Computer Graphics - Week 7

cH- D AP

Bengt-Olaf Schneider
IBM T.J. Watson Research Center

Questions about Last Week ?

Computer Graphics — Week 7 . - b J . s. ‘ i © Bengt-Olaf Schneider, 1999

Comments about the Assignment

» Specific comments
® The clip volume does not need to be closed

® Rotate the polygon around the origin, not the center of the clip
volume or the center of the polygon

® Polygons are 2-sided, i.e. they are visible from both sides
® Rasterization is done using integer arithmetic
@ If you encounter coincident edges, they should not appear

»\What are star-shaped polygons ?

® Star-shaped polygons have one
interior star-point fromwhere all edges are
visible

® In the assignment all polygons are
star-shaped with the first vertex a star point.

@ This is helpful for triangulation.

Computer Graphics — Week 7 . o J o s. ‘ i © Bengt-Olaf Schneider, 1999

Comments about the Assignment (cont'd)

»'s' command
® Displays rasterized clipped polygon on the screen rectangle
® Rasterized polygon interpolate the colors based on the colors
specified for the input polygon after clipping

® Make sure shading results for interior pixels do not depend on
clipping or rotation

»'I' command
@ Displays outline of the clipped polygon
using OpenGL lines

® Don't rasterize the lines onto the
screen rectangle

Computer Graphics — Week 7 . - b J . s. 0 i © Bengt-Olaf Schneider, 1999

Overview of Week 7

» Fragment Processing and Pixel Manipulation Methods
® Texture Mapping
® Alpha Blending
® Z-Buffering

» Hidden-Surface Removal Algorithms
® Z-Buffering
® Scanline algorithm
® Depth-sorting algorithm

Computer Graphics — Week 7 . - o O o A. ‘ i © Bengt-Olaf Schneider, 1999

Fragment Processing (a.k.a. pixel
processing) in the Rendering Pipeline

» Fragment processing follows the scan conversion
® Processes the pixels generated by the scan conversion process
® Forms the interface between scan conversion and the pixel buffers

Modeling Viewing Lighting Clipping Perspective
Transforms Transforms Calculations + Viewport

Setu o Pixel Frame Screen

Computer Graphics — Week 7 . - b ‘ . A. 0 i © Bengt-Olaf Schneider, 1999

Fragment Processing Concepts

» A fragment is are pixel data generated during scan
conversion
® Pixel coordinates
® Associated attributes, e.g. color, depth, texture, etc.

» Fragment Processing manipulates the fragment data
® Look-up operations, e.g. texturing
® Modification of pixel value based on global parameters, e.g.
fogging
® Test of fragment data against frame buffer data, depth test
® Pixel arithmetic, e.g. alpha blending
® Anti-aliasing and dithering

»We will call pixel the data stored in the frame buffer

® To be distinguished,fr
Computer Graphics — Week 7g d. - ﬁ‘w%n aJ i © Bengt-Olaf Schneider, 1999

Fragment Processing Pipeline (1)

» OpenGL fragment processing pipeline
® Texturing, Fogging and Anti-aliasing
® Pixel Tests
® Frame Buffer Operations

1 1
Texel Texture Fogging Anti-aliasing
Generation Application

I I
Pixel Scissor Alpha Test Stencil Test DepthTest
Ownership Test

Blending Logic Ops

Computer Graphics — Week 7 . - o ‘ b A. 0 i © Bengt-Olaf Schneider, 1999

Fragment Processing Pipeline (2)

» Texturing (... more in a few minutes)
® Apply image information to a polygon
® "Paste an image onto the polygon”

» Fogging
® See lecture on lighting and shading models

» Anti-aliasing

® Eliminate jaggies and broken-up polygons by accounting for partial
pixel coverage by primitives

Computer Graphics — Week 7 . ' o J o s. 0 i © Bengt-Olaf Schneider, 1999

Fragment Processing Pipeline (3)

