
Computer Graphics - Week 7Computer Graphics - Week 7

Bengt-Olaf SchneiderBengt-Olaf Schneider
IBM T.J. Watson Research CenterIBM T.J. Watson Research Center

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Questions about Last Week ?Questions about Last Week ?

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Comments about the AssignmentComments about the Assignment

Specific comments
The clip volume does not need to be closed
Rotate the polygon around the origin, not the center of the clip
volume or the center of the polygon
Polygons are 2-sided, i.e. they are visible from both sides
Rasterization is done using integer arithmetic
If you encounter coincident edges, they should not appear

What are star-shaped polygons ?
Star-shaped polygons have one
interior star-point fromwhere all edges are
visible
In the assignment all polygons are
star-shaped with the first vertex a star point.
This is helpful for triangulation.

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Comments about the Assignment (cont'd)Comments about the Assignment (cont'd)

's' command
Displays rasterized clipped polygon on the screen rectangle
Rasterized polygon interpolate the colors based on the colors
specified for the input polygon after clipping
Make sure shading results for interior pixels do not depend on
clipping or rotation

'l' command
Displays outline of the clipped polygon
using OpenGL lines
Don't rasterize the lines onto the
screen rectangle

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Overview of Week 7Overview of Week 7

Fragment Processing and Pixel Manipulation Methods
Texture Mapping
Alpha Blending
Z-Buffering

Hidden-Surface Removal Algorithms
Z-Buffering
Scanline algorithm
Depth-sorting algorithm

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Fragment Processing (a.k.a. pixel Fragment Processing (a.k.a. pixel
processing) in the Rendering Pipelineprocessing) in the Rendering Pipeline

ClippingLighting
Calculations

Modeling
Transforms

Viewing
Transforms

Geometric Operations

Image Generation

Setup
Calculations

Screen
Refresh

Frame
BufferRasterization Pixel

Processing

Perspective
+ Viewport

Fragment processing follows the scan conversion
Processes the pixels generated by the scan conversion process
Forms the interface between scan conversion and the pixel buffers

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Fragment Processing ConceptsFragment Processing Concepts

A fragment is are pixel data generated during scan
conversion

Pixel coordinates
Associated attributes, e.g. color, depth, texture, etc.

Fragment Processing manipulates the fragment data
Look-up operations, e.g. texturing
Modification of pixel value based on global parameters, e.g.
fogging
Test of fragment data against frame buffer data, depth test
Pixel arithmetic, e.g. alpha blending
Anti-aliasing and dithering

We will call pixel the data stored in the frame buffer
To be distinguished from fragment data

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Fragment Processing Pipeline (1)Fragment Processing Pipeline (1)

Texel
Generation

Pixel
Ownership

Blending

Texture
Application

Scissor
Test

Dithering

Fogging

Alpha Test

Logic Ops

Anti-aliasing

Stencil Test DepthTest

Scan
Conversion

Frame
Buffer

Texture Memory

Frame Buffer Frame Buffer Depth Buffer

Frame Buffer Frame Buffer Frame Buffer

Frame Buffer

OpenGL fragment processing pipeline
Texturing, Fogging and Anti-aliasing
Pixel Tests
Frame Buffer Operations

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Fragment Processing Pipeline (2)Fragment Processing Pipeline (2)

Texturing (... more in a few minutes)
Apply image information to a polygon
"Paste an image onto the polygon"

Fogging
See lecture on lighting and shading models

Anti-aliasing
Eliminate jaggies and broken-up polygons by accounting for partial
pixel coverage by primitives

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Fragment Processing Pipeline (3)Fragment Processing Pipeline (3)

Pixel Tests
Test various conditions about the fragment and the current frame
buffer content
Determines whether the fragment is processed any further or
discarded

Frame Buffer Operations
Read - Modify - Write processing of frame buffer content
Combines fragment with current frame buffer contents

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Fragment Processing Pipeline (4)Fragment Processing Pipeline (4)

We will not go into all details of these operations
See OpenGL programming guide for more details

We will discuss
Texture Mapping
Blending
Z-Buffer

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Texture MappingTexture Mapping

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Texture Mapping: Example Texture Mapping: Example

Texture mapping:
Pasting of an image to the interior of an object
If necessary, repeat the image to fill the entire interior
Texture coordinates defined across the object, define where the
image pixels appear in the object.

