

BASIC Stamp  Programming Manual
Version 2.0c

Warranty
Parallax warrants its products against defects in materials and workmanship for a period of 90 days. If you discover a defect,
Parallax will, at its option, repair, replace, or refund the purchase price. Simply call our sales department for an RMA
number, write it on the label and return the product with a description of the problem. We will return your product, or its
replacement, using the same shipping method used to ship the product to Parallax (for instance, if you ship your product via
overnight express, we will do the same).

This warranty does not apply if the product has been modified or damaged by accident, abuse, or misuse.

14-Day Money-Back Guarantee
If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a refund.
Parallax will refund the purchase price of the product, excluding shipping/handling costs. This does not apply if the
product has been altered or damaged.

Copyrights and Trademarks
Copyright © 2000 by Parallax, Inc. All rights reserved. PBASIC is a trademark and BASIC Stamp is a registered trademark or
Parallax, Inc. PIC is a registered trademark of Microchip Technology, Inc. Windows is a registered trademark of Microsoft
Corporation. 1-wire is a registered trademark of Dallas Semiconductor. Other brand and product names are trademarks or
registered trademarks of their respective holders.

Disclaimer of Liability
Parallax, Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or
under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, and
any costs of recovering, reprogramming, or reproducing any data stored in or used with Parallax products.

Internet Access
We maintain Internet systems for your convenience. These may be used to obtain software, communicate with members of
Parallax, and communicate with other customers. Access information is shown below:

Web: http://www.parallaxinc.com
 http://www.stampsinclass.com
General e-mail: info@parallaxinc.com
Tech. e-mail: stamptech@parallaxinc.com

Internet BASIC Stamp Discussion List
We maintain a BASIC Stamp discussion list for people interested in BASIC Stamps. Many people subscribe to the list, and all
questions and answers to the list are distributed to all subscribers. It’s a fun, fast, and free way to discuss BASIC Stamp
issues. To subscribe to the BASIC Stamps list, visit the Tech Support section of the Parallax, Inc website.

This manual is valid with the following software and firmware versions:

 BASIC Stamp 1:
 STAMP.EXE software version 2.1
 Firmware version 1.4

 BASIC Stamp 2:
 STAMP2.EXE software version 1.1
 STAMPW.EXE software version 1.096
 Firmware version 1.0

 BASIC Stamp 2e:
 STAMP2E.EXE software version 1.0
 STAMPW.EXE software version 1.096
 Firmware version 1.0

 BASIC Stamp 2sx:
 STAMP2SX.EXE software version 1.0
 STAMPW.EXE software version 1.096
 Firmware version 1.0

 BASIC Stamp 2p:
 STAMP2P.EXE software version 1.6
 STAMPW.EXE software version 1.098
 Firmware version 1.1

The information herein will usually apply to newer versions but may not apply to older versions. New software can be
obtained free on our ftp and web site (ftp.parallaxinc.com, www.parallaxinc.com). If you have any questions about what
you need to upgrade your product, please contact Parallax.

Contents

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 1

PREFIX ..5

INTRODUCTION TO THE BASIC STAMP ...7

BASIC STAMP 1 HARDWARE ...8
BASIC STAMP 2 HARDWARE ...10
BASIC STAMP 2E HARDWARE ...12
BASIC STAMP 2SX HARDWARE ...14
BASIC STAMP 2P HARDWARE ...16
DEVELOPMENT BOARDS ...18

BASIC Stamp 1 Carrier Board ..18
BASIC Stamp 2 Carrier Board ..19
BASIC Stamp Super Carrier Board ..20
Board of Education ...22
BASIC Stamp Activity Board ...23

GUIDELINES AND PRECAUTIONS...25

QUICK START GUIDE...29

USING THE BASIC STAMP EDITOR ...33

BASIC STAMP WINDOWS EDITOR ...34
BASIC STAMP DOS EDITOR ...41

BASIC STAMP ARCHITECTURE...45

RAM ORGANIZATION (BS1) ...45
RAM ORGANIZATION (BS2, BS2E, BS2SX, BS2P) ...46
DEFINING AND USING VARIABLES...48

The Rules of Symbol Names ..49
Defining Array Variables ..51
Aliases and Variable Modifiers..53

CONSTANTS AND COMPILE-TIME EXPRESSIONS ...56
NUMBER REPRESENTATIONS ...59
ORDER OF OPERATIONS ...60
INTEGER MATH RULES..62
UNARY OPERATORS..63

Absolute Value (ABS)...64
Cosine (COS) ..64
Decoder (DCD)..64

Contents

Page 2 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Inverse (~)..64
Negative (-) ..64
Encoder (NCD)..65
Sine (SIN) ..65
Square Root (SQR) ..66

BINARY OPERATORS...66
Add (+)..67
Subtract (-) ...67
Multiply (*) ..67
Multiply High (**) ...68
Multiply Middle (*/) ..68
Divide (/) ...69
Modulus (//)..70
Minimum (MIN)..70
Maximum (MAX) ...71
Digit (DIG) ..72
Shift Left (<<)...72
Shift Right (>>) ..72
Reverse (REV) ..73
And (&) ...73
Or (|)..73
Xor (^) ...74
And Not (&/) ...75
Or Not (|/) ...75
Xor Not (^/)...75

BASIC STAMP COMMAND REFERENCE ..77

AUXIO..81
BRANCH..83
BUTTON ..85
COUNT ..89
DATA..91
DEBUG ..97
DTMFOUT..107
EEPROM..111
END..115
FOR…NEXT ..117
FREQOUT..123
GET..127

Contents

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 3

GOSUB ..129
GOTO...133
HIGH ..135
I2CIN ..137
I2COUT ..143
IF…THEN...149
INPUT ..155
IOTERM ...157
LCDCMD..159
LCDIN ..167
LCDOUT ..171
LOOKDOWN..177
LOOKUP ..183
LOW ...187
MAINIO ..189
NAP..191
OUTPUT ..195
OWIN ...197
OWOUT ...205
PAUSE ...213
POLLIN ..215
POLLMODE ...219
POLLOUT ..225
POLLRUN ..231
POLLWAIT ...235
POT..239
PULSIN ..241
PULSOUT ..243
PUT ..245
PWM ..247
RANDOM ...251
RCTIME ...255
READ ...261
RETURN ..265
REVERSE ..267
RUN ...269
SERIN ..273
SEROUT ..293
SHIFTIN ...309
SHIFTOUT ...313
SLEEP..317
SOUND ..319

Contents

Page 4 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

STOP ...321
STOP ...323
TOGGLE ..327
WRITE..329
XOUT ...333

APPENDIX A: ASCII CHART ..337

APPENDIX B: RESERVED WORDS ...339

APPENDIX C: CONVERSION FORMATTERS ...341

Prefix

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 5

Thank you for purchasing the Parallax BASIC Stamp development
system. We have done our best to produce a full-featured, yet easy to use
development system for the BASIC Stamp microcontrollers. We hope you
will find this system as enjoyable to use as we do.

This manual is written for the latest available BASIC Stamp modules and
software as of November 2000. As the product-line evolves new
information may become available. It is always recommended to visit the
Parallax, Inc. web site, www.parallaxinc.com, for the latest information.

This manual is intended to be a complete reference manual to the
architecture and command structure of the BASIC Stamps. This manual is
not meant to teach programming or electrical design; though a person can
learn a lot by paying close attention to the details in this book. If you have
never programmed in the BASIC language or are unfamiliar with
electronics, it would be best to locate one or more of the following books
for further information:

1. Programming and Customizing the BASIC Stamp Computer
Scott Edwards, TAB Books ISBN: 0-07-913684-2

2. Microcontroller Projects with BASIC Stamps
Al Williams, R&D Books ISBN: 0-87930-587-8

3. The Microcontroller Application Cookbook
Matt Gilliland, Woodglen Press ISBN: 0-615-11552-7

4. What's A Microcontroller
Free on Parallax CD (Documentation -> Educational Curriculum
section) and web site (Downloads section), or for purchase in print

5. BASIC Analog and Digital
Free on Parallax CD (Documentation -> Educational Curriculum
section) and web site (Downloads section), or for purchase in print

6. Earth Measurements
Free on Parallax CD (Documentation -> Educational Curriculum
section) and web site (Downloads section), or for purchase in print

7. Robotics
Free on Parallax CD (Documentation -> Educational Curriculum
section) and web site (Downloads section), or for purchase in print

In addition, there are hundreds of great examples available on the Parallax
CD and web site (www.parallaxinc.com). Also, Nut & Volts Magazine
(www.nutsvolts.com / 1-800-783-4624) is a national electronic hobbyist's

Prefix

Page 6 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

magazine that features monthly articles featuring the BASIC Stamps. This
is an excellent resource for beginners and experts alike! For a sample of the
BASIC Stamp articles, visit their web site.

Packing List
The BASIC Stamps are available in many different forms. You may have
received them in a Starter Kit in a special limited-time package or
individually. The packing list below describes the general list of items that
would be included in a BASIC Stamp Starter Kit at the time of this writing:

BASIC Stamp Starter Kit
• (1) BASIC Stamp Module (Rev. D, BS1-IC, OEMBS1, BS2-IC,

OEMBS2, BS2e-IC, BS2sx-IC or BS2p-IC)
• (1) BASIC Stamp development software (on CD in Software section)
• (1) BASIC Stamp manual (this manual)
• (1) BASIC Stamp development board (Stamp 1 Carrier Board, Stamp

2 Carrier Board, Super Carrier Board, BASIC Stamp Activity
Board or Board or Education)

• (1) Set of jumper wires (only included with Board of Education)
• (1) 9-pin serial cable

If any items are missing, please let us know.

1: Introduction to the BASIC Stamps

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 7

Welcome to the wonderful world of BASIC Stamp microntrollers. BASIC
Stamp microcontrollers have been in use by engineers and hobbyists since
we first introduced them in 1992. As of July 2000, Parallax customers have
put more than 200,000 BASIC Stamp modules into use. Over this eight-
year period, the BASIC Stamp line of controllers has evolved into five
models and many physical package types, explained below.

General Operation Theory
BASIC Stamps are microcontrollers (tiny computers) that are designed for
use in a wide array of applications. Many projects that require an
embedded system with some level of intelligence can use a BASIC Stamp
module as the controller.

Each BASIC Stamp comes with a BASIC Interpreter chip, internal memory
(RAM and EEPROM), a 5-volt regulator, a number of general-purpose I/O
pins (TTL-level, 0-5 volts), and a set of built-in commands for math and
I/O pin operations. BASIC Stamps are capable of running a few thousand
instructions per second and are programmed with a simplified, but
customized form of the BASIC programming language, called PBASIC.

PBASIC Language
We developed PBASIC specifically for the BASIC Stamps as a simple, easy
to learn language that is also well suited for this architecture. It includes
many of the instructions featured in other forms of BASIC (GOTO,
FOR...NEXT, IF...THEN) as well as some specialized instructions (SERIN,
PWM, BUTTON, COUNT and DTMFOUT). This manual includes an
extensive section devoted to each of the available instructions.

Hardware
At the time of this writing, there are currently five models of the BASIC
Stamp; the BASIC Stamp 1, BASIC Stamp 2, BASIC Stamp 2e, BASIC
Stamp 2sx and BASIC Stamp 2p. The diagrams below detail the various
package types and part numbers of these modules.

Introduction to the BASIC Stamps

Page 8 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

BASIC Stamp 1

Basic Stamp

 ©1993
REV DTM

P0
P1
P2
P3
P4
P5
P6
P7

+5V

Vin


+5V

Vss
Vss
Vss

>>

.1
“

(2
.5

4
m

m
)

.1“ (2.54 mm)

1
.5

“
(3

8
m

m
)

2.5“ (63.5 mm)

.5
“

(1
3

m
m

).5
“

(1
3

m
m

) Figure 1.1: BASIC Stamp 1 Rev. D
(27100)

Figure 1.2: BASIC Stamp 1 (Rev.
B) (BS1-IC)

Figure 1.3: OEM BASIC Stamp 1
(Rev. A) (27295 or 27296)

V
IN

V
S

S

P
C

O

P
C

I

P
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

1
3

1
41 2 3 4 5 6 7 8 9 1
0 11 1
2 B

S
1

-I
C

R
E

S

V
D

D

1.41“ (36 mm)

.4
“

(1
0

 m
m

)

.1“ (2.54 mm)

.1
9

“
(4

.8
 m

m
)

V
in

V
ss

P
C

O
P

C
I

V
d

d

R
E

S
P

0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

1

OEM BASIC Stamp 1
(c) 1999

Rev A

>
>1

1 1 1

C1 +
U3

RN1

XTAL

1.4“ (36 mm)

1.
4“

 (
36

 m
m

)

0.
25

“
(6

 m
m

)

0.1“ (2.54 mm)

0
.1“ (2

.54 m
m

)

1: Introduction to the BASIC Stamps

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 9

The BASIC Stamp 1 is available in the above three physical packages. The
BASIC Stamp 1 Rev. D (simply called the Rev. D), see Figure 1.1, includes
prototyping area suitable for soldering electronic components. The BS1-IC
(Figure 1.2) uses surface mount components to fit in a small 14-pin SIP
package. The OEMBS1 (Figure 1.3) features an easier-to-trace layout
meant to aid customers who wish to integrate the BASIC Stamp 1 circuit
directly into their design (as a lower-cost solution). The OEMBS1 is
available in either an assembled form or a kit form. All three packages are
functionally equivalent with the exception that the Rev. D does not have
an available reset pin.

Pin Name Description

1 VIN
Unregulated power in: accepts 5.5 - 15 VDC (6-40 VDC on
BS1-IC rev. b), which is then internally regulated to 5 volts. May
be left unconnected if 5 volts is applied to the VDD (+5V) pin.

2 VSS System ground: connects to PC parallel port pin 25 (GND) for
programming.

3 PCO PC Out: connects to PC parallel port pin 11 (BUSY) for
programming.

4 PCI PC In: connects to PC parallel port pin 2 (D0) for programming.

5 VDD

5-volt DC input/output: (Also called +5V) if an unregulated voltage
is applied to the VIN pin, then this pin will output 5 volts. If no
voltage is applied to the VIN pin, then a regulated voltage
between 4.5V and 5.5V should be applied to this pin.

6 RES

Reset input/output: goes low when power supply is less than
approximately 4.2 volts, causing the BASIC Stamp to reset. Can
be driven low to force a reset. This pin is internally pulled high
and may be left disconnected if not needed. Do not drive high.

7-14 P0-P7
General-purpose I/O pins: each can sink 25 mA and source 20
mA. However, the total of all pins should not exceed 50 mA (sink)
and 40 mA (source).

See the "BASIC Stamp Programming Connections" section, below, for
more information on the required programming connections between the
PC and the BASIC Stamp.

Table 1.1: BASIC Stamp 1 Pin
Descriptions.

Introduction to the BASIC Stamps

Page 10 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

BASIC Stamp 2

The BASIC Stamp 2 is available in the above two physical packages. The
BS2-IC (Figure 1.4) uses surface mount components to fit in a small 24-pin
DIP package. The OEMBS2 (Figure 1.5) features an easier-to-trace layout
meant to aid customers who wish to integrate the BASIC Stamp 2 circuit
directly into their design (as a lower-cost solution). The OEMBS2 is
available in either an assembled form or a kit form. Both packages are
functionally equivalent.