» Pixel Tests

® Test various conditions about the fragment and the current frame
buffer content

® Determines whether the fragment is processed any further or
discarded

» Frame Buffer Operations

® Read - Modify - Write processing of frame buffer content
® Combines fragment with current frame buffer contents

Computer Graphics — Week 7 . - b J . s. 0 i © Bengt-Olaf Schneider, 1999

Fragment Processing Pipeline (4)

»We will not go into all details of these operations
® See OpenGL programming guide for more details

»We will discuss
® Texture Mapping
® Blending
® Z-Buffer

Computer Graphics — Week 7 . ' o J o s. 0 i © Bengt-Olaf Schneider, 1999

Texture Mapping

Computer Graphics — Week 7 . - b J . s. 0 i © Bengt-Olaf Schneider, 1999

Texture Mapping: Example

» Texture mapping:
® Pasting of an image to the interior of an object
® If necessary, repeat the image to fill the entire interior

® Texture coordinates defined across the object, define where the
image pixels appear in the object.

Computer Graphics — Week 7 . - o ’ o A. ‘ i © Bengt-Olaf Schneider, 1999

Texture Mapping Concepts

» Texture Map is a 1/2/3-dimensional array of color values
® 2D texture maps are images
@ 3D texture maps are volume data

» Texels are the individual pixels in the texture map

® Texels can be represented in a variety of formats,
e.g. 1/4/8 bit color index, 16/24/32 bit true color

» Texture Coordinates are indices (addresses) into the
texture map
® Interpolated across primitives
@ Often denoted (u,v) coordinates

Computer Graphics — Week 7 . - b 0 . A. 0 i © Bengt-Olaf Schneider, 1999

Texture Mapping Principle

» Texture coordinates are computed/assigned at vertices
and interpolated across the triangle

» The texture coordinates are used to look up the texel
» Texel value is assigned to associated pixel

Computer Graphics — Week 7 . - o O i A. ‘ i © Bengt-Olaf Schneider, 1999

Texture Mapping: Sampling

» Point Sampling
® If only the computed texture coordinates at the pixel are used

® Will yield exactly one texel for every pixel
(but generally not vice versa)

» Area Sampling
® Determine all texels affecting the pixel

® For instance map the 4 corners of the pixel and interpolate within
the texture

Computer Graphics — Week 7 . - o ‘ b A. 0 i © Bengt-Olaf Schneider, 1999

Texture Mapping:
Forward vs Inverse Mapping

» Texture mapping can be defined in 2 directions

» Forward mapping maps atexel into screen space

® Given a texture coordinate (u,v), determine the corresponding pixel
coordinate (x,y)

® May leave holes in the pixel image, i.e. there may be pixels that no
texel was mapped to

® Often used in image processing

> Inverse mapping maps pixels into texture space

® Given a pixel coordinate (x,y), determine the corresponding texture
coordinate (u,v)

® May miss texels, i.e. there may be texels that no pixel maps to
® Frequently used during texture mapping

Computer Graphics — Week 7 . ' o J o s. 0 i © Bengt-Olaf Schneider, 1999

Texture Filtering (1)

» Both directions of

mapping may create -
problems, if there is no Pixel

1:1 mapping between 1

pixels and texels |
® Will create artifacts Texture Map

® Texture breaks up if texel ' ' '
are missed (Minification)

® Texture appears blocky if
several pixels map into the b
same texel (Magnification) —————p»

® Mixed cases are possible if 0 _ |
magnified along one axis Texture Map

and minified along the other [—
axis

Computer Graphics — Week 7 . - b J . s. ‘ i © Bengt-Olaf Schneider, 1999

Pi>‘(el

Texture Filtering (2)

» The fundamental problem is a sampling problem
® For minification the texture is undersampled

® The spatial sampling frequency is smaller than the spatial
frequency of the texture map (less than one sample per texel)

® For magnification the texture is oversampled

® The spatial sampling frequency is higher than the spatial frequency
of the texture map (more than one sample per texel)

» Proper treatment of such problem requires filtering
® Without going into too many details ...