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Texture Mapping ConceptsTexture Mapping Concepts

Texture Map is a 1/2/3-dimensional array of color values
2D texture maps are images
3D texture maps are volume data

Texels are the individual pixels in the texture map
Texels can be represented in a variety of formats,
e.g. 1/4/8 bit color index, 16/24/32 bit true color

Texture Coordinates are indices (addresses) into the
texture map

Interpolated across primitives
Often denoted (u,v) coordinates

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Texture Mapping PrincipleTexture Mapping Principle

Texture map

u

v

0 1
0

1
(0.0, 0.8)

(0.8, 0.8)

(0.4, 0.2)

Texture coordinates are computed/assigned at vertices
and interpolated across the triangle
The texture coordinates are used to look up the texel
Texel value is assigned to associated pixel

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Texture Mapping: SamplingTexture Mapping: Sampling

Point Sampling
If only the computed texture coordinates at the pixel are used
Will yield exactly one texel for every pixel
(but generally not vice versa)

Area Sampling
Determine all texels affecting the pixel
For instance map the 4 corners of the pixel and interpolate within
the texture

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Texture Mapping:Texture Mapping:
Forward vs Inverse MappingForward vs Inverse Mapping

Texture mapping can be defined in 2 directions

Forward mapping maps a texel into screen space
Given a texture coordinate (u,v), determine the corresponding pixel
coordinate (x,y)
May leave holes in the pixel image, i.e. there may be pixels that no
texel was mapped to
Often used in image processing

Inverse mapping maps pixels into texture space
Given a pixel coordinate (x,y), determine the corresponding texture
coordinate (u,v)
May miss texels, i.e. there may be texels that no pixel maps to
Frequently used during texture mapping

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Texture Filtering (1)Texture Filtering (1)

Both directions of
mapping may create
problems, if there is no
1:1 mapping between
pixels and texels

Will create artifacts
Texture breaks up if texels
are missed (Minification)
Texture appears blocky if
several pixels map into the
same texel (Magnification)
Mixed cases are possible if
magnified along one axis
and minified along the other
axis

Texture Map

Pixel

Texture Map

Pixel

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Texture Filtering (2)Texture Filtering (2)

The fundamental problem is a sampling problem
For minification the texture is undersampled
The spatial sampling frequency is smaller than the spatial
frequency of the texture map (less than one sample per texel)
For magnification the texture is oversampled
The spatial sampling frequency is higher than the spatial frequency
of the texture map (more than one sample per texel)

Proper treatment of such problem requires filtering
Without going into too many details ...

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Texture Filtering (3)Texture Filtering (3)

Magnification
Texture map can be considered sampling of a continuous function
Texture mapping resamples (reconstructs) that function
Neighboring texels must be taken into account

Consider a neighborhood around the sample point
Compute a weighted average

Texture Map

Pixel

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Texture Filtering (4)Texture Filtering (4)

Minification
All texels contributing to the pixel must be taken into account
Integrate over the area a pixel covers in the texture map
This will take into account all texels contributing to the pixel
Fairly expensive to compute
There are several approximations to deal with this problem:

Mip-maps
Down-sampled copies of the texture

Summed-area tables
Precomputed integrals over axis-aligned
rectangular areas in the texture

Texture Map

Pixel

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Texture Filtering (5): Mip-Mapping (i)Texture Filtering (5): Mip-Mapping (i)

Hierarchy of texture
images

Original texture (base
texture) is down-sampled
repeatedly
Average 2x2 texel blocks into
a texel of the next higher
texture level

Select mip-map level
based on minification

Scale factor ρ (to be defined)
Level-of-Detail (LOD)
λ= log2(ρ)

λ=0

λ=1

λ=2

λ=3
λ=4

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Texture Filtering (5): Mip-Mapping (ii)Texture Filtering (5): Mip-Mapping (ii)

