
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Space-Subdivision RepresentationsSpace-Subdivision Representations

Exhaustive enumeration and cell decomposition 
subdivide space in fairly regular fashion

Requires large amount of storage
Inefficient to process

Adaptive subdivision overcomes these problems
Only subdivide space along the solid's boundaries
There are usually large areas without a boundary
Exploits the fundamental property that the number of cells needed 
is proportional to the surface area.

Proportional to the square O(Proportional to the square O(rr22) of the desired resolution ) of the desired resolution rr
Exhaustive enumeration requires O(Exhaustive enumeration requires O(rr33) cells) cells

We will look at 2 space subdivision schemes:
Octrees and BSP-trees
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OctreesOctrees

Recursive, binary 
subdivision of space

Each subdivision step 
generates 8 cells

Subdivision is controlled 
by the application

To describe solids, cells are 
subdivided if they intersects 
with the solid's boundary
Subdivision stops at a 
pre-determined maximum 
subdivision level or when the 
cell interior is homogeneous 
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QuadtreesQuadtrees

Quadtrees are the 2D 
equivalent of octrees

Frequently used to subdivide 
and compress images

Concepts apply similarly 
to octrees and quadtrees
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Quadtrees: ExampleQuadtrees: Example
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Describing Quadtrees and OctreesDescribing Quadtrees and Octrees

The binary subdivision  
process is described by 
a tree structure

The tree contains three 
types of nodes:

Partially filled nodes
Empty leaves
Full leaves
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Labeling Quadtrees and OctreesLabeling Quadtrees and Octrees

The cells in the tree can be labeled and numbered by 
their location

There is no common convention for labels and numbers
Quadtrees (north/south, east/west) 
NW(0), NE(1), SW(2), SE(3)
Octrees (front/back, up/down, left/right): 
FUL(0), FUR(1), FDL(2), FDR(3), BUL(4), BUR(5), BDL(6), BDR(7)

Number of leaves and nodes is limited 
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Quadtrees & Octrees: Linear Notations (1)Quadtrees & Octrees: Linear Notations (1)

Several ways to describe 
the by a string

Only full (or empty) leaves 
are enumerated

Linear addresses
Terminator symbol for leaves 
not at the lowest level: X
Bits per digit: 2n+1
Bits per leave: h * (2n+1)
Example (n=2, h=4):
11XX, 12XX, 1301, 1303, 
131X, 1320, 1322, 2XXX
(Bit count: 8 * 4 * 5 = 160)
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Quadtrees & Octrees: Linear Notations (2)Quadtrees & Octrees: Linear Notations (2)
Node/leave encoding

Breadth-first traversal
Bit 1:
Internal node (0) or leave (1)
Bit 2 (only for leaves):
Empty (0) or full (1)
1 bit per internal node
2 bits per leave

Example:
0
10 0 11 10
10 11 11 0
0 11 0 10
10 11 10 11, 11 10 11 10
(Bit count: 37)
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Octrees: Boolean Set OperationsOctrees: Boolean Set Operations
Combining two octrees is performed by synchronous 
traversal of the input trees

An output octree is built by copying nodes from the input trees
Nodes are combined according to simple rules

If both nodes are leaves, the leaves are combined according to the 
Boolean set operation and appended to the output tree.
If both nodes are internal nodes, recursive traversal of the children
If one node is a leaf and the other is an internal node, the operation 
determines, whether only the leaf node or the leaf node and the 
children of the internal node are copied to the output tree.

Example: Example: Leaf=1, Operation = AND: Copy leaf node and children of internal nodeLeaf=1, Operation = AND: Copy leaf node and children of internal node
Leaf=0, Operation = AND: Only copy leaf nodeLeaf=0, Operation = AND: Only copy leaf node

The output octree may not be compact, 
Internal nodes may have children that are all full or all empty
Post-processing can easily compact an octree into a unique form
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Octrees: Neighbor Finding (1)Octrees: Neighbor Finding (1)

Several applications / algorithms require to find the 
neighbor of a given octree node in a given direction

Space traversal along a given path (ray)
Averaging of neighboring nodes to compute normals for rendering

Problem
Find that octree node that borders the original in direction D

Basic Algorithm
Ascend from the node to a common ancestor with the target node

May require ascent all the way to the root nodeMay require ascent all the way to the root node

Descend from that common ancestor to the target node
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Octrees: Neighbor Finding (2)Octrees: Neighbor Finding (2)

Finding the Common 
Ancestor 

From the original node, find 
the first ancestor node that 
has not been reached from 
direction D