Computer Graphics — Week 7 . ' o J o s. 0 i © Bengt-Olaf Schneider, 1999

Texture Filtering (3)

» Magnification
® Texture map can be considered sampling of a continuous function
® Texture mapping resamples (reconstructs) that function
® Neighboring texels must be taken into account

® Consider a neighborhood around the sample point
® Compute a weighted average

[Texture Map |
I

Computer Graphics — Week 7 . - b J . s. 0 i © Bengt-Olaf Schneider, 1999

Texture Filtering (4)

» Minification
® All texels contributing to the pixel must be taken into account
® Integrate over the area a pixel covers in the texture map
® This will take into account all texels contributing to the pixel
® Fairly expensive to compute
® There are several approximations to deal with this problem:

» Mip-maps
® Down-sampled copies of the texture

» Summed-area tables

® Precomputed integrals over axis-aligned
rectangular areas in the texture

Computer Graphics — Week 7 . - o O o A. ‘ i © Bengt-Olaf Schneider, 1999

Texture Filtering (5): Mip-Mapping (i)

» Hierarchy of texture

Images

® Original texture (base
texture) is down-sampled
repeatedly

® Average 2x2 texel blocks into
a texel of the next higher
texture level

/ 7
yF <~ 7 7 7 7

» Select mip-map level
based on minification
® Scale factor r (to be defined)
® Level-of-Detail (LOD)
| =log,(r)

Computer Graphics — Week 7 . - b ‘ . A. 0 i © Bengt-Olaf Schneider, 1999

Texture Filtering (5): Mip-Mapping (ii)

» Selection of mip-map level

® Ideally, unit step in pixel space result in a unit step in texture space
® Look at derivatives of texture coordinates in pixel space

® Use biggest step size to compute scale factor r

® This expression is often simplified with slight loss of quality:

Computer Graphics — Week 7 o - o O o A. ‘ o

© Bengt-Olaf Schneider, 1999

Texture Mapping (6)

» Point Sampling
® Look up the nearest texel to
the texture coordinate (u,v)
® Only one texel affects the
pixel at (x,y)
® 1 Memory Access

» Bilinear Filtering

® Use a 2x2 texel
neighborhood around (u,v) to
compute the final texture
value

® 4 Memory Accesses

8 Multiplications
5 Additions

Computer Graphics — Week 7 . - o ‘ o A. 0 o

© Bengt-Olaf Schneider, 1999

Texture Mapping (7)

» Linear Filtering
® Interpolated linearly between
two mip-map levels
® 2 Memory Accesses
2 Multiplications
1 Addition

» Trilinear Filtering

® Bilinear interpolation within
two adjacent mip-map levels

® Linear interpolation between
those two values

® 8 Memory Accesses
18 Multiplications
16 Additions

Computer Graphics — Week 7 o - o O

Texture Mapping (8)

» Different filtering methods have different complexity
® Trilinear interpolation is most expensive, point sampling cheapest
® Quality of filtering increases with required computation

Computer Graphics — Week 7 o - ° ‘ ° A. 0 . © Bengt-Olaf Schneider, 1999

Texture Filtering (4)

» Minification
® All texels contributing to the pixel must be taken into account
® Integrate over the area a pixel covers in the texture map
® This will take into account all texels contributing to the pixel
® Fairly expensive to compute
® There are several approximations to deal with this problem:

» Mip-maps
® Down-sampled copies of the texture

» Summed-area tables

® Precomputed integrals over axis-aligned
rectangular areas in the texture

Computer Graphics — Week 7 . - o O i A. ‘ i © Bengt-Olaf Schneider, 1999

Texture Filtering (9): Summed Area Table

» Precomputed table that
stores the sum of all
texels between the origin S(U,LV,) S(UpV,)
and a given texture
coordinate
® Precomputation is costly
® Supports rectangular regions

instead of square regions in
mip-mapping

» For a given rectangular,
axis-aligned area, the
sum of all texels inside
the rectangle is:

S(u,v,) S(u,v,

Computer Graphics — Week 7 . - o ‘ b A. 0 i © Bengt-Olaf Schneider, 1999

Assigning Texture Coordinates (1)

» Basic problem
® Square texture images are applied to arbitrarily-shaped objects
® Find a good way to map to (i.e. wrap around) texture to object

» Application assigns texture coordinates at the vertices
® Complete freedom over how texture is applied to an object
® Texture can be rotated, shifted and scaled

® To avoid distortion of the texture, ensure that object's aspect ration
matches the aspect ratio of the selected texture range

Computer Graphics — Week 7 . ' o J o s. 0 i © Bengt-Olaf Schneider, 1999

Assigning Texture Coordinates (2)

» Typically, texture coordinates fall within the range [0,1].

»\What happens if a texture coordinate falls outside of
that range ?
® Clamp texture coordinate: u'=max (min (u, 1.0), 0.0)
® Repeat the texture: u'=umod 1.0

Computer Graphics — Week 7 © Bengt-Olaf Schneider, 1999

Assigning Texture Coordinates (3)

» Textures can be applied "automatically”

® Compute texture coordinates based on the distance of object point
from a plane ax+by+cz+d

® This allows to project the texture onto the object similar to a slide
projector
®Forinstance: |\ _ o oo =z

® For "cylindrical" objects, the texture can be wrapped around the
object, by using the angle around an axis to address the texture

® For instance, for an object centered around the z-axis
(use sign-aware atan function !):

U= atan(x/ y)
2p

Computer Graphics — Week 7 . ' o J o s. 0 i © Bengt-Olaf Schneider, 1999

and v=1z2

OpenGL: Texture Mapping (1)

» glTexIimage[12]D()
® Specifies the texture image in various formats

® Takes mipmap level, width, height, image data and various format
parameters

® Images must have width and height being powers of 2

» glTexParameter*()

® Specifies filtering methods for magnification and minification
m Can choose from point sampling + linear, bilinear and trilinear filters

® Repeat vs. Clamping of texture coordinates
m Can be set differently for u and v coordinates

»glTexCoord*()
® Specifies a texture coordinate, similar to glVertex*() or giColor*()

Computer Graphics — Week 7 . - b J . s. ‘ i © Bengt-Olaf Schneider, 1999

OpenGL: Texture Mapping (2)

» Texture Objects allow to define and use multiple
textures efficiently

® A texture objects store the texture image and parameters defined
for that texture, e.g. repeat, border and filtering modes

»glGenTextures()
® Generates texture names (integer numbers)

»glBindTexture()
® Creates texture object of specified type with given name (number)

® Makes the bound texture the active texture, i.e. the one used for
texture mapping, until a new texture is bound

Computer Graphics — Week 7 . ' o J o s. 0 i © Bengt-Olaf Schneider, 1999

OpenGL: Texture Mapping (3)

» Automatic texture generation
® Uses a plane specified by four parameters

® Plane equation is either evaluate for object coordinates
(GL_OBJECT_LINEAR) or eye coordinates (GL_EYE_LINEAR)

® Result of that evaluation determines texture coordinate

® OpenGL also supports generation of texture coordinates for
environment mapping, i.e. reflection on an ideal sphere.