SOUT

SIN

ATN

VSS

P0

P1

P2

P3

P4

P5

P6

P7

VIN

VSS

RES

VDD

P15

P14

P13

P12

P11

P10

P9

P8

24

23

22

21

20

19

18

17

16

15

14

13

1

2

3

4

5

6

7

8

9

10

11

12

BS2-IC

1.
2“

 (
31

 m
m

)
.62“ (16 mm)

.1
“

(2
.5

4
m

m
)

Figure 1.4: BASIC Stamp 2
(Rev. E) (BS2-IC)

Figure 1.5: OEM BASIC Stamp 2
(Rev. A) (27290 or 27291)

V
in

V
ss

V
dd

R
E

S
P

0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

OEM BASIC Stamp 2
(c) 1999 Rev A

RN1

Q3

+

XTAL

P
8

P
9

P
10

P
11

P
12

P
13

P
14

P
15

Q1

U3

Q2

RN2
C3

C2

T
M

2.
0“

 (
51

 m
m

)

0.
2

5“
 (

6
m

m
)

0.25“ (6 mm)

2.0“ (51 mm)

0.1“ (2.54 mm)

1: Introduction to the BASIC Stamps

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 11

Pin Name Description

1 SOUT Serial Out: connects to PC serial port RX pin (DB9 pin 2 / DB25
pin 3) for programming.

2 SIN Serial In: connects to PC serial port TX pin (DB9 pin 3 / DB25 pin
2) for programming.

3 ATN Attention: connects to PC serial port DTR pin (DB9 pin 4 / DB25
pin 20) for programming.

4 VSS System ground: (same as pin 23) connects to PC serial port GND
pin (DB9 pin 5 / DB25 pin 7) for programming.

5-20 P0-P15

General-purpose I/O pins: each can sink 25 mA and source 20
mA. However, the total of all pins should not exceed 50 mA (sink)
and 40 mA (source) if using the internal 5-volt regulator. The total
per 8-pin groups (P0 – P7 or P8 – 15) should not exceed 50 mA
(sink) and 40 mA (source) if using an external 5-volt regulator.

21 VDD

5-volt DC input/output: if an unregulated voltage is applied to the
VIN pin, then this pin will output 5 volts. If no voltage is applied to
the VIN pin, then a regulated voltage between 4.5V and 5.5V
should be applied to this pin.

22 RES

Reset input/output: goes low when power supply is less than
approximately 4.2 volts, causing the BASIC Stamp to reset. Can
be driven low to force a reset. This pin is internally pulled high
and may be left disconnected if not needed. Do not drive high.

23 VSS System ground: (same as pin 4) connects to power supply’s
ground (GND) terminal.

24 VIN
Unregulated power in: accepts 5.5 - 15 VDC (6-40 VDC on BS2-
IC rev. e), which is then internally regulated to 5 volts. May be left
unconnected if 5 volts is applied to the VDD (+5V) pin.

See the "BASIC Stamp Programming Connections" section, below, for
more information on the required programming connections between the
PC and the BASIC Stamp.

Table 1.2: BASIC Stamp 2 Pin
Descriptions.

Introduction to the BASIC Stamps

Page 12 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

BASIC Stamp 2e

The BASIC Stamp 2e is available in the above two physical packages. The
BS2e-IC (Figure 1.6) uses surface mount components to fit in a small 24-
pin DIP package. The OEMBS2e (Figure 1.7) features an easier-to-trace
layout meant to aid customers who wish to integrate the BASIC Stamp 2e
circuit directly into their design (as a lower-cost solution). The OEMBS2e
is available in assembled form only.

SOUT

SIN

ATN

VSS

P0

P1

P2

P3

P4

P5

P6

P7

VIN

VSS

RES

VDD

P15

P14

P13

P12

P11

P10

P9

P8

24

23

22

21

20

19

18

17

16

15

14

13

1

2

3

4

5

6

7

8

9

10

11

12

BS2e-IC

1.
2“

 (
31

 m
m

)

.62“ (16 mm)

.1
“

(2
.5

4
m

m
)

Rev A

BS2e © 2000

1 Figure 1.6: BASIC Stamp 2e
(Rev. A) (BS2e-IC)

Figure 1.7: OEM BASIC Stamp 2e
(Rev A) (27293)

V
in

V
ss

V
dd

R
E

S
P

0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

(c) 2000 Rev A

RN1

Q3

+

XTAL

P
8

P
9

P
10

P
11

P
12

P
13

P
14

P
15

Q1

Q2

RN2
C3C2

T
M

2.
0“

 (
51

 m
m

)

0.
2

5“
 (

6
m

m
)

0.25“ (6 mm)

2.0“ (51 mm)

0.1“ (2.54 mm)

C1

1: Introduction to the BASIC Stamps

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 13

Pin Name Description

1 SOUT Serial Out: connects to PC serial port RX pin (DB9 pin 2 / DB25
pin 3) for programming.

2 SIN Serial In: connects to PC serial port TX pin (DB9 pin 3 / DB25 pin
2) for programming.

3 ATN Attention: connects to PC serial port DTR pin (DB9 pin 4 / DB25
pin 20) for programming.

4 VSS System ground: (same as pin 23) connects to PC serial port GND
pin (DB9 pin 5 / DB25 pin 7) for programming.

5-20 P0-P15

 General-purpose I/O pins: each can source and sink 30 mA.
However, the total of all pins should not exceed 75 mA (source or
sink) if using the internal 5-volt regulator. The total per 8-pin
groups (P0 – P7 or P8 – 15) should not exceed 100 mA (source
or sink) if using an external 5-volt regulator.

21 VDD

5-volt DC input/output: if an unregulated voltage is applied to the
VIN pin, then this pin will output 5 volts. If no voltage is applied to
the VIN pin, then a regulated voltage between 4.5V and 5.5V
should be applied to this pin.

22 RES

Reset input/output: goes low when power supply is less than
approximately 4.2 volts, causing the BASIC Stamp to reset. Can
be driven low to force a reset. This pin is internally pulled high
and may be left disconnected if not needed. Do not drive high.

23 VSS System ground: (same as pin 4) connects to power supply’s
ground (GND) terminal.

24 VIN
Unregulated power in: accepts 5.5 - 12 VDC (7.5 recommended),
which is then internally regulated to 5 volts. May be left
unconnected if 5 volts is applied to the VDD (+5V) pin.

See the "BASIC Stamp Programming Connections" section, below, for
more information on the required programming connections between the
PC and the BASIC Stamp.

Table 1.3: BASIC Stamp 2e Pin
Descriptions.

Introduction to the BASIC Stamps

Page 14 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

BASIC Stamp 2sx

The BASIC Stamp 2sx is available in the above two physical packages.
The BS2sx-IC (Figure 1.8) uses surface mount components to fit in a small
24-pin DIP package. The OEMBS2sx (Figure 1.9) features an easier-to-
trace layout meant to aid customers who wish to integrate the BASIC
Stamp 2sx circuit directly into their design (as a lower-cost solution). The
OEMBS2sx is available in assembled form only.

SOUT

SIN

ATN

VSS

P0

P1

P2

P3

P4

P5

P6

P7

VIN

VSS

RES

VDD

P15

P14

P13

P12

P11

P10

P9

P8

24

23

22

21

20

19

18

17

16

15

14

13

1

2

3

4

5

6

7

8

9

10

11

12

BS2SX-IC

1.
2“

 (
31

 m
m

)

.62“ (16 mm)

.1
“

(2
.5

4
m

m
)

Figure 1.8: BASIC Stamp 2sx (Rev.
B) (BS2sx-IC)

Figure 1.9: OEM BASIC Stamp 2sx
(Rev. A) (27294)

V
in

V
ss

V
dd

R
E

S
P

0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

(c) 2000 Rev A

RN1

Q3

+

XTAL

P
8

P
9

P
10

P
11

P
12

P
13

P
14

P
15

Q1

Q2

RN2
C3C2

T
M

2.
0“

 (
51

 m
m

)

0.
2

5“
 (

6
m

m
)

0.25“ (6 mm)

2.0“ (51 mm)

0.1“ (2.54 mm)

C4

C1

1: Introduction to the BASIC Stamps

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 15

Pin Name Description

1 SOUT Serial Out: connects to PC serial port RX pin (DB9 pin 2 / DB25
pin 3) for programming.

2 SIN Serial In: connects to PC serial port TX pin (DB9 pin 3 / DB25 pin
2) for programming.

3 ATN Attention: connects to PC serial port DTR pin (DB9 pin 4 / DB25
pin 20) for programming.

4 VSS System ground: (same as pin 23) connects to PC serial port GND
pin (DB9 pin 5 / DB25 pin 7) for programming.

5-20 P0-P15

 General-purpose I/O pins: each can source and sink 30 mA.
However, the total of all pins should not exceed 75 mA (source or
sink) if using the internal 5-volt regulator. The total per 8-pin
groups (P0 – P7 or P8 – 15) should not exceed 100 mA (source
or sink) if using an external 5-volt regulator.

21 VDD

5-volt DC input/output: if an unregulated voltage is applied to the
VIN pin, then this pin will output 5 volts. If no voltage is applied to
the VIN pin, then a regulated voltage between 4.5V and 5.5V
should be applied to this pin.

22 RES

Reset input/output: goes low when power supply is less than
approximately 4.2 volts, causing the BASIC Stamp to reset. Can
be driven low to force a reset. This pin is internally pulled high
and may be left disconnected if not needed. Do not drive high.

23 VSS System ground: (same as pin 4) connects to power supply’s
ground (GND) terminal.

24 VIN
Unregulated power in: accepts 5.5 - 12 VDC (7.5 recommended),
which is then internally regulated to 5 volts. May be left
unconnected if 5 volts is applied to the VDD (+5V) pin.

See the "BASIC Stamp Programming Connections" section, below, for
more information on the required programming connections between the
PC and the BASIC Stamp.

Table 1.4: BASIC Stamp 2sx Pin
Descriptions.

Introduction to the BASIC Stamps

Page 16 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

BASIC Stamp 2p

The BASIC Stamp 2p is available in the above two physical packages.
Both packages use surface mount components to fit in a small package.
The BS2p24-IC (Figure 1.10) is a 24-pin DIP package. The BS2p40-IC
(Figure 1.11) is a 40-pin DIP package. Both packages are functionally
equivalent accept that the BS2p40 has 32 I/O pins instead of 16.

SOUT

SIN

ATN

VSS

P0

P1

P2

P3

P4

P5

P6

P7

VIN

VSS

RES

VDD

P15

P14

P13

P12

P11

P10

P9

P8

24

23

22

21

20

19

18

17

16

15

14

13

1

2

3

4

5

6

7

8

9

10

11

12

BS2p24-IC

1.
2“

 (
31

 m
m

)

.62“ (16 mm)

.1
“

(2
.5

4
m

m
)

Rev A

BS2p 24

© 2000

1

SOUT

SIN

ATN

VSS

P0

P1

P2

P3

P4

P5

P6

P7

VIN

VSS

RES

VDD

X15

X14

X13

X12

X11

X10

X9

X8

BS2p40-IC

2.
1“

 (
53

 m
m

)

.62“ (16 mm)

.1
“

(2
.5

4
m

m
)

Rev A

BS2p 40

© 2000

11

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

MAIN I/O

AUX I/O

P0

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

X7

X6

X5

X4

X3

X2

X1

X0

Figure 1.10: BASIC Stamp 2p24
(Rev A) (BS2p24-IC) This module
is identical in function to the
BS2p40-IC, except that it has 16 I/O
pins.

Figure 1.11: BASIC Stamp 2p40
(Rev A) (BS2p40-IC) This module
is identical in function to the
BS2p24-IC, except that it has 32 I/O
pins.

1: Introduction to the BASIC Stamps

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 17

Pin Name Description

1 SOUT Serial Out: connects to PC serial port RX pin (DB9 pin 2 / DB25
pin 3) for programming.

2 SIN Serial In: connects to PC serial port TX pin (DB9 pin 3 / DB25 pin
2) for programming.

3 ATN Attention: connects to PC serial port DTR pin (DB9 pin 4 / DB25
pin 20) for programming.

4 VSS
System ground: (same as pin 23 on BS2p24, or pin 39 on
BS2p40) connects to PC serial port GND pin (DB9 pin 5 / DB25
pin 7) for programming.

5-20 P0-P15

 General-purpose I/O pins: each can source and sink 30 mA.
However, the total of all pins (including X0-X15, if using the
BS2p40) should not exceed 75 mA (source or sink) if using the
internal 5-volt regulator. The total per 8-pin groups (P0 – P7, P8
– 15, X0 – X7 or X8 – X15) should not exceed 100 mA (source or
sink) if using an external 5-volt regulator.

{21-36} X0-X15

 (BS2p40 Only!) Auxiliary Bank of General-purpose I/O pins: each
can source and sink 30 mA. However, the total of all pins
(including P0 – P15) should not exceed 75 mA (source or sink) if
using the internal 5-volt regulator. The total per 8-pin groups (P0
– P7, P8 – 15, X0 – X7 or X8 – X15) should not exceed 100 mA
(source or sink) if using an external 5-volt regulator.

21 {37} VDD

5-volt DC input/output: if an unregulated voltage is applied to the
VIN pin, then this pin will output 5 volts. If no voltage is applied to
the VIN pin, then a regulated voltage between 4.5V and 5.5V
should be applied to this pin.

22 {38} RES

Reset input/output: goes low when power supply is less than
approximately 4.2 volts, causing the BASIC Stamp to reset. Can
be driven low to force a reset. This pin is internally pulled high
and may be left disconnected if not needed. Do not drive high.

23 {39} VSS System ground: (same as pin 4) connects to power supply’s
ground (GND) terminal.

24 {40} VIN
Unregulated power in: accepts 5.5 - 12 VDC (7.5 recommended),
which is then internally regulated to 5 volts. May be left
unconnected if 5 volts is applied to the VDD (+5V) pin.

NOTE: Pin numbers in braces {} are BS2p40 pin numbers.

See the "BASIC Stamp Programming Connections" section, below, for
more information on the required programming connections between the
PC and the BASIC Stamp.

Table 1.5: BASIC Stamp 2p Pin
Descriptions.

Introduction to the BASIC Stamps

Page 18 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Development Boards
We provide a number of development boards to make using the BASIC
Stamps more convenient. Below is a short description of the boards and
their intended use. Please refer to the development board’s
documentation (if any) for more details.

BASIC Stamp 1 Carrier Board (Rev. E)
The BASIC Stamp 1 Carrier Board (also called the BS1 Carrier Board) is
designed to accommodate the BS1-IC module. The BASIC Stamp 1 Carrier
Board provides nearly the same form factor and prototyping space as with
the BASIC Stamp 1 Rev. D, but with the added feature of the reset button.
Figure 1.12 shows the BASIC Stamp 1 Carrier Board with the BS1-IC
properly inserted into the socket. This board features a 3-pin
programming header and 9-volt battery clips to connect a power source.
A male, 14-pin 0.1” header (to the left of the through-hole array) allows
access to all the BS1’s pins. The first two columns of solder pads (closest to
the header) are connected to the respective header pin. All other solder
pads are isolated from each other. The entire through-hole array is
provided for permanent or semi-permanent circuit design.