Selection of mip-map level
Ideally, unit step in pixel space result in a unit step in texture space
Look at derivatives of texture coordinates in pixel space
Use biggest step size to compute scale factor ρ

This expression is often simplified with slight loss of quality:

ρ = ∂
∂

F
HG

I
KJ + ∂

∂
F
HG

I
KJ

∂
∂

F
HG

I
KJ + ∂

∂
F
HG

I
KJ

F
H
GG

I
K
JJmax ,

u
x

v
x

u
y

v
y

2 2 2 2

ρ = ∂
∂

∂
∂

∂
∂

∂
∂

F
HG

I
KJmax , , ,

u
x

u
y

v
x

v
y

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Texture Mapping (6)Texture Mapping (6)

Point Sampling
Look up the nearest texel to
the texture coordinate (u,v)
Only one texel affects the
pixel at (x,y)
1 Memory Access

Bilinear Filtering
Use a 2x2 texel
neighborhood around (u,v) to
compute the final texture
value
4 Memory Accesses
8 Multiplications
5 Additions

τ = T u v,c h

s u t v

T s t

T s t

T s t

T s t

= =
= − − ⋅ +

− ⋅ + +
− ⋅ + +
⋅ + +

 ,

τ α β
α β

α β
αβ

1 1

1 1

1 1

1 1

b gb g b g
b g b g
b g b g

b g

,

,

,

,

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Texture Mapping (7)Texture Mapping (7)

Linear Filtering
Interpolated linearly between
two mip-map levels
2 Memory Accesses
2 Multiplications
1 Addition

Trilinear Filtering
Bilinear interpolation within
two adjacent mip-map levels
Linear interpolation between
those two values
8 Memory Accesses
18 Multiplications
16 Additions

τ α

α
λ

λ

= ⋅ +

− ⋅ +

T u v

T u v

,

/ , /

c h
b g c h1 2 21

s u t v

s u t v

T s t

T s t

T s t

T s t

T s t

T s t

T s

λ λ

λ λ

λ λ λ

λ λ λ

λ λ λ

λ λ λ

λ λ λ

λ λ λ

λ λ

τ γ α β
α β

α β
αβ

γ α β
α β

α β

= =
= =
= ⋅ − − ⋅ +

− ⋅ + +
− ⋅ + +
⋅ + + +

− ⋅ − − ⋅ +
− ⋅ + +

− ⋅

+ +

+ + +

+ + +

+ +

 ; ;

 ; 1 1

1 1 1

1 1 1

1

2 2

1 1

1 1

1 1

1 1

1 1 1

1 1

1

/ /

,

,

,

,

,

,

b gb g b g
b g b g
b g b g

b g
b g b gb g b g
b g b g
b g 1 1

1 1 1

1

1 1

+ +
⋅ + +

+

+ + +

,

,

t

T s t
λ

λ λ λαβ
b g

b g

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Texture Mapping (8)Texture Mapping (8)

Different filtering methods have different complexity
Trilinear interpolation is most expensive, point sampling cheapest
Quality of filtering increases with required computation

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Texture Filtering (4)Texture Filtering (4)

Minification
All texels contributing to the pixel must be taken into account
Integrate over the area a pixel covers in the texture map
This will take into account all texels contributing to the pixel
Fairly expensive to compute
There are several approximations to deal with this problem:

Mip-maps
Down-sampled copies of the texture

Summed-area tables
Precomputed integrals over axis-aligned
rectangular areas in the texture

Texture Map

Pixel

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Texture Filtering (9): Summed Area TableTexture Filtering (9): Summed Area Table

Precomputed table that
stores the sum of all
texels between the origin
and a given texture
coordinate

Precomputation is costly
Supports rectangular regions
instead of square regions in
mip-mapping

For a given rectangular,
axis-aligned area, the
sum of all texels inside
the rectangle is:

S(u ,v)1 1 S(u ,v)2 1

S(u ,v)2 2S(u ,v)1 2

u1

v1

v2

u2

S u v u v
S S S S

(, , ,)1 1 2 2

22 12 21 11

=
− − +

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Assigning Texture Coordinates (1)Assigning Texture Coordinates (1)

Basic problem
Square texture images are applied to arbitrarily-shaped objects
Find a good way to map to (i.e. wrap around) texture to object

Application assigns texture coordinates at the vertices
Complete freedom over how texture is applied to an object
Texture can be rotated, shifted and scaled
To avoid distortion of the texture, ensure that object's aspect ration
matches the aspect ratio of the selected texture range

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Assigning Texture Coordinates (2)Assigning Texture Coordinates (2)

Typically, texture coordinates fall within the range [0,1].
What happens if a texture coordinate falls outside of
that range ?