Computer Graphics — Week 7 . - b J . s. ‘ i © Bengt-Olaf Schneider, 1999

Alpha-Blending

Computer Graphics — Week 7 . ' o J o s. 0 i © Bengt-Olaf Schneider, 1999

Alpha-Blending: Basics

» Basic extension of RGB color model

» A fourth component is added
® Commonly referred to as Alpha or A: RGBA
® So far, the pixel color was fully replaced by the fragment color
® Alpha is used to blend a fragment's color with the stored pixel color
® This allows to create a mix of the pixel and the fragment color
® A=1 means fully opaque, A=0 means fully transparent

» Alph-blending is used for various purposes
® Transparency
® Anti-aliasing
® Digital Compositing

Computer Graphics — Week 7 . - b J . s. 0 i © Bengt-Olaf Schneider, 1999

Alpha-Blending: Transparency

» Both fragment and frame buffer pixel may have an
associated alpha value

® There are numerous possibilities to combine fragment and pixel
color, taking into account the 2 alpha values (see e.g. OpenGL
programming manual)

® One of the most useful applications of alpha blending is to model

transparent objects:
P J C, =a>C, +(1- a)>C,

® When rendering scenes with transparent and opaque objects:
Render all opaque objects first, then render transparent objects
without writing the z-buffer

Computer Graphics — Week 7 . ' o J o s. 0 i © Bengt-Olaf Schneider, 1999

Double-Buffering

Computer Graphics — Week 7 . - b J . s. ‘ i © Bengt-Olaf Schneider, 1999

Double-Buffering

» If all rendering occurs into the same buffer that is used
for screen refresh, the image construction process is
apparent
® No illusion of a standing image
® Flickering as image is erased and updated
® Memory contention between screen fresh and image generation

» Double-buffering provides two buffers
® Front-buffer used for screen refresh, contains previous frame
® Back-buffer used to construct the new image, i.e. the current frame

® After the new image is finished, front and back buffers are
swapped
® To reduce flicker, buffer swap is synchronized with vertical retrace

Computer Graphics — Week 7 . ' o J o s. 0 i © Bengt-Olaf Schneider, 1999

Hidden Surface Removal

Computer Graphics — Week 7 . - b J . s. 0 i © Bengt-Olaf Schneider, 1999

Hidden Surface Removal

» Determine which objects are visible from a given
viewpoint, i.e. which objects are hiding other objects

» This is a complex problem of at least O(n2) complexity
(test every object against every other object)

® Complexity increases if there is no clear A-hides-B relationship
between objects

»We will look at different hidden-surface removal
algorithms (a.k.a. visibility algorithms)
® Z-Buffer: Image space HSR algorithm
® Scan-line Algorithms: Image space HSR algorithm
® Depth-sorting Algorithm: Object space HSR algorithm

Computer Graphics — Week 7 . ' o J o s. 0 i © Bengt-Olaf Schneider, 1999

Z-Buffering: Basic Algorithm

»Simple algorithm, that /7 O ear 2-buffer
. Z- DU
trades computational FOR (al | pixels px)
simplicity for memory zb[px.x][px.y] = infinity;
requirements :
® Allocate for every pixel a /1 Scan conversion w

z-buffer
depth value FOR (each pol ygon p)
® The depth value stores the FOR (each fragment f in p)
z-value of the front-most { x=Ff.x; y=f.y;
(visible) object at that pixel IF (f.z < zbuffer[x][y])
® For new fragment, compare { zb[x][y] =f.z ;
fragment's z-value with fb[x][y] = f.color ;
pixel's z-value }
® If fragment is closer to the }
viewer, replace pixel z and
color

Computer Graphics — Week 7 . - b J . s. ‘ i © Bengt-Olaf Schneider, 1999

Z-Buffering: Properties

» Requires significant » Simple to implement
amounts of memory ® Many hardware and software
® W x H x nbytes, e.g. 1280 x implementation

1024 x 32 bit = 5 MBytes ® Fast execution
® However, memory becomes
cheaper rapidly » Universal
® Can be used with any