Figure 1.12: BASIC Stamp 1
Carrier Board (Rev. E) (shown with
BS1-IC properly inserted) (27110)

 ©1994
 REV E

TM

Vin
Vss
PCO
PCI
Vdd
RES
P0
P1
P2
P3
P4
P5
P6
P7

BASIC Stamp
ΤΜ

.1
“

(2
.5

4
 m

m
)

.1“ (2.54 mm)

1
.5

“
(3

8
m

m
)

2.5“ (63.5 mm)

.5
“

(1
3

m
m

).5
“

(1
3

m
m

)

Reset

B
S

1-IC

 2 11 15
PC Parallel Port

1: Introduction to the BASIC Stamps

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 19

BASIC Stamp 2 Carrier Board (Rev. B)
The BASIC Stamp 2 Carrier Board (also called the BS2 Carrier Board) is
designed to accommodate the BS2-IC, BS2e-IC and BS2sx-IC modules.
The BASIC Stamp 2 Carrier Board provides ample prototyping space for
simple or moderate circuits. Figure 1.13 shows the BASIC Stamp 2 Carrier
Board with the BS2-IC properly inserted into the socket. This board
features a DB9 programming connector, reset button, and 9-volt battery
clips. Two male, 12-pin 0.1” headers (to the left and right of the chip
socket) allows access to all the modules’s pins. The first two columns of
solder pads (closest to the headers) are connected to the respective header
pin. All other solder pads are isolated from each other. The entire
through-hole array is provided for permanent or semi-permanent circuit
design.

Figure 1.13: BASIC Stamp 2
Carrier Board (Rev. B) (shown with
BS2-IC properly inserted) (27120)

BS2-IC

 ©
19

9
5

 R
E

V
 B

T
M

Reset

0.
1“

 (
2

.5
4

m
m

)

0.1“ (2.54 mm)

2
.6“ (6

5 m
m

)

3.2“ (81 mm)

0.25“ (6 mm)

Introduction to the BASIC Stamps

Page 20 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

BASIC Stamp Super Carrier (Rev. A)
The BASIC Stamp Super Carrier board is designed to accommodate the
BS1-IC, BS2-IC, BS2e-IC and BS2sx-IC modules. This board provides
ample prototyping space for simple or moderate circuits. Figures 1.14 and
1.15 show the board with the BS1-IC or BS2-IC properly inserted into the
sockets. NOTE: Do not power-up the board with a BS1-IC and a BS2-IC,
BS2e-IC or BS2sx-IC inserted at the same time. This board features a 3-
pin programming connector (Stamp 1), DB9 programming connector
(Stamp 2, 2e, 2sx), reset button, 9-volt battery clips, barrel connector,
separate 5-volt regulator, and power LED. A female, 20-pin 0.1” socket
allows access to all the module’s pins. Many of the solder pads (see Figure
1.16) are connected to each other in a fashion that allows breadboard-like
assembly of circuits (examine the through-hole array carefully before
soldering). Note: the barrel jack is designed for a center positive, 2.1 mm
(pin) x 5.5 mm (barrel) plug.

Figure 1.14: BASIC Stamp Super
Carrier Board (Rev. A) (shown with
BS1-IC properly inserted) (27130)

Reset

Pwr

Need Tech Support?
Send email to:
stamptech@parallaxinc.com

Basic Stamp Super Carrier
www.parallaxinc.com (916) 624-8333 ©1999

J3

TM

C2

+

Rev A

C3

J1

C4

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

Vdd

Vdd

Vss

VssVss
C1

Vin
Vss

PCO
PCI
Vdd
Rst
P0
P1
P2
P3
P4
P5
P6
P7

Vin

J2



Vss

Rocklin, CA - USA

4” (102mm)

4.25” (107mm)

3.25” (94mm)

1.4” (36mm)

0.1” (3m
m

)

3.1” (78
m

m
)

2.7
” (70

m
m

)

2
.0” (5

1m
m

)

0.1” (3mm)

1: Introduction to the BASIC Stamps

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 21

In the prototype area, upper and lower rows as well as two inner columns
of solder pads are connected to Vdd and Vss to provide easy access to
power. IC’s measuring from 0.3” to 0.7” in width can straddle the center
power rails similar to a breadboard. The right-most column of solder pads
is offset to accommodate components like RJ-11 and DB9 connectors.

Figure 1.15: BASIC Stamp Super
Carrier Board (Rev. A) (shown with
BS2-IC properly inserted) (27130)

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

Vdd

Vdd

Vss

VssVssFigure 1.16: Prototype area of the
BASIC Stamp Super Carrier Board
(Rev. A) (black lines indicate
interconnected solder pads)

Reset

Pwr

Need Tech Support?
Send email to:
stamptech@parallaxinc.com

Basic Stamp Super Carrier
www.parallaxinc.com (916) 624-8333 ©1999

J3

TM

C2

+

Rev A

C3

J1

C4

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

Vdd

Vdd

Vss

VssVss
C1

Vin
Vss

PCO
PCI
Vdd
Rst
P0
P1
P2
P3
P4
P5
P6
P7

Vin

J2



Vss

Rocklin, CA - USA

4” (102mm)

4.25” (107mm)

3.25” (94mm)

1.4” (36mm)

0.1” (3m
m

)

3.1” (78
m

m
)

2.7
” (70

m
m

)

2
.0” (5

1m
m

)

0.1” (3mm)

Introduction to the BASIC Stamps

Page 22 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Board of Education (Rev. B)
The Board of Education is designed to accommodate the BS2-IC, BS2e-IC
and BS2sx-IC modules. This board provides a small breadboard for
quickly prototyping simple or moderate circuits. Figure 1.17 shows the
board with the BS2-IC properly inserted into the socket. This board
features a, DB9 programming connector, reset button, 9-volt battery clips,
barrel connector, separate 5-volt regulator, power LED, 4 servo connectors
and a breadboard. Three female 0.1” sockets allow for access to all the
module’s pins plus Vdd, Vin and Vss. Vdd is +5 volts and Vin is 6 – 9
volts (depending on your power supply). NOTE: the Vdd pin on the 20-
pin socket comes from the Vdd of the Stamp module (pin 21) while the 5
Vdd sockets above the breadboard come from the Board of Education’s
5-volt regulator. Use the 5 Vdd sockets for anything requiring more
current than what the Stamp can provide. Also, the pins in the “red”
row of the servo connectors are connected to Vin. Also note: the barrel
jack is designed for a center positive, 2.1 mm (pin) x 5.5 mm (barrel)
plug.

Figure 1.17: Board of Education
(shown with BS2-IC properly
inserted) (28102 or 28103)

Need Tech Support?
email: stamptech@parallaxinc.com

Reset

STAMPS CLASS
in

Board of Education
www.stampsinclass.com

(916) 624-8333

Pwr

9 Vdc
Battery

6-9
VDC

C3
C4

Rev B

(c) 1998

TM

Sout
Sin
ATN
Vss
P0
P1
P2
P3
P4
P5
P6
P7

P11

P9
P8

Vin

P10

P15
P14
P13
P12

Vdd
Rst
Vss

Black
Red

X3

Vdd VssVin

Rocklin, CA - USA

X4 X5

15 14 13 12

1

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

X1

Vss
P1
P3
P5
P7
P9
P11
P13
P15
Vin

Vss
P0
P2
P4
P6
P8
P10
P12
P14
Vdd

3.7“ (94 mm)
4.0“ (101.5 mm)

3.
0“

 (
77

.5
 m

m
)

2.
75

“
(7

0
m

m
)

1.
25

“
(3

2
 m

m
)

1: Introduction to the BASIC Stamps

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 23

BASIC Stamp Activity Board (Rev. C)
The BASIC Stamp Activity Board (sometimes called BSAC) is designed to
accommodate the BS1-IC, BS2-IC, BS2e-IC, BS2sx-IC and BS2p24-IC
modules. This board provides a number of prewired components for
quick prototyping of common, simple circuits. Figure 1.18 shows the
board with the BS1-IC properly inserted into the socket (note that the X8
jumper must be in the "1" position). Figure 1.19 show the board with the
BS2-IC properly inserted into the socket (note that the X8 jumper must be
in the "2" position). This board features a, DB9 programming connector,
reset button, barrel connector for power, power LED, 4 push-buttons, 4
LEDs, a piezo speaker a 10K potentiometer, an RJ-11 jack (for interfacing
to an X10 powerline interface), an analog output pin and two 8-pin sockets
for EEPROM and ADC chips. One female 0.1” socket allows for access to
all the module’s pins plus Vdd, Vin and Vss. Vdd is +5 volts and Vin is 6
– 9 volts (depending on your power supply). Also note: the barrel jack is
designed for a center positive, 2.1 mm (pin) x 5.5 mm (barrel) plug.

The BASIC Stamp Activity Board is excellent for projects requiring
buttons, LEDs, a speaker, etc. All the components are prewired and have
labels next to them to indicate the I/O pin they are connected to. You can

Figure 1.18: BASIC Stamp
Activity Board (shown with BS1-IC
properly inserted). Note, the X8
jumper should be in the "1" position.
(27905 or 27906)

Pwr

Reset

Stamp Activity Board
(c)1998

6-12VAC
9-24VDC

Need Tech Support?
email stamptech@parallaxinc.com

www.parallaxinc.com

X7
20
19

X1 X4
X5

P4/11 P5/10 P6/9 P7/8

TM

P5/7

C5

P3/12

X3
P4/11
X2

A B

Aout
+
_P0=mPin

P1=zPin

Rev C

1 2 ↓

X6

2
1

C6C71

11

BS1-ICBS2-IC

X8
1
2

3.7“ (94 mm)
4.0“ (101.5 mm)

3.
0
“

(7
7.

5
 m

m
)

2
.7

“
(7

0
 m

m
)

Introduction to the BASIC Stamps

Page 24 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

find additional information on the board and source code for the BS1 and
BS2 on the Parallax CD.

Other Boards
Other development boards for the BASIC Stamps may now be available at
this time. Please refer to any documentation available for those products
for specific information.

Pwr

Reset

Stamp Activity Board
(c)1998

6-12VAC
9-24VDC

Need Tech Support?
email stamptech@parallaxinc.com

www.parallaxinc.com

X7
20
19

X1 X4
X5

P4/11 P5/10 P6/9 P7/8

TM

P5/7

C5

P3/12

X3
P4/11
X2

A B

Aout
+
_P0=mPin

P1=zPin

Rev C

1 2 ↓

X6

2
1

C6C71

11

BS1-ICBS2-IC

X8
1
2

3.7“ (94 mm)
4.0“ (101.5 mm)

3.
0
“

(7
7.

5
 m

m
)

2
.7

“
(7

0
 m

m
)

Figure 1.19: BASIC Stamp
Activity Board (shown with BS2-IC
properly inserted). Note, the X8
jumper should be in the "2" position.
(27905 or 27906)

1: Introduction to the BASIC Stamps

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 25

Guidelines and Precautions
When using the BASIC Stamp, or any IC chip, please follow the
guidelines below.

1. Be alert to static sensitive devices and static-prone situations.
a. The BASIC Stamp, like other IC’s, can be damaged by

static discharge that commonly occurs touching
grounded surfaces or other conductors. Environmental
conditions (humidity changes, wind, static prone
surfaces, etc) play a major role in the presence of random
static charges. It is always recommended to use
grounding straps and anti-static or static dissipative mats
when handling devices like the BASIC Stamp. If the
items above are not available, be sure to touch a
grounded surface after you have approached the work
area and before you handle static sensitive devices.

2. Verify that all power is off before connecting/disconnecting.
a. If power is connected to the BASIC Stamp or any device it

is connected to while inserting or removing it from a
circuit, damage to the BASIC Stamp or circuit could
result.

3. Verify BASIC Stamp orientation before connection to
development boards and other circuits.

a. Like other IC’s, the BASIC Stamp should be inserted in a
specific orientation in relation to the development board
or circuit. Powering the circuit with an IC connected
backwards will likely damage the IC and/or other
components in the circuit. Most IC’s have some form of a
“pin 1 indicator” as do most IC sockets. This indicator
usually takes the form of a dot, a half-circle, or the
number 1 placed at or near pin 1 of the device.

The BS1-IC has a “1” and a half-circle indicator on the
backside of the module. Additionally, Figure 1.2 above
indicates the pin numbering and labels.

The 24-pin modules (BS2, BS2e, etc) have a half-circle
indicator on the topside of the module (see Figure 1.20).
This indicates (when holding the module with the half-
circle facing up, or north) that pin number one is the first

Introduction to the BASIC Stamps

Page 26 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

pin on the upper left of the device. The socket that accepts
this 24-pin module also has a half-circle or notch on one
end, indicating the correct orientation. See Figure 1.21 for
other examples.

BASIC Stamp Programming Connections:
Parallax, Inc. suggests using the cables provided in the BASIC Stamp
Starter Kit for programming the BASIC Stamps. When those cables are
not available, you may create your own by duplicating the following
diagrams in your cables and circuits.

Be very careful to follow these diagrams closely; it is quite common for
programming problems with the BASIC Stamps to be a result of a poorly
made custom cable or programming connections on your applications
board. With the BS2, BS2e, BS2sx and BS2p programming connections, it
is possible to reverse a couple of wires and still get positive results using
some of the "connection" tests our Tech. Support team tries and yet you

Figure 1.20: Pin 1 Indicators BS2-
IC shown in the correct orientation
in relation to a 24-pin socket.

 Half-Circle
(Pin 1 indicator)Pin 1 Half-Circle

(Pin 1 indicator)

Insert pin 1
here

“1” printed on PC board
(Pin 1 indicator)

Insert pin 1
here

1

“Dot”
(Pin 1 indicator)

Figure 1.21: Additional Examples
of Pin 1 Indicators (chip and
socket shown in the correct
orientation in relation to each other)

1: Introduction to the BASIC Stamps

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 27

still will not be able to communicate with the BASIC Stamp. It is vital that
you check your connections with a meter and verify the pin numbering to
avoid problems like this.

25 GND
11 BUSY

1 VIN
2 VSS
3 PC0
4 PCI
5 VDD
6 RES
7 P0
8 P1
9 P2
10 P3
11 P4
12 P5
13 P6
14 P7

P
C

P
A
R
A
L
L
E
L

P
O
R
T BS1-IC

 °
°

°
°

°
°

°
°

°
°

°
°

°
°

°
°

°
°

°
°

°
°

°
°

°

 2 DO

Note: The Parallel port is
a 25-pin female connector,
usually on the back of the
computer.

Connect DSR and RTS for
automatic port detection.

SOUT
SIN
ATN
VSS
P0
P1
P2
P3
P4
P5
P6
P7

1

2

3

4

6

5

7

9

8

DSR

RTS

BS2-IC
Module

PC Serial Port 1
2
3
4
5
6
7
8
9

10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

Rx

Tx

DTR

GND

Note: The serial port is a 9-pin, or 25-pin, male
connector, usually on the back of the computer.
Use a 25-pin to 9-pin adapter when trying to
interface to a 9-pin cable.

Figure 1.22: BS1 Programming
Connections. Note: Though it is
not shown, power must be

connected to the BS1 to program it.

Figure 1.23: BS2, BS2e, BS2sx
and BS2p Programming
Connections. Note: Though it is
not shown, power must be
connected to the BASIC Stamp to
program it. Also, the programming
connections are the same for the
BS2p40.

Introduction to the BASIC Stamps

Page 28 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

2: Quick Start Guide

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 29

Quick Start Introduction
This chapter is a quick start guide to connecting the BASIC Stamp to the
PC and programming it. Without even knowing how the BASIC Stamp
functions, you should be able to complete the exercise below. This
exercise assumes you have a BASIC Stamp and one of the development
boards shown in Chapter 1.