Clamp texture coordinate: u' = max (min (u, 1.0), 0.0)
Repeat the texture: u' = u mod 1.0

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Assigning Texture Coordinates (3)Assigning Texture Coordinates (3)

Textures can be applied "automatically"
Compute texture coordinates based on the distance of object point
from a plane ax+by+cz+d
This allows to project the texture onto the object similar to a slide
projector
For instance:

For "cylindrical" objects, the texture can be wrapped around the
object, by using the angle around an axis to address the texture
For instance, for an object centered around the z-axis
(use sign-aware atan function !):

u
x y

v z= =atan(/)
2π

 and

u x v z= = and

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

OpenGL: Texture Mapping (1)OpenGL: Texture Mapping (1)

glTexImage[12]D()
Specifies the texture image in various formats
Takes mipmap level, width, height, image data and various format
parameters
Images must have width and height being powers of 2

glTexParameter*()
Specifies filtering methods for magnification and minification

Can choose from point sampling + linear, bilinear and trilinear filtersCan choose from point sampling + linear, bilinear and trilinear filters

Repeat vs. Clamping of texture coordinates
Can be set differently for u and v coordinatesCan be set differently for u and v coordinates

glTexCoord*()
Specifies a texture coordinate, similar to glVertex*() or glColor*()

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

OpenGL: Texture Mapping (2)OpenGL: Texture Mapping (2)

Texture Objects allow to define and use multiple
textures efficiently

A texture objects store the texture image and parameters defined
for that texture, e.g. repeat, border and filtering modes

glGenTextures()
Generates texture names (integer numbers)

glBindTexture()
Creates texture object of specified type with given name (number)
Makes the bound texture the active texture, i.e. the one used for
texture mapping, until a new texture is bound

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

OpenGL: Texture Mapping (3)OpenGL: Texture Mapping (3)

Automatic texture generation
Uses a plane specified by four parameters
Plane equation is either evaluate for object coordinates
(GL_OBJECT_LINEAR) or eye coordinates (GL_EYE_LINEAR)
Result of that evaluation determines texture coordinate

OpenGL also supports generation of texture coordinates for
environment mapping, i.e. reflection on an ideal sphere.

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Alpha-BlendingAlpha-Blending

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Alpha-Blending: BasicsAlpha-Blending: Basics

Basic extension of RGB color model
A fourth component is added

Commonly referred to as Alpha or A: RGBA
So far, the pixel color was fully replaced by the fragment color
Alpha is used to blend a fragment's color with the stored pixel color
This allows to create a mix of the pixel and the fragment color
A=1 means fully opaque, A=0 means fully transparent

Alph-blending is used for various purposes
Transparency
Anti-aliasing
Digital Compositing

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Alpha-Blending: TransparencyAlpha-Blending: Transparency

Both fragment and frame buffer pixel may have an
associated alpha value

There are numerous possibilities to combine fragment and pixel
color, taking into account the 2 alpha values (see e.g. OpenGL
programming manual)

One of the most useful applications of alpha blending is to model
transparent objects:

When rendering scenes with transparent and opaque objects:
Render all opaque objects first, then render transparent objects
without writing the z-buffer

C C CP F P= ⋅ + − ⋅α α()1

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Double-BufferingDouble-Buffering

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Double-BufferingDouble-Buffering

If all rendering occurs into the same buffer that is used
for screen refresh, the image construction process is
apparent

No illusion of a standing image
Flickering as image is erased and updated
Memory contention between screen fresh and image generation