Example: 
Find a node's Southern neighbor.Find a node's Southern neighbor.
Climb the tree on an "upward path".Climb the tree on an "upward path".
For every step upwards, check For every step upwards, check 
whether the path is in the Southern whether the path is in the Southern 
half of the node.half of the node.
If not, the common ancestor is found. If not, the common ancestor is found. 
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Octrees: Neighbor Finding (3)Octrees: Neighbor Finding (3)
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Octrees: PropertiesOctrees: Properties

Octrees approximate the actual shape of the solid
Like spatial enumeration and cell-based descriptions, 
octrees are always valid
A compacted octree is a unique and unambiguous 
description of the solid
The number of nodes in the octree are roughly 
proportional to the the solid's surface area. Although 
still quite large, octrees are more compact than voxel or 
cell representations.
Operations on octrees are closed for Boolean ops
Octree algorithms are fairly simple as they rely on tree 
traversal.
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Binary-Space Partitioning Trees Binary-Space Partitioning Trees 
(BSP Trees)(BSP Trees)

Generalization of Octrees
Octrees partition space using orthogonal planes
BSP trees use arbitrary planes to subdivide space

Binary Space Partitioning (BSP)
Oriented planes divide space into IN cells and OUT cells
IN and OUT portions can be subdivided further by more planes
To account for limited numerical precision, planes have "thickness"

Thickness is a numerical tolerance. Points within the thickness are ON the plane.Thickness is a numerical tolerance. Points within the thickness are ON the plane.

BSP Trees
Each plane is a node in a tree
IN and OUT cells are the children of a node
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BSP Trees: ExampleBSP Trees: Example
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BSP Trees: Point ClassificationBSP Trees: Point Classification

Determine whether a point is inside or outside the solid
The point is passed down the BSP tree, starting at the root
At every node, the point is tested against the associated plane
The point is then recursively descending the tree to a leave
If the point is classified as ON, it is passed to both nodes
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BSP Trees: PropertiesBSP Trees: Properties

Dimension independent
Concept of dividing (hyper)planes extends into higher dimensions

Linear approximation of actual solid shape
BSP description are not always valid

Can describe objects that are not closed (open half-spaces !)
Non-unique. Several BSP trees for the same solid.
BSP trees tend to be more compact than octrees.
Algorithms for closed Boolean operations on BSP trees
BSP tree algorithms are more complicated than octree 
algorithms

Often involve splitting objects on dividing planes
Require attention to numerical precision 
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Space Subdivision: ApplicationsSpace Subdivision: Applications

Space subdivision representations and algorithms were 
also developed for other application domains

Hidden Surface Removal
Subdivide space along polygons
Space subdivision allows to traverse objects front-to-back or 
back-to-front

Collision Detection
Animations and simulations require detection of collisions between 
objects
Dynamically updated spacial partitioning allows to quickly 
determine candidates for potential object collisions
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Constructive Solid Geometry (CSG)Constructive Solid Geometry (CSG)
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Constructive Solid Geometry (CSG)Constructive Solid Geometry (CSG)

CSG builds solid models by hierarchically combining 
primitive solids
Most basic primitives are half-spaces, e.g.

Planes: ax + by + cd + e < 0
Cylinders: x2 + b2 - r2 < 0
Spheres: x2 + y2 + z2 - r2 < 0

Half-spaces and resulting solids are combined using 
Boolean set operations

Union A + B
Intersection A * B
Difference A - B  =  A * (-B)
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CSG TreeCSG Tree

The combination of half-spaces using the binary 
Boolean operators creates a binary tree, the CSG tree
The tree mirrors the Boolean expression describing the 
CSG object

CSG expressions can be manipulated to create 
equivalent expression of the same object

Boolean algebra, e.g. distribution of terms or De Morgan's law
In particular, CSG expressions can be brought into conjunctive or 
disjunctive normal forms
Then, the CSG tree has only 2 levels, e.g. sum of intersections
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CSG: ExampleCSG: Example

-

A
B

C

(A+B) - C

+

The union of the blocks 
forms the bracket

Subtracting the cylinder 
creates the hole CSG Tree
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Rendering CSG ObjectsRendering CSG Objects

Boundary Evaluation
Calculate the boundary of the CSG solid
Render the boundary using standard (polygon) rendering 
techniques

Requires intersection of faces, edges and points
Intersection calculations can be complicated when allowing 
higher-order halfspaces like cylinders or tori
Can result in hairy case analyses, in particular in the presence of 
numerical errors

Ray-Casting
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Ray-Casting CSG Objects (1)Ray-Casting CSG Objects (1)