»Image space algorithm primitive type
® No unnecessary ® For instance, polygons,

computations quadrics, splines, depthmaps

® Subject to aliasing

Computer Graphics — Week 7 . ' o J o s. 0 i © Bengt-Olaf Schneider, 1999

Z-Buffering: Artifacts

» Z-Buffer errors » Depth Compression
® Colinear edges and coplanar ® Perspective projection
faces may generate slightly distributes depth values
different depth values if not non-uniformly
supported by the same ® Depth values are spaced
vertices more closely near the eye,
® Frequent changes in visibility I.e. better resolution in the
creates typical z-buffer errors near field
® Two different, distant points
» Aliasing may map to the same
@ Only 1 object can be visible z-value
in each pixel

® No blending amongst several
objects sharing a pixel

Computer Graphics — Week 7 . - b J . s. ‘ i © Bengt-Olaf Schneider, 1999

Other Visibility Algorithms

» Scanline Algorithm
» Depth-sorting Algorithm

»We will look at some more HSR algorithms when we
talk about spatial data structures
® BSP trees
® Octrees

Computer Graphics — Week 7 . ' o J o s. 0 i © Bengt-Olaf Schneider, 1999

Scanline Algorithm

» Last week we discussed a scanline algorithm to scan
convert polygons

»We will extend this algorithm
® Several polygons per scanline
® Resolve visibility between polygons sharing a scanline

Computer Graphics — Week 7 . - b J . s. 0 i © Bengt-Olaf Schneider, 1999

Scanline Algorithm
for Scan Conversion of Polygons

» Edge Table (ET)
® Bucket sorted list of all edges, with a bucket for each scanline
® Edges are sorted by their minimum (maximum) Y-coordinate

» Active Edge Table (AET)
® List of edges intersecting the current scanline
® Sorted by increasing X-coordinate of the intersection

® For each new scanline Y
m Update X coordinate of intersection for active edges
m nsert edges from the ET into the AET that become active, i.e. for which Yyy=Y
m Remove edges from the AET that are no longer active, i.e. for which Yy =Y
W Resort AET
B Compute starting and ending coordinates for spans defined by the active edges
mFill in pixel spans

Computer Graphics — Week 7 . ' o J o s. 0 i © Bengt-Olaf Schneider, 1999

Scanline Algorithm
Extension to Multiple Polygons (1)

» In addition to the pixels
covered by the individual

polygons, the visible / >\/\/
polgyons must be [F<__ .>B

determined C /)\

[~ :

(9}

o

® If polygons do not penetrate, > / / D
visibility changes only at a V
edges A

® For example, scanline (c)

Computer Graphics — Week 7 . - b J . s. 0 i © Bengt-Olaf Schneider, 1999

Scanline Algorithm
Extension to Multiple Polygons (2)

» Edge table ET is refined: /c\ =
® Bucket sort edges by Yun e / y
® Within each bucket, sort d

[F<_ B
)\
[N

» Active Edge Table AET %
remains:

® Edges are sorted by X of
intersections with current
scanline

edges by slope
® For each edge store X(Ywn),
Yuax, AX/dY, polygon id

v O o
\

Computer Graphics — Week 7 . ' o J o s. 0 i © Bengt-Olaf Schneider, 1999

Scanline Algorithm
Extension to Multiple Polygons (3)

» In addition to ET and AET, we also maintain a polygon
table PT
® Geometric information, e.g. the plane equation
® Attribute information
® In/Out flag, initialized at leftmost pixel

® Geometric and attribute data is read-only during scan conversion
® Only the In/Out flag changes during scan conversion

Computer Graphics — Week 7 . - b J . s. 0 i © Bengt-Olaf Schneider, 1999

Scanline Algorithm
Extension to Multiple Polygons (4)

» Basic Algorithm

® Once the scanline enters a polygon, the respective In/Out flag is
set

® The algorithm keeps track of the number of set flags, e.g. by
maintaining a list of active polygons (APT)

o If at least one flag is set when the scanline enters a polygon,
visibility of the new span is evaluated