Double-buffering provides two buffers
Front-buffer used for screen refresh, contains previous frame
Back-buffer used to construct the new image, i.e. the current frame
After the new image is finished, front and back buffers are
swapped
To reduce flicker, buffer swap is synchronized with vertical retrace

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Hidden Surface RemovalHidden Surface Removal

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Hidden Surface RemovalHidden Surface Removal

Determine which objects are visible from a given
viewpoint, i.e. which objects are hiding other objects

This is a complex problem of at least O(n2) complexity
(test every object against every other object)

Complexity increases if there is no clear A-hides-B relationship
between objects

We will look at different hidden-surface removal
algorithms (a.k.a. visibility algorithms)

Z-Buffer: Image space HSR algorithm
Scan-line Algorithms: Image space HSR algorithm
Depth-sorting Algorithm: Object space HSR algorithm

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Z-Buffering: Basic AlgorithmZ-Buffering: Basic Algorithm

Simple algorithm, that
trades computational
simplicity for memory
requirements

Allocate for every pixel a
depth value
The depth value stores the
z-value of the front-most
(visible) object at that pixel
For new fragment, compare
fragment's z-value with
pixel's z-value
If fragment is closer to the
viewer, replace pixel z and
color

// Clear z-buffer
FOR (all pixels px)
 zb[px.x][px.y] = infinity;

// Scan conversion w/
z-buffer
FOR (each polygon p)
 FOR (each fragment f in p)
 { x = f.x ; y = f.y ;
 IF (f.z < zbuffer[x][y])
 { zb[x][y] = f.z ;
 fb[x][y] = f.color ;
 }
 }

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Z-Buffering: PropertiesZ-Buffering: Properties

Requires significant
amounts of memory

W x H x nbytes, e.g. 1280 x
1024 x 32 bit = 5 MBytes
However, memory becomes
cheaper rapidly

Image space algorithm
No unnecessary
computations
Subject to aliasing

Simple to implement
Many hardware and software
implementation
Fast execution

Universal
Can be used with any
primitive type
For instance, polygons,
quadrics, splines, depthmaps

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Z-Buffering: ArtifactsZ-Buffering: Artifacts

Depth Compression
Perspective projection
distributes depth values
non-uniformly
Depth values are spaced
more closely near the eye,
i.e. better resolution in the
near field
Two different, distant points
may map to the same
z-value

Z-Buffer errors
Colinear edges and coplanar
faces may generate slightly
different depth values if not
supported by the same
vertices
Frequent changes in visibility
creates typical z-buffer errors

Aliasing
Only 1 object can be visible
in each pixel
No blending amongst several
objects sharing a pixel

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Other Visibility AlgorithmsOther Visibility Algorithms

Scanline Algorithm
Depth-sorting Algorithm

We will look at some more HSR algorithms when we
talk about spatial data structures

BSP trees
Octrees

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Scanline AlgorithmScanline Algorithm

Last week we discussed a scanline algorithm to scan
convert polygons

We will extend this algorithm
Several polygons per scanline
Resolve visibility between polygons sharing a scanline

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Scanline Algorithm Scanline Algorithm
for Scan Conversion of Polygonsfor Scan Conversion of Polygons

Edge Table (ET)
Bucket sorted list of all edges, with a bucket for each scanline
Edges are sorted by their minimum (maximum) Y-coordinate

Active Edge Table (AET)
List of edges intersecting the current scanline
Sorted by increasing X-coordinate of the intersection
For each new scanline Y

Update X coordinate of intersection for active edgesUpdate X coordinate of intersection for active edges
Insert edges from the ET into the AET that become active, i.e. for which YInsert edges from the ET into the AET that become active, i.e. for which YMINMIN = Y = Y
Remove edges from the AET that are no longer active, i.e. for which YRemove edges from the AET that are no longer active, i.e. for which YMAXMAX = Y= Y
Resort AETResort AET
Compute starting and ending coordinates for spans defined by the active edgesCompute starting and ending coordinates for spans defined by the active edges
Fill in pixel spansFill in pixel spans