Ray Casting
Cast rays from the eye into the scene
Determine first intersection of rays with objects to determine visible 
object
Approximation as the object is sampled by the rays

Ray-casting CSG objects
Much simpler than boundary evaluation as it only requires 
intersection of lines with half-spaces
Each half-space segments the line into IN and OUT segments
These segments are combined using the Boolean expression 
describing the CSG object
Requires computation of all intersections of ray and object

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 10

Ray-Casting CSG ObjectsRay-Casting CSG Objects  (2) (2)
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Ray-Casting CSG Objects (3)Ray-Casting CSG Objects (3)

The IN segments can also be used to approximate 
volume/mass and center of gravity of the CSG object

Generalized CSG primitives
Ray-casting requires only a small set of operations to be supported 
for a primitive, namely intersection with a ray
Therefore, other primitive types than only half-spaces can easily be 
integrated into CSG
For instance, polygonal models can be easily incorporated in a 
CSG modeler. This bridges the gap between CSG and b-reps.
Another example is the integration of sweeping primitives with CSG
(Sweeping, moves a shape along a trajectory cover, i.e. sweeping 
out, a part of space)
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Ray TracingRay Tracing
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Ray Tracing (1)Ray Tracing (1)

Ray Tracing follows rays through the scene

Typically, rays are traced from the eye into the scene
As rays hit objects new rays are generated

Shadow rays to determine whether the object is lit
If exposed to a light source, the lighting model is computedIf exposed to a light source, the lighting model is computed

Reflected ray to create inter-object reflections
Refracted ray if the object is transparent

The pixel color is computed as the combination of 
several contributions 

Light directly received from the light source(s) and 
Light received from other objects
Ambient light
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Ray Tracing (2)Ray Tracing (2)

Screen

A

B

C

Viewpoint

Light-
source
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Forward vs. Backward Ray TracingForward vs. Backward Ray Tracing

Forward Ray Tracing
Rays are starting at the light source(s) and traced through the 
scene until they hit the eye
Approximates how light propates in the physical world
Chances of finding a ray from a light source that actually hits the 
eye are very small.
Therefore, forward ray tracing is very inefficient

Backward Ray Tracing
Inverts the forward ray tracing process by tracing rays from the eye 
back to the light source.
Only uses rays that are in fact hitting the eye ... more efficient
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Global IlluminationGlobal Illumination

Simplistic rendering algorithms, e.g. raster pipeline 
(OpenGL) only account for direct interactions between 
light and objects

Secondary effects are crudely approximated using ambient light

Global Illumination describes a class of methods that 
try to capture the overall distribution of light (energy) in 
a scene

Models higher-order effects, e.g. self-shadowing, inter-object 
reflections or light attenuation
For reflective surfaces, ray-tracing is adequate (ray optics)
Radiosity algorithms capture the interaction of diffuse reflectors 
(global energy balance) 
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Ray Tracing: StepsRay Tracing: Steps

We will now look more carefully at the steps involved in 
the ray-tracing process

Generate rays
Find ray-object intersections and choose the closest one
Cast rays towards all light sources and compute lighting model if lit
Generate secondary rays and recursively trace them
Combine the contribution of all rays at a surface point, shadow rays 
and secondary rays
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Ray GenerationRay Generation

At least one ray has to be 
generated for every pixel

Several rays per pixel can be 
used to implement 
anti-aliasing
Rays are determined by the 
view geometry, i.e. position 
of the eye and the screen 
with respect to the scene

Ray is described as point 
and direction

t>0 for numerical precision
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Y

Eye

Screen
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Ray-Object IntersectionRay-Object Intersection

Once rays enter the scene, their intersections with the 
objects in the scene must be computed

Each primitive type needs special intersection routine
(Suggests object-oriented programming approach !)
Simple for polyhedra or spheres
More complicated for higher-order primitives
 

Typically, only the nearest intersection with the object 
is needed

CSG operations require all intersections to define the IN and OUT 
segments
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Ray-Object Intersection: Polygon (1)Ray-Object Intersection: Polygon (1)

We assume that polygons are planar
First, compute ray-plane intersection
Then, determine whether intersection is inside the polygon

Plane:

Ray-Plane Intersection:

Ax By Cz D B C
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B
C
D
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z
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⋅ = =
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2

N P N P

N R R
N R
N R
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⋅
⋅orig i dir i
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Ray-Object Intersection: Polygon (2)Ray-Object Intersection: Polygon (2)

Ray intersects the plane iff:

Intersection point:

Now the intersection point has to be tested against the 
polygon (point in polygon test):

Simplify this test by projecting the polygon along one of the axes
Pick axis by finding the largest coordinate in the normal vector N
Project by "dropping" that coordinate from all polygon vertices and 
the intersection point. Call the remaining axes U and V.
Example: If N = (1, 4, 2) then project onto XZ-plane, i.e. drop Y.