® Otherwise, the new span is visible

» Visibility Determination

® Determine starting point of new span
mx: edge-scanline intersection, y: current scanline

® Evaluate plane equation for all active polygons (In/Out flag !)
® The polygon with the closest z value is visible in the current span

Computer Graphics — Week 7 . ' o J o s. 0 i © Bengt-Olaf Schneider, 1999

Scanline Algorithm
Extension to Multiple Polygons (5)
» Example C
@ Scanline a: e [~ =

AET = {AC, AB) g | >

® Scanline b: c / F < L
AET = {AC, AB, DF, DE} /)\
® Scanline c:
AET = {AC, DF, AB, DE} [~ o

m Compute visibility when entering V
right triangle (both triangle active) A

® Scanline d:
AET = {AC, FE, BC, DE}

m Compute visibility when entering
right triangle (both triangles active)

® Scanline e:
AET ={AC, BC, FE, DE}

Computer Graphics — Week 7 . - b J . s. 0 i © Bengt-Olaf Schneider, 1999

o

jo}]

Scanline Algorithm: Special Cases

» Background color

® Pixels without any polgygons
need to be set, too

® Initialize the frame buffer
before scan conversion

® Or place a screen-sized
rectangle behind all objects

» Penetrating polygons

@ If objects penetrate, visibility
changes not only at edges

® Either split objects to avoid

<\
piercing

® Or calculate a "false edge” False Edge
where visibility may change

Computer Graphics — Week 7 o ' o J o 5. 0 o

© Bengt-Olaf Schneider, 1999

Scanline Algorithm
Combining with Z-Buffer

» Keeping track of visibility changes by monitoring active
edges and polygons can be avoided
® Allocated a z-buffer for one scanline

® For all active polygons generate pixel color and pixel depth using
the standard scanline scan-conversion algorithm

® Resolve visibility using z-buffer algorithm

» Advantage

® Only small z-buffer must be allocated
® Allows implementation for very high screen resolution

» Drawback

® Still requires sorting of polygons into edge tables

Computer Graphics — Week 7 . - o J o S. ‘ o

© Bengt-Olaf Schneider, 1999

Depth-Sorting Algorithm:
Painter's Algorithm (1)

» Painter's Algorithm
® Construct the image back-to-front
® Objects closer to the viewer overwrite more distant objects
® No depth comparison required during the scan-conversion stage

® Assumes that objects can be sorted (no overlaps or intersections)
® Special case: 2 1/2 D Rendering

m Objects are thought of as belonging to layers with constant z (or priority)
m Back-to-Front rendering is no simple

Computer Graphics — Week 7 . - o ’ o A. ‘ i © Bengt-Olaf Schneider, 1999

Depth-Sorting Algorithm:
Painter's Algorithm (2a)

» Painter's Algorithm: Example

Computer Graphics — Week 7 . - b 0 . A. 0 i © Bengt-Olaf Schneider, 1999

Depth-Sorting Algorithm:
Painter's Algorithm (2b)

» Painter's Algorithm: Example

Computer Graphics — Week 7 . - o O i A. 0 i © Bengt-Olaf Schneider, 1999

Depth-Sorting Algorithm:
Painter's Algorithm (2c)

» Painter's Algorithm: Example

Computer Graphics — Week 7 . - o ' b A. 0 i © Bengt-Olaf Schneider, 1999

Depth-Sorting Algorithm:
Painter's Algorithm (2d)

» Painter's Algorithm: Example

Computer Graphics — Week 7 . - o O i A. 0 i © Bengt-Olaf Schneider, 1999

Depth-Sorting Algorithm:
Painter's Algorithm (2e)

» Painter's Algorithm: Example

Computer Graphics — Week 7 . - o ‘ b A. 0 i © Bengt-Olaf Schneider, 1999

Depth-Sorting Algorithm:
Painter's Algorithm (2f)

» Painter's Algorithm: Example

Computer Graphics — Week 7 . ' o J o s. 0 i © Bengt-Olaf Schneider, 1999

Depth Sorting Algorithm (1)

» How can we ensure that objects are sorted in depth ?
»\What happens if there is no z-ordering ?