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Scanline AlgorithmScanline Algorithm
Extension to Multiple Polygons (1)Extension to Multiple Polygons (1)

a

b

c

d

e

A

B

C

D

E

F

In addition to the pixels
covered by the individual
polygons, the visible
polgyons must be
determined

If polygons do not penetrate,
visibility changes only at
edges
For example, scanline (c)

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Scanline AlgorithmScanline Algorithm
Extension to Multiple Polygons (2)Extension to Multiple Polygons (2)

a

b

c

d

e

A

B

C

D

E

F

Edge table ET is refined:
Bucket sort edges by YMIN
Within each bucket, sort
edges by slope
For each edge store X(YMIN),
YMAX, dX/dY, polygon id

Active Edge Table AET
remains:

Edges are sorted by X of
intersections with current
scanline

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Scanline AlgorithmScanline Algorithm
Extension to Multiple Polygons (3)Extension to Multiple Polygons (3)

In addition to ET and AET, we also maintain a polygon
table PT

Geometric information, e.g. the plane equation
Attribute information
In/Out flag, initialized at leftmost pixel

Geometric and attribute data is read-only during scan conversion
Only the In/Out flag changes during scan conversion

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Scanline AlgorithmScanline Algorithm
Extension to Multiple Polygons (4)Extension to Multiple Polygons (4)

Basic Algorithm
Once the scanline enters a polygon, the respective In/Out flag is
set
The algorithm keeps track of the number of set flags, e.g. by
maintaining a list of active polygons (APT)
If at least one flag is set when the scanline enters a polygon,
visibility of the new span is evaluated
Otherwise, the new span is visible

Visibility Determination
Determine starting point of new span

x: edge-scanline intersection, y: current scanlinex: edge-scanline intersection, y: current scanline

Evaluate plane equation for all active polygons (In/Out flag !)
The polygon with the closest z value is visible in the current span

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Scanline AlgorithmScanline Algorithm
Extension to Multiple Polygons (5)Extension to Multiple Polygons (5)

Example
Scanline a:
AET = {AC, AB}
Scanline b:
AET = {AC, AB, DF, DE}
Scanline c:
AET = {AC, DF, AB, DE}

Compute visibility when entering Compute visibility when entering
right triangle (both triangle active)right triangle (both triangle active)

Scanline d:
AET = {AC, FE, BC, DE}

Compute visibility when entering Compute visibility when entering
right triangle (both triangles active)right triangle (both triangles active)

Scanline e:
AET = {AC, BC, FE, DE}

a

b

c

d

e

A

B

C

D

E

F

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Scanline Algorithm: Special CasesScanline Algorithm: Special Cases

Background color
Pixels without any polgygons
need to be set, too
Initialize the frame buffer
before scan conversion
Or place a screen-sized
rectangle behind all objects

Penetrating polygons
If objects penetrate, visibility
changes not only at edges
Either split objects to avoid
piercing
Or calculate a "false edge"
where visibility may change

False Edge

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Scanline AlgorithmScanline Algorithm
Combining with Z-BufferCombining with Z-Buffer

Keeping track of visibility changes by monitoring active
edges and polygons can be avoided

Allocated a z-buffer for one scanline
For all active polygons generate pixel color and pixel depth using
the standard scanline scan-conversion algorithm
Resolve visibility using z-buffer algorithm

Advantage
Only small z-buffer must be allocated
Allows implementation for very high screen resolution

Drawback
Still requires sorting of polygons into edge tables

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Depth-Sorting Algorithm:Depth-Sorting Algorithm:
Painter's Algorithm (1)Painter's Algorithm (1)

Painter's Algorithm
Construct the image back-to-front
Objects closer to the viewer overwrite more distant objects
No depth comparison required during the scan-conversion stage

Assumes that objects can be sorted (no overlaps or intersections)
Special case: 2 1/2 D Rendering

Objects are thought of as belonging to layers with constant z (or priority)Objects are thought of as belonging to layers with constant z (or priority)
Back-to-Front rendering is no simpleBack-to-Front rendering is no simple

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Depth-Sorting Algorithm:Depth-Sorting Algorithm:
Painter's Algorithm (2a)Painter's Algorithm (2a)