Connecting and Downloading

1) If the BASIC Stamp isn't already plugged into your development

board, insert it into the appropriate socket as indicated in the
"Development Boards" section of Chapter 1. Be careful to insert it in
the correct orientation. NOTE: The BASIC Stamp 1 Rev. D is built
into its own development board.

2) If using a BASIC Stamp 1, connect the 25-pin side of your

programming cable to an available parallel port on your computer.
Then connect the 3-pin side to the 3-pin programming header on the
development board. See Figure 2.1 for an example. The 3-pin
connector must be connected so that the arrows on one side of the
plug line up with the arrows "<<" printed on the board.

Alkaline Battery
Powercell

 ©1994
 REV E

TM

Vin
Vss
PCO
PCI
Vdd
RES
P0
P1
P2
P3
P4
P5
P6
P7

BASIC Stamp
ΤΜ

Reset

B
S

1-IC

 2 11 15
PC Parallel Port

Align arrow on plug
to arrows on PC board

25-pin connector
(not shown)
plugs into PC’s
parallel port

BS1-IC properly
plugged into carrier
board (components
facing battery clips)

Figure 2.1: BS1-IC and BASIC
Stamp 1 Carrier Board being
properly connected for
programming. The BS1-IC must be
powered and the 3-pin cable must
be connected in the correct
orientation, as shown.

Quick Start Guide

Page 30 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

3) If using a BASIC Stamp 2, 2e, 2sx or 2p, connect the 9-pin female side
of a serial cable to an available serial port on your computer. Note:
the serial cable should we a "straight-though" cable, not a null-modem
cable. Connect the 9-pin male side of the cable to the DB9 connector
on the development board. See Figure 2.2 for an example.

4) Run the BASIC Stamp editor software. Refer Table 2.1 for software

versions and names. If using the DOS version of the software, try
running it though DOS mode only; running it though Windows may
cause it to malfunction when communicating with the BASIC Stamp.

 DOS Software Windows Software

BS1 Stamp.exe N/A
BS2 Stamp2.exe Stampw.exe
BS2e Stamp2e.exe Stampw.exe (v1.096+)

BS2sx Stamp2sx.exe Stampw.exe (v1.091+)
BS2p Stamp2p.exe Stampw.exe (v1.1+)

a) If using the Parallax CD, go to the Software -> BASIC Stamp ->

Windows section (or the DOS section) to locate and run the
software).

b) If using the Windows software, it may prompt you with a list of
serial ports. Follow the prompt to configure the serial port list (if
needed) for proper operation of the editor.

Figure 2.2: BS2-IC and Board of
Education being properly connected
for programming. The BS2-IC must
be powered and the "straight-
through" serial cable must be
connected, as shown.

Table 2.1: BASIC Stamp Editors for
DOS and Windows.

Need Tech Support?
email: stamptech@parallaxinc.com

Reset

STAMPS CLASS
in

Board of Education
www.stampsinclass.com

(916) 624-8333

Pwr

9 Vdc
Battery

6-9
VDC

C3
C4

Rev B

(c) 1998

TM

Sout
Sin
ATN
Vss
P0
P1
P2
P3
P4
P5
P6
P7

P11

P9
P8

Vin

P10

P15
P14
P13
P12

Vdd
Rst
Vss

Black
Red

X3

Vdd VssVin

Rocklin, CA - USA

X4 X5

15 14 13 12

1

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

X1

Vss
P1
P3
P5
P7
P9
P11
P13
P15
Vin

Vss
P0
P2
P4
P6
P8
P10
P12
P14
Vdd

A
lk

a
lin

e
 B

a
tte

ry
P

o
w

er
ce

ll

9-pin male serial
cable plug

BS2-IC properly
plugged into Board
of Education

9-pin female serial
cable plug (not shown)
plugs into PC’s
serial port

NOTE: Serial cable is a “straight-through”
cable. Do not use a null-modem cable!

2: Quick Start Guide

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 31

5) Enter the following two lines of PBASIC code in the editor window

(change the "BS2" to the proper name of your module, as indicated
below):

' { $STAMP BS2 }
DEBUG "Hello World!"

a) Note: The above code is written for a BASIC Stamp 2. Change the

"BS2" in the first line to BS1, BS2e, BS2sx or BS2p depending on the
model of the BASIC Stamp you are using. Failure to do this may
cause the editor to fail to recognize your BASIC Stamp during the
next step.

6) Download the program you just typed in to the BASIC Stamp. If

using the DOS software, press ALT-R to download. If using the
Windows software, press CTRL-R to download.

a) If the program is typed in correctly (and the BASIC Stamp is

connected properly) a progress bar window should appear
(perhaps very briefly) showing the download progress.
Afterwards a debug window should appear and display "Hello
World!"

b) If there is a syntax error in the program, the editor will highlight
the text in question and display an error message. Review the
error, fix the code and then try downloading again.

c) If the error reported a connection problem with the BASIC Stamp,

make sure the first line of code indicates the proper module name
and verify the programming cable connections, module
orientation (in the socket) and that it is properly powered, then try
downloading again.

7) Congratulations! You've just written and downloaded your first

BASIC Stamp program! The "Hello World!" text that appeared on the
screen was sent from the BASIC Stamp, back up the programming
cable, to the PC.

Quick Start Guide

Page 32 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

3: Using the BASIC Stamp Editor

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 33

The BASIC Stamp Editor software is available for Windows and DOS
operating systems. The following system requirements are a minimum for
using the BASIC Stamp Editor:

• 80486 (80286 for DOS) (or higher) IBM or compatible PC;
• Windows 95/98/NT4/2000 operating system (DOS 5.0 or

higher for DOS versions);
• 16 Mb of RAM (1 Mb for DOS);
• 1 Mb of available hard drive space;
• CD-ROM drive;
• 1 available serial port (1 available parallel port for BS1).

(Note: though it is suggested that the BASIC Stamp Editor be installed on your hard drive, it
is not required. The software may be run right off the Parallax CD).

To install the BASIC Stamp Editor:

1. Insert the Parallax CD into the CD-ROM drive. The CD
should auto-start (unless that feature has been disabled on
your computer). If using DOS, explore it with the CD (change
directory) and DIR (directory list) commands.

2. Select the Software -> BASIC Stamp section.
3. Select the DOS or Windows version you wish to use and click

the Install button. If exploring the CD through DOS, use the
COPY command to copy it to a desired directory on your hard
drive.

4. Close the CD and run the BASIC Stamp Editor program from
the directory it was copied to. You may also create a shortcut
to it (if using Windows).

Table 3.1 lists the available BASIC Stamp editors, their names, versions,
operating system and BASIC Stamp model they support.

 DOS Software Windows Software
BS1 Stamp.exe N/A
BS2 Stamp2.exe Stampw.exe
BS2e Stamp2e.exe Stampw.exe (v1.096+)

BS2sx Stamp2sx.exe Stampw.exe (v1.091+)
BS2p Stamp2p.exe Stampw.exe (v1.1+)

Table 3.1: BASIC Stamp Editors for
DOS and Windows.

SYSTEM REQUIREMENTS FOR THE

BASIC STAMP EDITOR SOFTWARE.

INSTALLING THE SOFTWARE.

Using the BASIC Stamp Editor

Page 34 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Software Interface (Windows)

This section describes the Windows version of the BASIC Stamp Editor.
See the "Software Interface (DOS)" section for information on using the
DOS version. The Windows version supports multiple BASIC Stamp
modules and is recommended for most tasks.

The BASIC Stamp Windows Editor, shown in Figure 3.1 was designed to
be easy to use and mostly intuitive. Those that are familiar with standard
Windows software should feel comfortable using the BASIC Stamp
Windows Editor.

The editor consists of one main editor window that can be used to view
and modify up to 16 different source code files at once. Each source code
file that is loaded into the editor will have its own tab at the top of the
page labeled with the name of the file (see Figure 3.2). Source code that

THE EDITOR WINDOW.

Figure 3.1: BASIC Stamp Windows
Editor. Shown here with 6 separate
source code files open.

3: Using the BASIC Stamp Editor

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 35

has never been saved to disk will default to “Untitled#”; where # is an
automatically generated number. A user can switch between source code
files by simply pointing and clicking on a file’s tab.

The status of the active source code page is indicated in a status bar below
it and the full path to the source code (if it has been loaded from or saved
to disk) will appear in the title bar of the BASIC Stamp Editor. The status
bar (see Figure 3.3) contains information such as cursor position, file save
status, download status and syntax error/download messages.

After entering the desired source code in the editor window, selecting Run
-> Run (or pressing Ctrl-R) will tokenize and download the code to the
BASIC Stamp (assuming the code is correct and the BASIC Stamp is
properly connected).

Because the Windows editor supports more than one model of the BASIC
Stamp, it is necessary to tell the editor which model you are trying to
program.

There are three methods the editor uses to determine the model of the
BASIC Stamp you are programming for. They are: 1) the STAMP
directive, 2) the extension on the file name of the source code and 3) the
Default Stamp Mode (as set by preferences). Whenever a file is loaded,
tokenized, downloaded or viewed in the Memory Map, the BASIC Stamp
looks for the STAMP directive first. If it cannot find the STAMP directive
in the source code, it looks at the extension on the file name (for a .bs2,
.bse, .bsx or .bsp). If it doesn't understand the extension, then it uses the
Default Stamp Mode, as defined by preferences.

The best way to force the editor to recognize the intended model of the
BASIC Stamp is to use the STAMP directive, since the STAMP directive
will override all other settings. If you forget to enter the STAMP directive

SUPPORTING MULTIPLE BASIC
STAMP MODELS – USING THE

STAMP DIRECTIVE.

Figure 3.2: Example Editor tabs.
Shown with 5 separate files open.

Figure 3.3: Example Status Bar.

Using the BASIC Stamp Editor

Page 36 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

in your code, the editor may try to program another model of the BASIC
Stamp, which may lead to some confusing error messages.

The STAMP directive is a special command that should be included
(usually near the top) in a program to indicate the model of BASIC Stamp
targeted. The line below is an example of the STAMP directive (in this
case, it indicates that the program is intended for a BASIC Stamp 2):

‘ { $STAMP BS2 }

This line should be entered into your code, usually near the top, on a line
by itself. Note that the directive appears on a comment line (the
apostrophe (‘) indicates this) for compatibility with the DOS versions of
the editor.

The 'BS2' in the example above should be changed to indicate the
appropriate model of the BASIC Stamp you are using. For example, to use
the BS2e, BS2sx or BS2p, enter one of the following lines into your code,
respectively.

‘ { $STAMP BS2e } 'This indicates to use the BASIC Stamp 2e

‘ { $STAMP BS2sx } 'This indicates to use the BASIC Stamp 2sx

‘ { $STAMP BS2p } 'This indicates to use the BASIC Stamp 2p

The directive itself must be enclosed in brackets, {…}. There should not be
any spaces between the dollar sign, $, and the word STAMP, however, the
directive may contain additional spaces in certain other areas. For
example:

FORMAT OF THE STAMP DIRECTIVE.

INDICATING DIFFERENT BASIC STAMP

MODELS.

EXTRA SPACES ARE ALLOWED IN

CERTAIN AREAS.

3: Using the BASIC Stamp Editor

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 37

‘ { $STAMP BS2 }

-- or --

‘{$STAMP BS2}

-- and --

‘{$STAMP BS2 }

are all acceptable variations, however:

‘{$ STAMP BS2}

-- and --

‘{$STAMPBS2}

are not acceptable and will be ignored. If one of the above two lines were
entered into the source code, the editor would ignore it and, instead, rely
on the extension of the filename or the Default Stamp Mode to determine
the appropriate model.

The STAMP directive is read and acted upon by the BASIC Stamp
Windows Editor any time a source code file is loaded, tokenized,
downloaded (run) or viewed in the Memory Map.

For BS2e, BS2sx and BS2p programs, each editor page can be a separate
project, or part of a single project. A project is a set of up to eight files that
should all be downloaded to the BASIC Stamp for a single application.
Each of the files within the project is downloaded into a separate "program
slot". Only the BASIC Stamp 2e, 2sx and 2p modules support projects
(multiple program slots).

For BASIC Stamp projects (consisting of multiple programs), the STAMP
directive has an option to specify additional filenames. The syntax below
demonstrates this form of the STAMP directive:

INTRODUCTION TO BASIC STAMP

PROJECTS.

USING THE STAMP DIRECTIVE TO

DEFINE MULTI-FILE PROJECTS.

Using the BASIC Stamp Editor

Page 38 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

 ‘ { $STAMP BS2e, file2, file3, …, file8 }

Use this form of the STAMP directive if a project, consisting of multiple
files, is desired. This directive must be entered into the first program (to
be downloaded into program slot 0) and not in any of the other files in the
project. The file2, file3, etc. items should be the actual name (and
optionally the path) of the other files in the project. File2 refers to the
program that should be downloaded into program slot 1, file3 is the
program that should be downloaded into program slot 2, etc. If no path is
given, the path of program 0 (the program in which the STAMP directive
is entered) is used.

Up to seven filenames can be included, bringing the total to eight files in
the project all together. Upon tokenizing, running or viewing program 0
in the Memory Map, the editor will read the STAMP directive, determine
if the indicated files exist, will load them if necessary and change their
captions to indicate the project they belong to and their associated
program number. After the directive is tokenized properly, and all
associated files are labeled properly, tokenizing, running or viewing any
program in the Memory Map will result in that program’s entire project
being tokenized, downloaded or viewed.

When a file that is part of a BS2SX project is closed, the entire project (all
the associated files) will be closed as well. When program #0 of a project is
opened from diskette, the entire project will be loaded as well.

To create a project consisting of multiple files, follow these steps:

1. Create the first file in the editor and save it (we'll call it
Sample.bsx). This will be the program that is downloaded into
program slot 0.

2. Create at least one other file in the editor and save it also (we'll call
it NextProgram.bsx).

Note: At this point the editor tabs will be:

 0:Sample.bsx and 0:NextProgram.bsx.

EASY STEPS FOR CREATING A

MULTI-FILE PROJECT.

3: Using the BASIC Stamp Editor

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 39

indicating that there are two unrelated files open "Sample.bsx" and
"NextProgram.bsx" and each will be downloaded into program slot 0.

3. Go back to the first program and enter the STAMP directive using

the project format. Use "NextProgram" as the File2 argument. For
example:

' { $STAMP BS2sx, NextProgram.bsx }

4. Then tokenize the code by pressing F7 or selecting Check Syntax

from the RUN menu.

Note: At this point, the BASIC Stamp Editor will see the STAMP
directive and realize that this file (Sample.bsx) is the first file in a
project and that the second file should be NextProgram.bsx. It will
then search for the file on the hard drive (to verify it's path is correct),
will see that it is already loaded, and then will change the editor tabs
to indicate the project relationship. At this point the editor tabs will
be:

 0:Sample.bsx and [Sample] 1:NextProgram.bsx.

indicating that there are two related files open; "Sample.bsx" and
"NextProgram.bsx". NextProgram.bsx belongs to the "Sample" project
and it will be downloaded into program slot 1 and Sample.bsx will be
downloaded into program slot 0.

The editor has the ability to treat projects as one logical unit and can
download each of the associated source code files to the BS2e, BS2sx or
BS2p at once. In order to minimize download time for large projects a
Project Download Mode is available in the Preferences window. The
available modes are: “Modified” (the default), “All” or “Current” and are
explained below. This item only affects download operations for the BS2e,
BS2sx and BS2p. See Table 3.2.