X axis becomes U axis and Y axis becomes V axis.X axis becomes U axis and Y axis becomes V axis.

This process does not change the polygon topology or the location 
of the intersection point with respect to the polygon !

ti > 0

P R Ri orig i dirt= + ⋅
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Ray-Object Intersection: Polygon (3)Ray-Object Intersection: Polygon (3)

Now we have to solve 
the 2D point in polygon 
problem

For general polygons, the 
interior can be defined in 
several ways.

We will use the Jordan curve 
theorem:
A point is inside the polygon, 
if an infinite ray from the 
point intersects an odd 
number of polygon edges.
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Ray-Object Intersection: Polygon (4)Ray-Object Intersection: Polygon (4)

Practical implementation:
Translate the projected intersection point falls onto the origin
Pick one positive axis as the ray to be tested against the polgon
Count number of intersections of that axis with the polygon edges

Attention: Each vertex must belong to only one edge to avoid double-counting !Attention: Each vertex must belong to only one edge to avoid double-counting !

True intersection calculation is only necessary if the two vertices 
are in diagonally opposed quadrants.
Other cases can be handled trivially.

U

V

Ray

Intersection Point
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Ray-Object Intersections: Sphere (1)Ray-Object Intersections: Sphere (1)

Spheres are frequently used in ray-traced images
"Spheres floating over checker boards"
Ray-Sphere intersection is very simple to compute

The sphere is described by center SC and radius SR

 

Substituting the ray coordinates for X, Y and Z:

This simplifies to a quadratic expression:

S X X Y Y Z ZR C C C
2 2 2 2= − + − + −b g b g b g

S X t X X Y t Y Y Z t Z ZR orig dir C orig dir C orig dir C
2 2 2 2

= + ⋅ − + + ⋅ − + + ⋅ −d i d i d i

0 2= ⋅ + ⋅ +A t B t C
A X Y Z

B X X X Y Y Y Z Z X

C X X Y Y Z Z S

dir dir dir

dir orig C dir orig C dir orig C

orig C orig C orig C R
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2 2 2

2 2 2 2
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2

     if ray direction is normalizedb g
d i d i d ie j

d i d i d i
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Ray-Object Intersections: Sphere (2)Ray-Object Intersections: Sphere (2)

Solving the quadratic expression for A=1:

No intersection if ti1 and ti2 are complex or both ti less than zero
Ray starts inside the sphere if only one solution is real and positive
For two intersections: nearest intersection for smaller ti

The normal at the intersection point is 

t
B B C

t
B B C

i i1

2

2

24
2

4
2

= − − − = − + −
  and  

N
X X S
Y Y S
Z Z S
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Ray-Object Intersections: CylinderRay-Object Intersections: Cylinder

Cylinders are frequently used to describe pipes, 
connections etc. or to create holes in a CSG object

We will consider the intersection of an arbitrary ray with 
an axis-aligned infinite cylinder

The cylinder is described by its radius:

Substituting the ray coordinates gives:

This results in a quadratic equation:

C X X Y YR C C
2 2 2= − + −b g b g

C X t X X Y t Y YR orig dir C orig dir C
2 2 2

= + ⋅ − + + ⋅ −d i d i
0 22 2 2 2 2 2= ⋅ − + ⋅ − + − + − + − −t X Y t X X X Y Y Y X X Y Y Cdir dir dir orig C dir orig C orig C orig C Rc h d i d i d i d i
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Ray-Object Intersections: Ray-Object Intersections: 
Numerical Precision (1)Numerical Precision (1)

Intersection calculations are done using floating point 
operations, giving rise to numerical problems

The computed intersection may actually fall inside the object
Secondary rays will then be intersecting the object again
This effect is known as self-shadowing (a.k.a. surface acne)

Primary ray

Secondary
or shadow ray

Surface

Computed
intersection
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Ray-Object Intersections: Ray-Object Intersections: 
Numerical Precision (2)Numerical Precision (2)

Possible solutions
Exclude the object from intersection calculations for secondary rays
Introduce a numerical tolerance for parameter t indicating that the 
ray starts on the surface
Move the intersection point along the ray to be on the proper side 
of the surface

Primary ray

Secondary
or shadow ray

Surface

Computed
intersection
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Ray-Object Intersections: CoordinatesRay-Object Intersections: Coordinates