» Algorithm by Newell, Newell and Sancha

® 1. Sort polygons by farthest z coordinate
2. Resolve ambiguities in depth sorting
3. Render polygons back to front

® Without step 2, the algorithm defaults to the painter's algorithm
® We will now look at various criteria to implement step 2
® The ambiguity is resolved as soon as one of the criteria is met

Computer Graphics — Week 7 . - b J . s. 0 i © Bengt-Olaf Schneider, 1999

Depth Sorting Algorithm (2)

» Criterion 1:
Overlapping extents
® Do polygons overlap in X
® Do polygons overlap in Y

Computer Graphics — Week 7 . - o ’ i A. 0 i © Bengt-Olaf Schneider, 1999

Depth Sorting Algorithm (3)

» Criterion 2:
Separating plane

® |s one polygon entirely on
one side of the other
polygon's plane (here: B)

® Draw that polygon first if the
eye is on the same side,
otherwise draw the
separating polygon first
(here: A then B)

Computer Graphics — Week 7 . - o ' b A. 0 i © Bengt-Olaf Schneider, 1999

Depth-Sorting Algorithm (4)

» Criterion 3:
Overlapping projections
® Do the projections of the polygons overlap ?
® If no overlap, the order of drawing is not important.

Computer Graphics — Week 7 . - o O i A. 0 i © Bengt-Olaf Schneider, 1999

Depth-Sorting Algorithm (5)

» \What if these criteria do
not resolve the visibility?

® Objects must be split to
break the cyclical occlusion
realtionship

® Split occurs by the clipping
one polygon against the
plane of the other polygon

® In order to avoid infinite
loops (right example),
polygons are marked as
tested.

o If a marked polygon is
encountered, it is split.

Computer Graphics — Week 7 . - o ' b A. 0 i © Bengt-Olaf Schneider, 1999

Visibility Algorithms: Sorting

» By now it should be clear that visibility determination is
a sorting process

® One of the seminal papers in Computer Graphics classifies different
hidden surface algorithms by when they sort objects

m Sutherland, Sproull, Schumacker, "A Characterization of Ten Hidden-Surface
Algorithms", ACM Computing Surveys, 6(1), March 1974, pp. 1-55.

» Z-Buffer: Sorts in image space
® By Z in every pixel

» Scanline algorithms: Sorts in image space
® First Y, then X, then Z

» Depth-Sort algorithm: Sorts in object space
® First Z, then (if necessary) X and Y

Computer Graphics — Week 7 . ' o J o s. 0 i © Bengt-Olaf Schneider, 1999

Summary

» Fragment Processing
® Texture Mapping
® Alpha Blending
® Z-Buffer

» Visibility and Hidden-Surface Removal
® Z-Buffer
® Scanline algorithm
® Depth-sorting (painter's algorithm)

Computer Graphics — Week 7 . - b J . s. ‘ i © Bengt-Olaf Schneider, 1999

Homework

» Read Foley et al. on Anti-aliasing
® Chapter 3.17
® Chapter 14.10 for more detailed discussion

» Familiarize yourself with VRML 2.0

® Specification at www.vrml.org/Specifications/VRML97
® Read chapters 4+5, skim over 6

Computer Graphics — Week 7 . ' o J o s. 0 i © Bengt-Olaf Schneider, 1999

Next Week ...

» Anti-aliasing
® Gentle introduction to sampling theory
® Area sampling
® Oversampling
® Use of alpha-channel for anti-aliasing

» VRML

® Introduction to scene graph concepts
® Attributes
® Most important node types

Computer Graphics — Week 7 . - b J . s. 0 i © Bengt-Olaf Schneider, 1999