PROJECT DOWNLOAD MODES.

Using the BASIC Stamp Editor

Page 40 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Download Mode Function

Modified (default)

This mode will cause only the source code files that were
modified since the last download to be downloaded next time.
If no files have been modified since the last download, or the
entire project has just been loaded into the editor, all the files
will be downloaded next time. This mode decreases the delay
during downloading projects and should help speed
development and testing.

All
This mode will cause all the source code files to be
downloaded each time. This will be noticeably slow with large
projects.

Current This mode will cause only the current source code file to be
downloaded, ignoring all the others.

Regardless of the download mode selected, the programs will be
downloaded into the program slot indicated in their tab.

The BASIC Stamp Windows Editor also features a Memory Map (not
shown) that displays the layout of the current PBASIC program, DATA
usage and RAM register usage. Type CTRL+M, or press F7, to activate
this window.

When you activate the Memory Map, the editor will check your program
for syntax errors and, if the program’s syntax is OK, will present you with
a color-coded map of the RAM and EEPROM. You’ll be able to tell at a
glance how much memory you have used and how much remains. Two
important points to remember about this map are: 1) it only indicates how
your program will be downloaded to the BASIC Stamp; it does not "read"
the BASIC Stamp's memory, and 2) fixed variables like B3 and W1 and any
aliases do not show up on the memory map as memory used. The editor
ignores fixed variables when it arranges automatically allocated variables
in memory. Remember, fixed and allocated variables can overlap.

Another useful feature is the Identify function, CTRL+I. This will cause
the editor to try to connect to the BASIC Stamp to determine its firmware
version number. Use the Identify function to quickly determine if the
BASIC Stamp is correctly connected to the PC for programming.

Table 3.2: Project Download
Modes.

MEMORY MAP FUNCTION.

IDENTIFY FUNCTION.

3: Using the BASIC Stamp Editor

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 41

The following tables list the available keyboard shortcuts within the
BASIC Stamp Windows Editor.

File Functions
Shortcut Key Function

Ctrl+O Open a source code file into the Editor window.
Ctrl+S Save current source code file to disk.
Ctrl+P Print current source code.

Editing Functions
Shortcut Key Function

Ctrl+Z Undo last action.
Ctrl+X Cut selected text to the clipboard.
Ctrl+C Copy selected text to the clipboard.
Ctrl+V Paste text from clipboard to selected area.
Ctrl+A Select all text in current source code.
Ctrl+F Find or Replace text.

F3 Find text again.
F5 Open Preferences window.

Coding Functions

Shortcut Key(s) Function
F6 or Ctrl+I Identify BASIC Stamp firmware.

F7 or Ctrl+T Perform a syntax check on the code and display any error
messages.

F8 or Ctrl+M Open Memory Map window.

F9 or Ctrl+R Tokenize code, download to the BASIC Stamp and open
Debug window if necessary.

F11 or Ctrl+D Open a new Debug window.

F12 Switch to next window (Editor, Debug #1, Debug #2, Debug #3
or Debug #4)

Ctrl+1, Ctrl+2, Ctrl+3, Ctrl+4 Switch to Debug Terminal #1, Debug Terminal #2, etc. if that
Terminal window is open.

Ctrl+` Switch to Editor window.
ESC Close current window.

Software Interface (DOS)

This section describes the DOS versions of the BASIC Stamp Editor. See
the "Software Interface (Windows)" section for information on using the
Windows version. The DOS versions support only one BASIC Stamp
module; a separate DOS editor is available for each model of the BASIC
Stamp.

Table 3.3: Shortcut Keys for File
Functions (Windows editor).

Table 3.4: Shortcut Keys for Editing
Functions (Windows editor).

Table 3.5: Shortcut Keys for Coding
Functions (Windows editor).

Using the BASIC Stamp Editor

Page 42 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

The BASIC Stamp DOS Editor, shown in Figure 3.4 was designed to be
very simple and to provide only the necessary functionality needed for
developing with a BASIC Stamp. Those that are familiar with standard
DOS software should feel comfortable using the BASIC Stamp DOS Editor.

You must run the version of the DOS editor that is intended for the model
of the BASIC Stamp you are using. There is a different version for each
model. Refer to Table 3.1 for a list of the editors, versions and the BASIC
Stamp models they support.

The BASIC Stamp DOS Editor can only load and edit one source code file
at a time. Source code can be loaded into the editor by pressing ALT-L
and selecting a file from the menu. NOTE: That the browse menu only
shows files in the current directory; the directory that the BASIC Stamp
DOS Editor is run from.

BS2e, BS2sx and BS2p models support up to eight programs to be
downloaded into separate program slots. From here on, any application
for these models of the BASIC Stamp will be called a project. A project is a
set of up to eight files that should all be downloaded to the BASIC Stamp
for a single application. Each of the files within the project must be
downloaded into a separate "program slot". Only the BASIC Stamp 2e, 2sx
and 2p modules support projects (multiple program slots).

INTRODUCTION TO BASIC STAMP

PROJECTS.

Figure 3.4: BASIC Stamp DOS
Editor. Shown here with the
program ID (slot #) set to 0.

THE EDITOR WINDOW.

THE DOS EDITOR ONLY SUPPORTS

ONE BASIC STAMP MODEL.

3: Using the BASIC Stamp Editor

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 43

For BASIC Stamp projects (consisting of multiple programs), the BASIC
Stamp DOS Editor must be used to individually load and download each
of the files into the appropriate slot. Keep in mind that the DOS editor can
only load up one source code file at a time. NOTE: The Windows version
does not have this limitation.

Pressing ALT+# (where # is a number from 0 to 7) will change the ID
(shown on the title bar; see Figure 3.5) of the currently visible source code
in the editor. This ID is not saved with the program and must be set and
verified manually each time it is loaded from disk and before each
download.

The sequence of keystrokes to load and download two programs into two
separate program slots would consist of the following:

1. ALT+L loads a program into the editor.
2. ALT+0 sets the editor to program ID 0.
3. ALT+R downloads this program into program slot 0 of the BASIC

Stamp's EEPROM.
4. ALT+L loads another program into the editor.
5. ALT+1 sets the editor to program ID 1.
6. ALT+R downloads this program into program slot 1 of the BASIC

Stamp's EEPROM.

The shortcut key ALT+R downloads only one program at a time. Note that
you must load each program separately.

The BASIC Stamp DOS Editors for the BS2, BS2e, BS2sx and BS2p, also
feature a Memory Map (not shown) that displays the layout of the current
PBASIC program, DATA usage and RAM register usage. Type ALT+M to
activate this window.

When you activate the Memory Map, the editor will check your program
for syntax errors and, if the program’s syntax is OK, will present you with
a color-coded map of the RAM. You’ll be able to tell at a glance how much

Figure 3.5: Example Editor Title
Bar. Shown with the program ID
(slot #) set to 0

MEMORY MAP FUNCTION.

Using the BASIC Stamp Editor

Page 44 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

memory you have used and how much remains. (You may also press the
space bar to cycle through similar maps of EEPROM program memory.)

Two important points to remember about this map are, 1) it only indicates
how your program will be downloaded to the BASIC Stamp; it does not
"read" the BASIC Stamp's memory, and 2) fixed variables like B3 and W1
and any aliases do not show up on the memory map as memory used. The
editor ignores fixed variables when it arranges automatically allocated
variables in memory. Remember, fixed and allocated variables can
overlap.

The following tables list the available keyboard shortcuts within the
BASIC Stamp Windows Editor.

File Functions
Shortcut Key Function

Alt+L Open a source code file into the Editor window.
Alt+S Save current source code file to disk.
Alt+Q Close the editor.

Editing Functions

Shortcut Key Function
Alt+X Cut selected text to the clipboard.
Alt+C Copy selected text to the clipboard.
Alt+V Paste text from clipboard to selected area.
Alt+F Find or Replace text.
Alt+N Find text again.

Coding Functions

Shortcut Key(s) Function

Alt+0..7 Set Program Slot # to download to. (not supported on the BS1
or BS 2)

Alt+I Identify BASIC Stamp firmware. (not supported on the BS1)
Alt+M Open Memory Map window. (not supported on the BS1)

Alt+R Tokenize code, download to the BASIC Stamp and open
Debug window if necessary.

Alt+P Open the potentiometer calibration window. (only supported
on the BS1)

Table 3.6: Shortcut Keys for File
Functions (DOS editor).

Table 3.8: Shortcut Keys for Coding
Functions (DOS editor).

Table 3.7: Shortcut Keys for Editing
Functions (DOS editor).

4: BASIC Stamp Architecture – Memory Organization

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 45

 This chapter provides detail on the architecture (RAM usage) and math
functions of the BS1, BS2, BS2e, BS2sx and BS2p.

The following icons will appear to indicate where there are differences
between versions of the BASIC Stamp:

One or more of these icons indicates the item applies
only to the BS1, BS2, BS2e, BS2sx or BS2p,
respectively.

The BASIC Stamp has two kinds of memory; RAM (for variables used by
your program) and EEPROM (for storing the program itself). EEPROM
may also be used to store long-term data in much the same way that
desktop computers use a hard drive to hold both programs and files.

An important distinction between RAM and EEPROM is this:

• RAM loses its contents when the BASIC Stamp loses power; when
power returns, all RAM locations are cleared to 0s.

• EEPROM retains the contents of memory, with or without power,
until it is overwritten (such as during the program-downloading
process or with a WRITE instruction.)

The BS1 has 16 bytes (8 words) of RAM space arranged as shown in Table
4.1. The first word, called PORT, is used for I/O pin control. It consists of
two bytes, PINS and DIRS. The bits within PINS correspond to each of the
eight I/O pins on the BS1. Reading PINS effectively reads the I/O pins
directly, returning an 8-bit set of 1's and 0's corresponding to the high and
low state of the respective I/O pin at that moment. Writing to PINS will
store a high or low value on the respective I/O pins (though only on pins
that are set to outputs).

The second byte of PORT, DIRS, controls the direction of the I/O pins.
Each bit within DIRS corresponds to an I/O pin's direction. A high bit (1)
sets the corresponding I/O pin to an output direction and a low bit (0) sets
the corresponding I/O pin to an input direction.

The remaining words (W0 – W6) are available for general-purpose use.
Each word consists of separately addressable bytes and the first two bytes
(B0 and B1) are bit addressable as well.

1

MEMORY ORGANIZATION

RAM ORGANIZATION (BS1)

THE INPUT/OUTPUT VARIABLES.

1 2 e
2

sx
2

p
2

BASIC Stamp Architecture – Memory Organization

Page 46 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

You may assign other names (symbols) to these RAM registers as shown
in section "Defining and Using Variables", below.

When the BS1 is powered up, or reset, all memory locations are cleared to
0, so all pins are inputs (DIRS = %00000000). Also, if the PBASIC program
sets all the I/O pins to outputs (DIRS = %11111111), then they will initially
output low, since the output latch (PINS) is cleared to all zeros upon
power-up or reset, as well.

Word Name Byte Names Bit Names Special Notes

PORT PINS
DIRS

PIN0 – PIN7
DIR0 – DIR7

I/O pins; bit addressable.
I/O pins directions; bit addressable.

W0 B0
B1

BIT0 – BIT7
BIT8 – BIT15

Bit addressable.
Bit addressable.

W1 B2
B3

W2 B4
B5

W3 B6
B7

W4 B8
B9

W5 B10
B11

W6 B12
B13

 Used by GOSUB instruction.
Used by GOSUB instruction.

The BS2, BS2e, BS2sx and BS2p have 32 bytes of Variable RAM space
arranged as shown in Table 4.2. Of these, the first six bytes are reserved
for input, output, and direction control of the I/O pins. The remaining 26
bytes are available for general-purpose use as variables.

The word variable INS is unique in that it is read-only. The 16 bits of INS
reflect the state of I/O pins P0 through P15. It may only be read, not
written. OUTS contains the states of the 16 output latches. DIRS controls
the direction (input or output) of each of the 16 I/O pins.

A 0 in a particular DIRS bit makes the corresponding pin an input and a 1
makes the corresponding pin an output. So if bit 5 of DIRS is 0 and bit 6 of
DIRS is 1, then I/O pin 5 (P5) is an input and I/O pin 6 (P6) is an output.
A pin that is an input is at the mercy of circuitry outside the BASIC Stamp;

2 e
2

sx
2

p
2

RAM ORGANIZATION (BS2, BS2E,
BS2SX, BS2P).

THE INPUT/OUTPUT VARIABLES.

Table 4.1: BS1 RAM Organization.
Note: There are eight words,
consisting of two bytes each for a
total of 16 bytes. The bits within the
upper two words are individually
addressable.

4: BASIC Stamp Architecture – Memory Organization

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 47

the BASIC Stamp cannot change its state. A pin that is an output is set to
the state indicated by the corresponding bit of the OUTS register.

When the BASIC Stamp is powered up, or reset, all memory locations are
cleared to 0, so all pins are inputs (DIRS = %0000000000000000). Also, if
the PBASIC program sets all the I/O pins to outputs (DIRS =
%1111111111111111), then they will initially output low, since the output
latch (OUTS) is cleared to all zeros upon power-up or reset, as well.

Word Name Byte Names Nibble Names Bit Names Special Notes

INS INL
INH

INA, INB
INC, IND

IN0 – IN7
IN8 – IN15

Input pins

OUTS OUTL
OUTH

OUTA, OUTB
OUTC, OUTD

OUT0 – OUT7
OUT8 – OUT15

Output pins

DIRS DIRL
DIRH

DIRA, DIRB
DIRC, DIRD

DIR0 – DIR7
DIR8 – DIR15

I/O pin direction control

W0 B0
B1

W1 B2
B3

W2 B4
B5

W3 B6
B7

W4 B8
B9

W5 B10
B11

W6 B12
B13

W7 B14
B15

W8 B16
B17

W9 B18
B19

W10 B20
B21

W11 B22
B23

W12 B24
B25

Note: All registers are word, byte, nibble and bit addressable

The INS variable always shows the state of the I/O pins themselves,
regardless of the direction of each I/O pin. We call this, "reading the
pins". If a pin was set to an input mode (within DIRS) and an external

Table 4.2: BS2, BS2e, BS2sx and
BS2p RAM Organization. Note:
There are 16 words, consisting of
two bytes each for a total of 32
bytes. All bits are individually
addressable through modifiers and
the bits within the upper three
words are also individually
addressable though the pre-defined
names shown.

BASIC Stamp Architecture – Memory Organization

Page 48 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

circuit connected the I/O pin to ground, the corresponding bit of INS
would be low. If a pin was set to an output mode and the pin's state was
set to a high level (within OUTS), the corresponding bit of INS would be
high. If, however, that same pin was externally connected directly to
ground, the corresponding bit of INS would be low; since we're reading
the state of the pin itself and the BASIC Stamp cannot override a pin that is
driven to ground or 5 volts externally. Note: The last example is an error,
is a direct short and can cause damage to the BASIC Stamp! Do not
intentionally connect output pins directly to an external power source or
you risk destroying your BASIC Stamp.

To summarize: DIRS determines whether a pin’s state is set by external
circuitry (input, 0) or by the state of OUTS (output, 1). INS always matches
the actual states of the I/O pins, whether they are inputs or outputs. OUTS
holds bits that will only appear on pins whose DIRS bits are set to output.