All objects and rays are specfied in world coordinates
Objects are transformed from local coordinates into world 
coordinates: modeling transformation
Pixels must be transformed from screen space into world 
coordinates: inverse viewport mapping

Intersection of ray and object is computed by 
transforming the ray into the local object coordinates

Simply apply the inverse of the modeling transformation to the ray
Intuition: Transform ray and object back into the local coordinates  
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Ray-Object Intersection: Nearest ObjectRay-Object Intersection: Nearest Object

To determine the visible object from a given point, the 
closest object intersect by the ray must be found

For all ray-object intersections, find the one that has 
the smallest ray parameter t

For this intersection point, compute the surface color 
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Light/Shadow RaysLight/Shadow Rays

From every ray-object intersection point, rays are 
traced to the light source(s)

Light rays are tested against the scene to determine whether the 
intersection point can see the light source, i.e. whether it is lit

Other information available at the intersection point:
Surface normal
Ray direction
Material properties

This are all the parameters needed to compute a 
lighting model at the intersection point
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Secondary RaysSecondary Rays

At every intersection point secondary rays are 
generated according to ray optics

Reflected rays to model surface mirroring
Refracted rays for translucent  materials

Recursive tracing of rays creates a ray tree
Eye

O1

O2

O3

O4

L1

L2 E

R1

T1

S1S2

R2

T2

S3
S4

S5S6

R3

T3

O3O2

E

R1 T1

S1

S2

R2 T2

S3

S4

S5

S6

R3 T3

O1
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Combining Ray IntensitiesCombining Ray Intensities

The color/intensity 
reflected from a surface 
point depends on two 
components

Light directly received from 
light sources (light rays)
Light received indirectly from 
other objects 
(reflected/refracted rays)

The components are 
superimposed (summed 
up) to compute the color 
of the incident ray

Incident ray

Light ray 1

Light ray 2

Reflected ray

Refracted ray

Surface

I I I I
k

Ray Reflected Refracted Light
k= + + ∑
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Ray Tracing Optimizations (1)Ray Tracing Optimizations (1)

Many ray tracers spend 80% of the time performing 
intersection calculations. 
Optimizations try to reduce the number of intersection 
calculations to speed up ray tracing

Hierarchical object description
Rays are first tested against higher hierarchy levels
Intersections with lower hierarchy levels are only computed if the 
ray intersects the higher hierarchy
Frequently, bounding boxes (or other bounding volumes) are 
computed for objects. Rays are first tested against the bounding 
volumes.
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Ray Tracing Optimizations (2)Ray Tracing Optimizations (2)

Space partitioning
To avoid testing of objects entirely, space is partitioned 
If the ray does not enter a cell, none of the objects in this cell are 
tested against the ray

Popular partitioning schemes include octrees and BSP trees

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 10

Ray Tracing: Anti-aliasingRay Tracing: Anti-aliasing

Aliasing is introduced by several sources
Geometry (spatial aliasing)
Object motion (temporal aliasing)
Material properties (light aliasing) --> radiosity

Geometric aliasing can be alleviated by supersampling
Not a complete cure but reduces the artifacts
Implementation is simple, shoot several rays at every pixel and 
filter the resulting sub-pixel values

Adaptive supersampling adds samples only in pixel with high color 
gradient
Stochastic supersampling uses randomly distributed sub-pixel. 
Introduces noise instead of aliasing.



© Bengt-Olaf Schneider, 1999Computer Graphics – Week 10

SummarySummary

Solid modeling
Definition of what makes an object a solid
Different techniques to describe a solid object
Properties of each representation

Ray Tracing
Global illumination rendering technique
Simulates (backwards) the propagation of light rays 
Works with surfaces and solids
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Further StudyFurther Study

Solid Modeling
Christoph M. Hoffmann, Geometric & Solid Modeling,
Morgan Kaufmann Publishers, 1989
Martti Mäntylä, An Introduction to Solid Modeling,
Computer Science Press, 1988

Ray Tracing
Andrew Glassner (editor), An Introduction to Ray Tracing,
Academic Press, 1989.
Andrew Glassner, Principals of Digital Image Synthesis,
Morgan Kaufmann Publishers, 1995 



© Bengt-Olaf Schneider, 1999Computer Graphics – Week 10

HomeworkHomework

Study textbook: solid modeling (chapter 12) and ray 
tracing (chapter 15.10 and 16.12)

Prepare for next week by reading about radiosity 
(chapter 16.13)

Start working on final assignment
To be handed out on Friday
Start early !!!