Painter's Algorithm: Example

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Depth-Sorting Algorithm:Depth-Sorting Algorithm:
Painter's Algorithm (2b)Painter's Algorithm (2b)

Painter's Algorithm: Example

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Depth-Sorting Algorithm:Depth-Sorting Algorithm:
Painter's Algorithm (2c)Painter's Algorithm (2c)

Painter's Algorithm: Example

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Depth-Sorting Algorithm:Depth-Sorting Algorithm:
Painter's Algorithm (2d)Painter's Algorithm (2d)

Painter's Algorithm: Example

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Depth-Sorting Algorithm:Depth-Sorting Algorithm:
Painter's Algorithm (2e)Painter's Algorithm (2e)

Painter's Algorithm: Example

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Depth-Sorting Algorithm:Depth-Sorting Algorithm:
Painter's Algorithm (2f)Painter's Algorithm (2f)

Painter's Algorithm: Example

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Depth Sorting Algorithm (1)Depth Sorting Algorithm (1)

How can we ensure that objects are sorted in depth ?
What happens if there is no z-ordering ?

Algorithm by Newell, Newell and Sancha
1. Sort polygons by farthest z coordinate
2. Resolve ambiguities in depth sorting
3. Render polygons back to front

Without step 2, the algorithm defaults to the painter's algorithm
We will now look at various criteria to implement step 2
The ambiguity is resolved as soon as one of the criteria is met

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Depth Sorting Algorithm (2)Depth Sorting Algorithm (2)

Criterion 1:
Overlapping extents

Do polygons overlap in X
Do polygons overlap in Y

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Depth Sorting Algorithm (3)Depth Sorting Algorithm (3)

Criterion 2:
Separating plane

Is one polygon entirely on
one side of the other
polygon's plane (here: B)
Draw that polygon first if the
eye is on the same side,
otherwise draw the
separating polygon first
(here: A then B)

Z

B

A

Eye

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Depth-Sorting Algorithm (4)Depth-Sorting Algorithm (4)

Criterion 3:
Overlapping projections

Do the projections of the polygons overlap ?
If no overlap, the order of drawing is not important.

Y

XZ

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Depth-Sorting Algorithm (5)Depth-Sorting Algorithm (5)

What if these criteria do
not resolve the visibility?

Objects must be split to
break the cyclical occlusion
realtionship
Split occurs by the clipping
one polygon against the
plane of the other polygon
In order to avoid infinite
loops (right example),
polygons are marked as
tested.
If a marked polygon is
encountered, it is split.

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Visibility Algorithms: SortingVisibility Algorithms: Sorting

By now it should be clear that visibility determination is
a sorting process

One of the seminal papers in Computer Graphics classifies different
hidden surface algorithms by when they sort objects

Sutherland, Sproull, Schumacker, "A Characterization of Ten Hidden-Surface Sutherland, Sproull, Schumacker, "A Characterization of Ten Hidden-Surface
Algorithms", ACM Computing Surveys, 6(1), March 1974, pp. 1-55.Algorithms", ACM Computing Surveys, 6(1), March 1974, pp. 1-55.

Z-Buffer: Sorts in image space
By Z in every pixel

Scanline algorithms: Sorts in image space
First Y, then X, then Z

Depth-Sort algorithm: Sorts in object space
First Z, then (if necessary) X and Y

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

SummarySummary

Fragment Processing
Texture Mapping
Alpha Blending
Z-Buffer

Visibility and Hidden-Surface Removal
Z-Buffer
Scanline algorithm
Depth-sorting (painter's algorithm)

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

HomeworkHomework

Read Foley et al. on Anti-aliasing
Chapter 3.17
Chapter 14.10 for more detailed discussion

Familiarize yourself with VRML 2.0
Specification at www.vrml.org/Specifications/VRML97
Read chapters 4+5, skim over 6

© Bengt-Olaf Schneider, 1999Computer Graphics – Week 7

Next Week ...Next Week ...

Anti-aliasing
Gentle introduction to sampling theory
Area sampling
Oversampling
Use of alpha-channel for anti-aliasing

VRML
Introduction to scene graph concepts
Attributes
Most important node types