In programming the BASIC Stamp, it’s often more convenient to deal with
individual bytes, nibbles or bits of INS, OUTS and DIRS rather than the
entire 16-bit words. PBASIC has built-in names for these elements, shown
in Table 4.2.

Here's an example of what is described in Table 4.2. The INS register is 16-
bits (corresponding to I/O pins 0 though 15). The INS register consists of
two bytes, called INL (the Low byte) and INH (the High byte). INL
corresponds to I/O pins 0 through 7 and INH corresponds to I/O pins 8
though 15. INS can also be though of as containing four nibbles, INA,
INB, INC and IND. INA is I/O pins 0 though 3, INB is I/O pins 4 though
7, etc. In addition, each of the bits of INS can be accessed directly using
the names IN0, IN1, IN2… IN5.

The same naming scheme holds true for the OUTS and DIRS variables as
well.

As Table 4.2 shows, the BASIC Stamp's memory is organized into 16
words of 16 bits each. The first three words are used for I/O. The
remaining 13 words are available for use as general-purpose variables.

Just like the I/O variables, the general-purpose variables have predefined
names: W0 through W12 and B0 through B25. B0 is the low byte of W0; B1
is the high byte of W0; and so on through W12 (B24=low byte, B25=high

PREDEFINED "FIXED" VARIABLES.

SUMMARY OF THE FUNCTION OF

DIRS, INS AND OUTS.

4: BASIC Stamp Architecture – Defining Variables

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 49

byte). Unlike I/O variables, there’s no reason that your program variables
have to be stuck in a specific position in the BASIC Stamp’s physical
memory. A byte is a byte regardless of its location. And if a program uses
a mixture of variables of different sizes, it can be a pain in the neck to
logically dole them out or allocate storage.

More importantly, mixing fixed variables with automatically allocated
variables (discussed in the next section) is an invitation to bugs. A fixed
variable can overlap an allocated variable, causing data meant for one
variable to show up in another! The fixed variable names (of the general-
purpose variables) are only provided for power users who require
absolute access to a specific location in RAM.

We recommend that you avoid using the fixed variables in most
situations. Instead, let PBASIC allocate variables as described in the next
section. The editor software will organize your storage requirements to
make optimal use of the available memory.

Before you can use a variable in a PBASIC program you must declare it.
“Declare” means letting the BASIC Stamp know that you plan to use a
variable, what you want to call it, and how big it is. Although PBASIC
does have predefined variables that you can use without declaring them
first (see previous sections), the preferred way to set up variables is to use
the directive SYMBOL (for the BS1) or VAR (for all other BASIC Stamps).
Here is the syntax for a variable declaration:

SYMBOL Name = RegisterName

-- OR --

Name VAR Size

where Name is the name by which you will refer to the variable,
RegisterName is the "fixed" name for the register and Size indicates the
number of bits of storage for the variable. NOTE: The top example is for
the BS1 and the bottom example is for all other BASIC Stamps.

There are certain rules regarding symbol names. Symbols must start with
a letter, can contain a mixture of letters, numbers, and underscore (_)
characters, and must not be the same as PBASIC keywords or labels used
in your program. Additionally, symbols can be up to 32 characters long.

1 2 e
2

sx
2

p
2

1

2 e
2

sx
2

p
2

DEFINING AND USING VARIABLES.

THE RULES OF SYMBOL NAMES.

BASIC Stamp Architecture – Defining Variables

Page 50 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

See Appendix B for a list of PBASIC keywords. PBASIC does not
distinguish between upper and lower case, so the names MYVARIABLE,
myVariable, and MyVaRiAbLe are all equivalent.

For the BS1, the RegisterName is one of the predefined "fixed" variable
names, such as W0, W1, B0, B1, etc. Here are a few examples of variable
declarations on the BS1:

SYMBOL Temporary = W0 ' value can be 0 to 65535
SYMBOL Counter = B1 ' value can be 0 to 255
SYMBOL Result = B2 ' value can be 0 to 255

The above example will create a variable called Temporary whose contents
will be stored in the RAM location called W0. Also, the variable Counter
will be located at RAM location B1 and Result at location B2. Temporary is
a word-sized variable (because that's what size W0 is) while the other two
are both byte-sized variables. Throughout the rest of the program, we can
use the names Temporary, Counter, and Result instead of W0, B1 and B2,
respectively. This makes the code much more readable; it's easier to
determine what Counter is used for than it would be to figure out what the
name B1 means. Please note, that Counter resides at location B1, and B1
happens to be the high byte of W0. This means than changing Counter will
also change Temporary since they overlap. A situation like this usually is a
mistake and results in strange behavior, but is also a powerful feature if
used carefully.

For the BS2, BS2e, BS2sx and BS2p, the Size argument has four choices: 1)
BIT (1 bit), 2) NIB (nibble; 4 bits), 3) BYTE (8 bits), and 4) WORD (16 bits).
Here are some examples of variable declarations on the BS2, BS2e, BS2sx
or BS2p:

Mouse VAR BIT ' Value can be 0 or 1.
Cat VAR NIB ' Value can be 0 to 15.
Dog VAR BYTE ' Value can be 0 to 255.
Rhino VAR WORD ' Value can be 0 to 65535.

1

1

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

4: BASIC Stamp Architecture – Defining Arrays

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 51

The above example will create a bit-sized variable called Mouse, and
nibble-sized variable called Cat, a byte-size variable called Dog and a
word-sized variable called Rhino. Unlike in the BS1, these variable
declarations don't point to a specific location in RAM. Instead, we only
specified the desired size for each variable; the BASIC Stamp will arrange
them in RAM as it sees fit. Throughout the rest of the program, we can
use the names Mouse, Cat, Dog and Rhino to set or retrieve the contents of
these variables.

A variable should be given the smallest size that will hold the largest
value that will ever be stored in it. If you need a variable to hold the
on/off status (1 or 0) of switch, use a bit. If you need a counter for a
FOR…NEXT loop that will count from 1 to 100, use a byte. And so on.

If you assign a value to a variable that exceeds its size, the excess bits will
be lost. For example, suppose you use the nibble variable Dog, from the
example above, and write Dog = 260 (%100000100 binary). What will Dog
contain? It will hold only the lowest 8 bits of 260: %00000100 (4 decimal).

On the BS2, BS2e, BS2sx and BS2p, you can also define multipart variables
called arrays. An array is a group of variables of the same size, and
sharing a single name, but broken up into numbered cells, called elements.
You can define an array using the following syntax:

Name VAR Size(n)

where Name and Size are the same as described earlier. The new argument,
(n), tells PBASIC how many elements you want the array to have. For
example:

MyList VAR BYTE(10) ' Create a 10-byte array.

Once an array is defined, you can access its elements by number.
Numbering starts at 0 and ends at n–1. For example:

MyList(3) = 57
DEBUG ? MyList(3)

This code will display "MyList(3) = 57" on the PC screen. The real power of
arrays is that the index value can be a variable itself. For example:

1 2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

DEFINING ARRAYS.

BASIC Stamp Architecture – Defining Arrays

Page 52 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

MyBytes VAR BYTE(10) ' Define 10-byte array.
Index VAR NIB ' Define normal nibble variable.

FOR Index = 0 TO 9 ' Repeat with Index= 0,1,2...9
 MyBytes(Index) = Index * 13 ' Write index*13 to each cell of array.
NEXT

FOR Index = 0 TO 9 ' Repeat with Index= 0,1,2...9
 DEBUG ? MyBytes(Index) ' Show contents of each cell.
NEXT
STOP

If you run this program, DEBUG will display each of the 10 values stored
in the elements of the array: MyBytes(0) = 0*13 = 0, MyBytes(0) = 1*13 =
13, MyBytes(2) = 2*13 = 26 ... MyBytes(9) = 9*13 = 117.

A word of caution about arrays: If you’re familiar with other BASICs and
have used their arrays, you have probably run into the “subscript out of
range” error. Subscript is another term for the index value. It is
out-of-range when it exceeds the maximum value for the size of the array.
For instance, in the example above, MyBytes is a 10-cell array. Allowable
index numbers are 0 through 9. If your program exceeds this range,
PBASIC will not respond with an error message. Instead, it will access the
next RAM location past the end of the array. If you are not careful about
this, it can cause all sorts of bugs.

If accessing an out-of-range location is bad, why does PBASIC allow it?
Unlike a desktop computer, the BASIC Stamp doesn’t always have a
display device connected to it for displaying error messages. So it just
continues the best way it knows how. It’s up to the programmer (you!) to
prevent bugs.

Another unique property of PBASIC arrays is this: You can refer to the 0th
cell of the array by using just the array’s name without an index value. For
example:

MyBytes VAR BYTE(10) ' Define 10-byte array.
MyBytes(0) = 17 ' Store 17 to 0th cell.

DEBUG ? MyBytes(0) ' Display contents of 0th cell.
DEBUG ? MyBytes ' Also displays contents of 0th cell.

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

4: BASIC Stamp Architecture – Aliases and Modifiers

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 53

This feature is how the "string" capabilities of the DEBUG and SEROUT
command expect to work. A string is simply a byte array used to store
text. See the "Displaying Strings (Byte Arrays)" section in the DEBUG
command description for more information.

An alias is an alternative name for an existing variable. For example:

SYMBOL Cat = B0 ' Create a byte-sized variable.
SYMBOL Tabby = Cat ' Create another name for the same variable.

-- OR --

Cat VAR BYTE ' Create a byte-sized variable
Tabby VAR Cat ' Create another name for the same variable.

In this example, Tabby is an alias to the variable Cat. Anything stored in
Cat shows up in Tabby and vice versa. Both names refer to the same
physical piece of RAM. This kind of alias can be useful when you want to
reuse a temporary variable in different places in your program, but also
want the variable’s name to reflect its function in each place. Use caution,
because it is easy to forget about the aliases; during debugging, you might
end up asking ‘how did that value get here?!’ The answer is that it was
stored in the variable’s alias.

On the BS2, BS2e, BS2sx and BS2p, an alias can also serve as a window into
a portion of another variable. This is done using "modifiers." Here the
alias is assigned with a modifier that specifies what part:

Rhino VAR WORD ' A 16-bit variable.
Head VAR Rhino.HIGHBYTE ' Highest 8 bits of Rhino.
Tail VAR Rhino.LOWBYTE ' Lowest 8 bits of Rhino.

Given that example, if you write the value %1011000011111101 to Rhino,
then Head would contain %10110000 and Tail would contain %11111101.

Table 4.3 lists all the variable modifiers. PBASIC2 lets you apply these
modifiers to any variable name and to combine them in any fashion that
makes sense. For example, it will allow:

Rhino VAR WORD ' A 16-bit variable.
Eye VAR Rhino.HIGHBYTE.LOWNIB.BIT1 ' A bit.

1

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

ALIASES AND VARIABLE MODIFIERS.

BASIC Stamp Architecture – Aliases and Modifiers

Page 54 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Symbol Definition

LOWBYTE low byte of a word
HIGHBYTE high byte of a word

BYTE0 byte 0 (low byte) of a word
BYTE1 byte 1 (high byte) of a word

LOWNIB low nibble of a word or byte
HIGHNIB high nibble of a word or byte

NIB0 nib 0 of a word or byte
NIB1 nib 1 of a word or byte
NIB2 nib 2 of a word
NIB3 nib 3 of a word

LOWBIT low bit of a word, byte, or nibble
HIGHBIT high bit of a word, byte, or nibble

BIT0 bit 0 of a word, byte, or nibble
BIT1 bit 1 of a word, byte, or nibble
BIT2 bit 2 of a word, byte, or nibble
BIT3 bit 3 of a word, byte, or nibble

BIT4 … BIT7 bits 4 though 7 of a word or byte
BIT8 … Bit15 bits 8 through 15 of a word

The commonsense rule for combining modifiers is that they must get
progressively smaller from left to right. It would make no sense to specify,
for instance, the low byte of a nibble, because a nibble is smaller than a
byte! And just because you can stack up modifiers doesn’t mean that you
should unless it is the clearest way to express the location of the part you
want get at. The example above might be improved:

Rhino VAR WORD ' A 16-bit variable.
Eye VAR Rhino.BIT9 ' A bit.

Although we’ve only discussed variable modifiers in terms of creating
alias variables, you can also use them within program instructions:

Rhino VAR WORD ' A 16-bit variable.
Head VAR Rhino.HIGHBYTE ' Highest 8 bits of rhino.

Rhino = 13567
DEBUG ? Head ' Show the value of alias variable Head.
DEBUG ? Rhino.HIGHBYTE ' Rhino.HIGHBYTE works too.
STOP

Modifiers also work with arrays. For example:

MyBytes VAR BYTE(10) ' Define 10-byte array.
MyBytes(0) = $AB ' Hex $AB into 0th byte
DEBUG HEX ? MyBytes.LOWNIB(0) ' Show low nib ($B)
DEBUG HEX ? MyBytes.LOWNIB(1) ' Show high nib ($A)

2 e
2

sx
2

p
2

Table 4.3: BS2, BS2e, BS2sx and
BS2p Variable Modifiers.

4: BASIC Stamp Architecture – Aliases and Modifiers

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 55

If you looked closely at that example, you probably thought it was a
misprint. Shouldn’t MyBytes.LOWNIB(1) give you the low nibble of byte 1
of the array rather than the high nibble of byte 0? Well, it doesn’t. The
modifier changes the meaning of the index value to match its own size. In
the example above, when MyBytes() is addressed as a byte array, it has 10
byte-sized cells numbered 0 through 9. When it is addressed as a nibble
array, using MyBytes.LOWNIB(), it has 20 nibble-sized cells numbered 0
through 19. You could also address it as individual bits using
MyBytes.LOWBIT(), in which case it would have 80 bit-sized cells
numbered 0 through 79.

What if you use something other than a “low” modifier, say
MyBytes.HIGHNIB()? That will work, but its effect will be to start the
nibble array with the high nibble of MyBytes(0). The nibbles you address
with this nib array will all be contiguous, one right after the other, as in the
previous example.

MyBytes VAR BYTE(10) ' Define 10-byte array.

MyBytes(0) = $AB ' Hex $AB into 0th byte
MyBytes(1) = $CD ' Hex $CD into next byte
DEBUG HEX ? MyBytes.highnib(0) ' Show high nib of cell 0 ($A)
DEBUG HEX ? MyBytes.highnib(1) ' Show next nib ($D)

This property of modified arrays makes the names a little confusing. If you
prefer, you can use the less-descriptive versions of the modifier names;
BIT0 instead of LOWBIT, NIB0 instead of LOWNIB, and BYTE0 instead of
LOWBYTE. These have exactly the same effect, but may be less likely to be
misconstrued.

You may also use modifiers with the 0th cell of an array by referring to
just the array name without the index value in parentheses. It’s fair game
for aliases and modifiers, both in VAR directives and in instructions.

On the BS2, BS2e, BS2sx and BS2p, if you’re working on a program and
wondering how much variable space you have left, you can use the
memory map feature of the editor (ALT-M in the DOS editor and CTRL-M
in the Windows editor). See the "Memory Map" section of the "Using the
BASIC Stamp Editor" chapter for more information.

2 e
2

sx
2

p
2

THE MEMORY MAP

BASIC Stamp Architecture – Constants and Expressions

Page 56 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

The BS2e, BS2sx and BS2p have some additional RAM called Scratch Pad
RAM. The BS2e and BS2sx have are 64 bytes of Scratch Pad RAM (0 – 63)
and the BS2p has 128 bytes of Scratch Pad RAM (0 – 127). Scratch Pad
RAM can only be accessed with the GET and PUT commands (see the GET
and PUT command descriptions for more information) and cannot have
variable names assigned to it.

The highest location in Scratch Pad RAM (location 63 on the BS2e and
BS2sx, location 127 on the BS2p) is read-only, and always contains the
number of the currently running program slot. This can be handy for
programs that need to know which program slot they exist in.

Suppose you’re working on a program called “Three Cheers” that flashes
LEDs, makes hooting sounds, and activates a motor that crashes cymbals
together, all in sets of three. A portion of your PBASIC program might
contain something like:

FOR Counter = 1 TO 3
 GOSUB MakeCheers
NEXT
...
FOR Counter = 1 TO 3
 GOSUB BlinkLEDs
NEXT
...
FOR Counter = 1 TO 3
 GOSUB CrashCymbals
NEXT

The numbers 1 and 3 in the code above are called constants. They are
constants because, while the program is running, nothing can happen to
change those numbers. This distinguishes constants from variables, which
can change while the program is running.

PBASIC allows you to use several numbering systems. By default, it
assumes that numbers are in decimal (base 10), our everyday system of
numbers. But you can also use binary and hexadecimal (hex) numbers by
identifying them with prefixes. And PBASIC will automatically convert
quoted text into the corresponding ASCII code(s). For example:

99 decimal
%1010 binary
$FE hex
“A” ASCII code for A (65)

CONSTANTS AND COMPILE-TIME

EXPRESSIONS.

1 2 e
2

sx
2

p
2

1 2 e
2

sx
2

p
2

e
2

sx
2

p
2

SCRATCH PAD RAM.

4: BASIC Stamp Architecture – Constants and Expressions

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 57

You can assign names to constants in a similar fashion to how variables
are declared. On a BS1, it is identical to variable declarations and on the
other BASIC Stamps you use the CON directive. Here is the syntax:

SYMBOL Name = ConstantValue

-- OR --

Name CON ConstantValue

Once created, named constants may be used in place of the numbers they
represent. For example:

SYMBOL Cheers = 3 ‘ Number of cheers.

FOR Counter = 1 TO Cheers
 GOSUB MakeCheers
NEXT
...

-- or --

Cheers CON 3 ‘ Number of cheers.

FOR Counter = 1 TO Cheers
 GOSUB MakeCheers
NEXT
...

That code would work exactly the same as the previous FOR…NEXT
loops. The editor software would substitute the number 3 for the constant
named Cheers throughout your program. Like variable names, labels and
instructions, constant names are not case sensitive; CHEERS, and ChEErs
would all be processed as identical to Cheers.

Using named constants does not increase the amount of code downloaded
to the BASIC Stamp, and it often improves the clarity of the program.
Weeks after a program is written, you may not remember what a
particular number was supposed to represent—using a name may jog
your memory (or simplify the detective work needed to figure it out).

Named constants also have another benefit. Suppose the “Three Cheers”
program had to be upgraded to “Five Cheers.” In the original example
you would have to change all of the 3s to 5s. Search and replace would

1

2 e
2

sx
2

p
2

1

2 e
2

sx
2

p
2

BASIC Stamp Architecture – Constants and Expressions

Page 58 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

help, but you might accidentally change some 3s that weren’t numbers of
cheers, too. However, if you made smart use of a named constant, all you
would have to do is change 3 to 5 in one place, the constant's declaration:

SYMBOL Cheers = 5 ‘ Number of cheers.

-- or --

Cheers CON 5 ‘ Number of cheers.

Now, assuming that you used the constant cheers wherever your
program needed ‘the number of cheers,’ your upgrade would be done.

On the BS2, BS2e, BS2sx and BS2p, you can take this idea a step further by
defining constants with expressions; groups of math and/or logic
operations that the editor software solves (evaluates) at compile time (the
time right after you start the download and before the BASIC Stamp starts
running your program). For example, suppose the “Cheers” program also
controls a pump to fill glasses with champagne. Perhaps the number of
glasses to fill is always twice the number of cheers, minus 1 (another
constant):

Cheers CON 5 ‘ # of cheers.
Glasses CON Cheers*2-1 ‘ # of glasses.

As you can see, one constant can be defined in terms of another. That is,
the number glasses depends on the number cheers.

The expressions used to define constants must be kept fairly simple. The
editor software solves them from left to right, and doesn’t allow you to use
parentheses to change the order of evaluation. The operators that are
allowed in constant expressions are shown in Table 4.4.

Operator Symbol Description
+ Add
- Subtract
* Multiply
/ Divide

<< Shift Left
>> Shift Right
& Logical AND
| Logical OR
^ Logical XOR

1

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

Table 4.4: BS2, BS2e, BS2sx and
BS2p operators allowed in constant
expressions.

2 e
2

sx
2

p
2

4: BASIC Stamp Architecture – Number Representations

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 59

The BASIC Stamp, like any computer, excels at math and logic. However,
being designed for control applications, the BASIC Stamp does math a
little differently than a calculator or spreadsheet program. This section will
help you understand BASIC Stamp numbers, math, and logic.

In your programs, you may express a number in various ways, depending
on how the number will be used and what makes sense to you. By default,
the BASIC Stamp recognizes numbers like 0, 99 or 62145 as being in our
everyday decimal (base-10) system. However, you may also use
hexadecimal (base-16; also called hex) or binary (base-2).

Since the symbols used in decimal, hex and binary numbers overlap (e.g.,
1 and 0 are used by all; 0 through 9 apply to both decimal and hex) the
editor software needs prefixes to tell the numbering systems apart, as
shown below:

99 Decimal (no prefix)
$1A6 Hex
%1101 Binary

The BASIC Stamp also automatically converts quoted text into ASCII
codes, and allows you to apply names (symbols) to constants from any of
the numbering systems. For example:

SYMBOL LetterA = "A" ' ASCII code for A (65).
SYMBOL Cheers = 3
SYMBOL Hex128 = $80
SYMBOL FewBits = %1101

-- or --

LetterA CON "A" ' ASCII code for A (65).
Cheers CON 3
Hex128 CON $80
FewBits CON %1101

For more information on constants, see the section "Constants and
Compile-Time Expressions", above.

1 2 e
2

sx
2

p
2

1

2 e
2

sx
2

p
2

RUNTIME MATH AND LOGIC.

NUMBER REPRESENTATIONS.

BASIC Stamp Architecture – Order of Operations

Page 60 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

On the BS2, BS2e, BS2sx and BS2p, not all of the math or logic operations
in a program are solved by the BASIC Stamp. The editor software solves
operations that define constants before the program is downloaded to the
BASIC Stamp. The preprocessing that takes place before the program is
downloaded is referred to as “compile time.”

After the download is complete, the BASIC Stamp starts executing your
program; this is referred to as “runtime.” At runtime the BASIC Stamp
processes math and logic operations involving variables, or any
combination of variables and constants.

Because compile-time and runtime expressions appear similar, it can be
hard to tell them apart. A few examples will help:

Result VAR BYTE 'Compile time assignment

Cheers CON 3 ' Compile time.
Glasses CON Cheers * 2 - 1 ' Compile time.
OneNinety CON 100 + 90 ' Compile time.
NoWorkee CON 3 * Result ' ERROR: Variables not allowed here

Result = Glasses ' Runtime.
Result = 99 + Glasses ' Runtime.
Result = OneNinety + 1 ' "100 + 90" solved at compile-time,
 ' OneNinety + 1 solved at runtime.
Result = 100 + 90 ' 100 + 90 solved at runtime.

Notice that the last example is solved at runtime, even though the math
performed could have been solved at compile time since it involves two
constants. If you find something like this in your own programs, you can
save some EEPROM space by converting the run-time expression 100+90
into a compile-time expression like OneNinety CON 100+90.

To sum up: compile-time expressions are those that involve only
constants; once a variable is involved, the expression must be solved at
runtime. That’s why the line “NoWorkee CON 3 * Result” would
generate an error message. The CON directive works only at compile time,
so variables are not allowed.

Let’s talk about the basic four operations of arithmetic: addition (+),
subtraction (-), multiplication (*), and division (/).

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

1 2 e
2

sx
2

p
2

WHEN IS RUNTIME?

ORDER OF OPERATIONS.

4: BASIC Stamp Architecture – Order of Operations

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 61

You may recall that the order in which you do a series of additions and
subtractions doesn’t affect the result. The expression 12+7-3+22 works out
the same as 22-3+12+7. However, when multiplication or division are
involved, it’s a different story; 12+3*2/4 is not the same as 2*12/4+3. In
fact, you may have the urge to put parentheses around portions of those
equations to clear things up.

The BASIC Stamp solves math problems in the order they are written;
from left to right. The result of each operation is fed into the next
operation. So to compute 12+3*2/4, the BASIC Stamp goes through a
sequence like this:

 12 + 3 = 15
 15 * 2 = 30
 30 / 4 = 7

Note that since the BASIC Stamp performs integer math (whole numbers
only) 30 / 4 results in 7, not 7.5. We’ll talk more about integers in the next
section.

Some other dialects of BASIC would compute that same expression based
on their precedence of operators, which requires that multiplication and
division be done before addition. So the result would be:

 3 * 2 = 6
 6 / 4 = 1
 12 + 1 = 13

Once again, because of integer math, the fractional portion of 6 / 4 is
dropped, so we get 1 instead of 1.5.

The BS1 does not allow parenthesis in expressions. Unfortunately, all
expressions have to be written so that they evaluate as intended strictly
from left to right.

The BS2, BS2e, BS2sx and BS2p, however, allow parenthesis to be used to
change the order of evaluation. Enclosing a math operation in parentheses
gives it priority over other operations. To make the BASIC Stamp compute
the previous expression in the conventional way, you would write it as 12
+ (3*2/4). Within the parentheses, the BASIC Stamp works from left to

1

2 e
2

sx
2

p
2

BASIC Stamp Architecture – Math and Operators

Page 62 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

right. If you wanted to be even more specific, you could write 12 +
((3*2)/4). When there are parentheses within parentheses, the BASIC
Stamp works from the innermost parentheses outward. Parentheses
placed within parentheses are called nested parentheses.

The BASIC Stamp performs all math operations by the rules of positive
integer math. That is, it handles only whole numbers, and drops any
fractional portions from the results of computations. The BASIC Stamp
handles negative numbers using two's complement rules.

The BS2, BS2e, BS2sx and BS2p can interpret two’s complement negative
numbers correctly in DEBUG and SEROUT instructions using modifiers
like SDEC (for signed decimal). In calculations, however, it assumes that
all values are positive. This yields correct results with two’s complement
negative numbers for addition, subtraction, and multiplication, but not for
division.

The standard operators we just discussed: +, - ,* and / all work on two
values; as in 1 + 3 or 26 * 144. The values that operators process are
referred to as arguments. So we say that the add, subtract, multiply and
divide operators take two arguments.

Operators that take one argument are called unary operators and those
that take two are called binary operators. Please note that the term “binary
operator” has nothing to do with binary numbers; it’s just an inconvenient
coincidence that the same word, meaning ‘involving two things’ is used in
both cases.

The minus sign (-) is a bit of a hybrid, it can be used as a unary operator as
well: as in -4.

In classifying the BASIC Stamp's math and logic operators, we divide
them into two types: unary and binary. Unary operators take precedence
over binary; the unary operation is always performed first. For example,
on the BS2, BS2e, BS2sx and BS2p, SQR is the unary operator for square
root. In the expression 10 - SQR 16, the BASIC Stamp first takes the square
root of 16, then subtracts it from 10.

Most of the descriptions that follow say something like ‘computes (some
function) of a 16-bit value.’ This does not mean that the operator does not

1 2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

INTEGER MATH.

UNARY AND BINARY OPERATORS.

NOTES ABOUT THE 16-BIT

WORKSPACE.

4: BASIC Stamp Architecture – Math and Operators

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 63

work on smaller byte or nibble values. It just means that the computation
is done in a 16-bit workspace. If the value is smaller than 16 bits, the
BASIC Stamp pads it with leading 0s to make a 16-bit value. If the 16-bit
result of a calculation is to be packed into a smaller variable, the higher-
order bits are discarded (truncated).

Keep this in mind, especially when you are working with two’s
complement negative numbers, or moving values from a larger variable to
a smaller one. For example, look at what happens when you move a two’s
complement negative number into a byte (rather than a word):

Value VAR BYTE
Value = - 99
DEBUG SDEC ? Value ' Show signed decimal result (157).

How did -99 become 157? Let’s look at the bits: 99 is %01100011 binary.
When the BASIC Stamp negates 99, it converts the number to 16 bits
%0000000001100011, and then takes the two’s complement,
%1111111110011101. Since we’ve asked for the result to be placed in an 8-
bit (byte) variable, the upper eight bits are truncated and the lower eight
bits stored in the byte: %10011101.

Now for the second half of the story. DEBUG’s SDEC modifier (on the BS2,
BS2e, BS2sx and BS2p) expects a 16-bit, two’s complement value, but
we've only given it a byte to work with. As usual, it creates a 16-bit value
by padding the leading eight bits with 0s: %0000000010011101. And what’s
that in signed decimal? 157.

Table 4.5 lists the available Unary Operators. Note: the BS1 only supports
negative (-).

Operator Description Supported By:
ABS Returns absolute value All except BS1

COS Returns cosine in two's compliment
binary radians

All except BS1

DCD 2n-power decoder All except BS1
~ Inverse All except BS1
- Negative All

NCD Priority encoder of a 16-bit value All except BS1

SIN Returns sine in two's compliment
binary radians

All except BS1

SQR Returns square root of value All except BS1

1 2 e
2

sx
2

p
2

UNARY OPERATORS.

Table 4.5: Unary Operators. Note:
the BS1 only supports the negative
(-) unary operator.

2 e
2

sx
2

p
2

BASIC Stamp Architecture – ABS, COS, DCD, ~, -

Page 64 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

The Absolute Value operator (ABS) converts a signed (two’s complement)
16-bit number to its absolute value. The absolute value of a number is a
positive number representing the difference between that number and 0.
For example, the absolute value of -99 is 99. The absolute value of 99 is
also 99. ABS works on two’s complement negative numbers. Examples of
ABS at work:

Result VAR WORD
Result = -99 ' Put -99 (2's complement format) into Result.
DEBUG SDEC ? Result ' Display it on the screen as a signed #.
DEBUG SDEC ? ABS Result ' Display it on the screen as a signed #.

The Cosine operator (COS) returns the two’s complement, 16-bit cosine of
an angle specified as an 8-bit (0 to 255) angle. See the explanation of the
SIN operator, below. COS is the same in all respects, except that the cosine
function returns the x distance instead of the y distance. To demonstrate
the COS operator, use the example program from SIN, below, but
substitute COS for SIN.

The Decoder operator (DCD) is a 2n-power decoder of a four-bit value.
DCD accepts a value from 0 to 15, and returns a 16-bit number with the
bit, described by value, set to 1. For example:

Result VAR WORD
Result = DCD 12 ' Set bit 12.
DEBUG BIN ? Result ' Display result (%0001000000000000)

The Inverse operator (~) complements (inverts) the bits of a number. Each
bit that contains a 1 is changed to 0 and each bit containing 0 is changed to
1. This process is also known as a “bitwise NOT” and one's compliment.
For example:

Result VAR BYTE
Result = %11110001 ' Store bits in byte Result.
DEBUG BIN ? Result ' Display in binary (%11110001).
Result = ~ Result ' Complement Result.
DEBUG BIN ? Result ' Display in binary (%00001110).

The Negative operator (-) negates a 16-bit number (converts to its two’s
complement).

SYMBOL Result = W1
Result = -99 ' Put -99 (2's complement format) into Result.
Result = Result + 100 ' Add 100 to it.
DEBUG Result ' Display Result (1)

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

1 2 e
2

sx
2

p
2

1

ABSOLUTE VALUE: ABS

COSINE: COS

DECODER: DCD

INVERSE: ~

NEGATIVE: -

4: BASIC Stamp Architecture – NCD, SIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 65

-- or --

Result VAR WORD
Result = 99 ' Put -99 (2's complement format) into Result.
DEBUG SDEC ? Result ' Display it on the screen as a signed #.
Result = - Result ' Negate the value
DEBUG SDEC ? Result ' Display it on the screen as a signed #.

The Encoder operator (NCD) is a "priority" encoder of a 16-bit value. NCD
takes a 16-bit value, finds the highest bit containing a 1 and returns the bit
position plus one (1 through 16). If no bit is set (the input value is 0) NCD
returns 0. NCD is a fast way to get an answer to the question “what is the
largest power of two that this value is greater than or equal to?” The
answer NCD returns will be that power, plus one. Example:

Result VAR WORD
Result = %1101 ' Highest bit set is bit 3.
DEBUG ? NCD Result ' Show the NCD of Result (4).

The Sine operator (SIN) returns the two’s complement, 16-bit sine of an
angle specified as an 8-bit (0 to 255) angle. To understand the SIN operator
more completely, let’s look at a typical sine function. By definition: given a
circle with a radius of 1 unit (known as a unit circle), the sine is the y-
coordinate distance from the center of the circle to its edge at a given
angle. Angles are measured relative to the 3-o'clock position on the circle,
increasing as you go around the circle counterclockwise.

At the origin point (0 degrees) the sine is 0, because that point has the
same y (vertical) coordinate as the circle center. At 45 degrees the sine is
0.707. At 90 degrees, sine is 1. At 180 degrees, sine is 0 again. At 270
degrees, sine is -1.

The BASIC Stamp SIN operator breaks the circle into 0 to 255 units instead
of 0 to 359 degrees. Some textbooks call this unit a binary radian or brad.
Each brad is equivalent to 1.406 degrees. And instead of a unit circle,
which results in fractional sine values between 0 and 1, BASIC Stamp SIN
is based on a 127-unit circle. Results are given in two’s complement form
in order to accommodate negative values. So, at the origin, SIN is 0. At 45
degrees (32 brads), sine is 90. At 90 degrees (64 brads), sine is 127. At 180
degrees (128 brads), sine is 0. At 270 degrees (192 brads), sine is -127.

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

ENCODER: NCD

SINE: SIN

BASIC Stamp Architecture – SQR

Page 66 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

To convert brads to degrees, multiply by 180 then divide by 128. To
convert degrees to brads, multiply by 128, then divide by 180. Here’s a
small program that demonstrates the SIN operator:

Degr VAR WORD ' Define variables.
Sine VAR WORD
FOR Degr = 0 TO 359 STEP 45 ' Use degrees.
 Sine = SIN (Degr * 128 / 180) ' Convert to brads, do SIN.
 DEBUG "Angle: ", DEC Degr, TAB, "Sine: ", SDEC Sine, CR ' Display.
NEXT

The Square Root operator (SQR) computes the integer square root of an
unsigned 16-bit number. (The number must be unsigned since the square
root of a negative number is an ‘imaginary’ number.) Remember that most
square roots have a fractional part that the BASIC Stamp discards when
doing its integer-only math. So it computes the square root of 100 as 10
(correct), but the square root of 99 as 9 (the actual is close to 9.95).
Example:

DEBUG SQR 100 ' Display square root of 100 (10).
DEBUG SQR 99 ' Display of square root of 99 (9 due to truncation)

Table 4.6 lists the available Binary (two-argument) Operators.

Operator Description Supported By:
+ Addition All
- Subtraction All
* Multiplication All
** Multiplication (returns upper 16-bits) All
*/ Multiply by 8-bit integer, 8-bit fraction All except BS1
/ Division All
// Modulus (Remainder of division) All

MIN Limits a value to a specified low All
MAX Limits a value to a specified high All
DIG Returns specified digit of number All except BS1
<< Shift bits left by specified amount All except BS1
>> Shift bits right by specified amount All except BS1

REV Reverse specified number of bits All except BS1
& Bitwise AND All
| Bitwise OR All
^ Bitwise XOR All
&/ Logical AND NOT Only BS1
|/ Logical OR NOT Only BS1
^/ Logical XOR NOT Only BS1

2 e
2

sx
2

p
2

SQUARE ROOT: SQR

BINARY OPERATORS.

Table 4.6: Binary Operators. Note:
some binary operators are not
supported by all BASIC Stamps.

4: BASIC Stamp Architecture – +, -, *

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 67

The Addition operator (+) adds variables and/or constants, returning a 16-
bit result. Works exactly as you would expect with unsigned integers from
0 to 65535. If the result of addition is larger than 65535, the carry bit will be
lost. If the values added are signed 16-bit numbers and the destination is a
16-bit variable, the result of the addition will be correct in both sign and
value. For example:

SYMBOL Value1 = W0
SYMBOL Value2 = W1
Value1= - 99
Value2= 100
Value1= Value1 + Value2 ' Add the numbers.
DEBUG Value1 ' Show the result (1).

-- OR --

Value1 VAR WORD
Value2 VAR WORD
Value1= - 1575
Value2= 976
Value1= Value1 + Value2 ' Add the numbers.
DEBUG SDEC ? Value1 ' Show the result (-599).

The Subtraction operator (-) subtracts variables and/or constants,
returning a 16-bit result. Works exactly as you would expect with
unsigned integers from 0 to 65535. If the result is negative, it will be
correctly expressed as a signed 16-bit number. For example:

SYMBOL Value1 = W0
SYMBOL Value2 = W1
Value1= 199
Value2= 100
Value1= Value1 - Value2 ' Subtract the numbers.
DEBUG Value1 ' Show the result (99).

-- OR --

Value1 VAR WORD
Value2 VAR WORD
Value1= 1000
Value2= 1999
Value1= Value1 - Value2 ' Subtract the numbers.
DEBUG SDEC ? Value1 ' Show the result (-999).

The Multiply operator (*) multiplies variables and/or constants, returning
the low 16 bits of the result. Works exactly as you would expect with
unsigned integers from 0 to 65535. If the result of multiplication is larger

1 2 e
2

sx
2

p
2

1

2 e
2

sx
2

p
2

1 2 e
2

sx
2

p
2

1

2 e
2

sx
2

p
2

ADD: +

SUBTRACT: -

MULTIPLY: *

1 2 e
2

sx
2

p
2

BASIC Stamp Architecture – **, */

Page 68 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

than 65535, the excess bits will be lost. Multiplication of signed variables
will be correct in both number and sign, provided that the result is in the
range -32767 to +32767.

SYMBOL Value1 = W0
SYMBOL Value2 = W1
Value1= 1000
Value2= 19
Value1= Value1 * Value2 ' Multiply Value1 by Value2.
DEBUG Value1 ' Show the result (19000).

-- or --

Value1 VAR WORD
Value2 VAR WORD
Value1= 1000
Value2= - 19
Value1= Value1 * Value2 ' Multiply Value1 by Value2.
DEBUG SDEC ? Value1 ' Show the result (-19000).

The Multiply High operator (**) multiplies variables and/or constants,
returning the high 16 bits of the result. When you multiply two 16-bit
values, the result can be as large as 32 bits. Since the largest variable
supported by PBASIC is 16 bits, the highest 16 bits of a 32-bit
multiplication result are normally lost. The ** (double-star) instruction
gives you these upper 16 bits. For example, suppose you multiply 65000
($FDE8) by itself. The result is 4,225,000,000 or $FBD46240. The * (star, or
normal multiplication) instruction would return the lower 16 bits, $6240.
The ** instruction returns $FBD4.

SYMBOL Value1 = W0
SYMBOL Value2 = W1
Value1= $FDE8
Value2= Value1 ** Value1 ' Multiply $FDE8 by itself
DEBUG $Value2 ' Return high 16 bits.

-- or --

Value1 VAR WORD
Value2 VAR WORD
Value1= $FDE8
Value2= Value1 ** Value1 ' Multiply $FDE8 by itself
DEBUG HEX ? Value2 ' Return high 16 bits.

The Multiply Middle operator (*/) multiplies variables and/or constants,
returning the middle 16 bits of the 32-bit result. This has the effect of
multiplying a value by a whole number and a fraction. The whole number

1

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

1

2 e
2

sx
2

p
2

MULTIPLY HIGH: **

MULTIPLY MIDDLE: */

1 2 e
2

sx
2

p
2

4: BASIC Stamp Architecture – /

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 69

is the upper byte of the multiplier (0 to 255 whole units) and the fraction is
the lower byte of the multiplier (0 to 255 units of 1/256 each). The */ (star-
slash) instruction gives you an excellent workaround for the BASIC
Stamp's integer-only math. Suppose you want to multiply a value by 1.5.
The whole number, and therefore the upper byte of the multiplier, would
be 1, and the lower byte (fractional part) would be 128, since 128/256 = 0.5.
It may be clearer to express the */ multiplier in hex—as $0180—since hex
keeps the contents of the upper and lower bytes separate. Here's an
example:

Value1 VAR WORD
Value1= 100
Value1= Value1*/ $0180 ' Multiply by 1.5 [1 + (128/256)]
debug ? Value1 ' Show result (150).

To calculate constants for use with the */ instruction, put the whole
number portion in the upper byte, then use the following formula for the
value of the lower byte: Hint: INT(fraction * 256). For instance, take Pi (π,
3.14159). The upper byte would be $03 (the whole number), and the lower
would be INT(0.14159 * 256) = 36 ($24). So the constant Pi for use with */
would be $0324. This isn’t a perfect match for Pi, but the error is only
about 0.1%.

The Divide operator (/) divides variables and/or constants, returning a
16-bit result. Works exactly as you would expect with unsigned integers
from 0 to 65535. Use / only with positive values; signed values do not
provide correct results. Here’s an example of unsigned division:

SYMBOL Value1 = W0
SYMBOL Value2 = W1
Value1= 1000
Value2= 5
Value1= Value1 / Value2 ' Divide the numbers.
DEBUG Value1 ' Show the result (200).

-- OR --

Value1 VAR WORD
Value2 VAR WORD
Value1= 1000
Value2= 5
Value1= Value1 / Value2 ' Divide the numbers.
DEBUG DEC ? Value1 ' Show the result (200).

1

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

DIVIDE: /

1 2 e
2

sx
2

p
2

BASIC Stamp Architecture – //, MIN

Page 70 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

A workaround to the inability to divide signed numbers is to have your
program divide absolute values, then negate the result if one (and only
one) of the operands was negative. All values must lie within the range of
-32767 to +32767. Here is an example:

Sign VAR BIT ' Bit to hold the sign.
Value1 VAR WORD
Value2 VAR WORD
Value1 = 100
Value2 = - 3200

Sign = Value1.BIT15 ^ Value2.BIT15 ' Sign = (Value1 sign) XOR (Value1 sign).
Value2 = ABS Value2 / ABS Value1 ' Divide absolute values.
IF Sign = 0 THEN Skip0 ' Negate result if one of the
 Value2 = - Value2 ' argument was negative.
Skip0:
DEBUG SDEC ? Value2 ' Show the result (-32)

The Modulus operator (//) returns the remainder left after dividing one
value by another. Some division problems don’t have a whole-number
result; they return a whole number and a fraction. For example, 1000/6 =
166.667. Integer math doesn’t allow the fractional portion of the result, so
1000/6 = 166. However, 166 is an approximate answer, because 166*6 =
996. The division operation left a remainder of 4. The // (double-slash)
returns the remainder of a given division operation. Naturally, numbers
that divide evenly, such as 1000/5, produce a remainder of 0. Example:

SYMBOL Value1 = W0
SYMBOL Value2 = W1
Value1= 1000
Value2= 6
Value1= Value1 // Value2 ' Get remainder of Value1 / Value2.
DEBUG Value1 ' Show the result (4).

-- or --

Value1 VAR WORD
Value2 VAR WORD
Value1= 1000
Value2= 6
Value1= Value1 // Value2 ' Get remainder of Value1 / Value2.
DEBUG DEC ? Value1 ' Show the result (4).

The Minimum operator (MIN) limits a value to a specified 16-bit positive
minimum. The syntax of MIN is:

2 e
2

sx
2

p
2

1

2 e
2

sx
2

p
2

MODULUS: //

MINIMUM: MIN

1 2 e
2

sx
2

p
2

1 2 e
2

sx
2

p
2

4: BASIC Stamp Architecture – MAX

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 71

Value MIN Limit

Where Value is a constant or variable value to perform the MIN function
upon and Limit is the minimum value that Value is allowed to be. Its logic
is, ‘if Value is less than Limit, then make result = Limit; if Value is greater
than or equal to Limit, make result = Value.’ MIN works in positive math
only; its comparisons are not valid when used on two’s complement
negative numbers, since the positive-integer representation of a number
like -1 ($FFFF or 65535 in unsigned decimal) is larger than that of a
number like 10 ($000A or 10 decimal). Use MIN only with unsigned
integers. Because of the way fixed-size integers work, you should be
careful when using an expression involving MIN 0. For example, 0-1 MIN
0 will result in 65535 because of the way fixed-size integers wrap around.

SYMBOL Value1 = W0
SYMBOL Value2 = W1
FOR Value1= 100 TO 0 STEP -10 ' Walk value of Value1 from 100 to 0.
 Value2 = Value1 MIN 50 ' Use MIN to clamp at 50.
 DEBUG Value2 ' Show "clamped" value
NEXT

-- or --

Value1 VAR WORD
FOR Value1= 100 TO 0 STEP 10 ' Walk value of Value1 from 100 to 0.
 DEBUG ? Value1 MIN 50 ' Show Value1, but use MIN to clamp at 50.
NEXT

The Maximum operator (MAX) limits a value to a specified 16-bit positive
maximum. The syntax of MAX is:

Value MAX Limit

Where Value is a constant or variable value to perform the MAX function
upon and Limit is the maximum value that Value is allowed to be. Its logic
is, ‘if Value is greater than Limit, then make result = Limit; if Value is less
than or equal to Limit, make result = Value.’ MAX works in positive math
only; its comparisons are not valid when used on two’s complement
negative numbers, since the positive-integer representation of a number
like -1 ($FFFF or 65535 in unsigned decimal) is larger than that of a
number like 10 ($000A or 10 decimal). Use MAX only with unsigned
integers. Because of the way fixed-size integers work, you should be
careful when using an expression involving MAX 65535. For example,

1

2 e
2

sx
2

p
2

MAXIMUM: MAX

1 2 e
2

sx
2

p
2

BASIC Stamp Architecture – DIG, <<, >>

Page 72 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

65535+1 MAX 65535 will result in 0 because of the way fixed-size integers
wrap around.

SYMBOL Value1 = W0
SYMBOL Value2 = W1
FOR Value1= 0 TO 100 STEP 10 ' Walk value of Value1 from 0 to 100.
 Value2 = Value1 MAX 50 ' Use MAX to clamp at 50.
 DEBUG Value2 ' Show "clamped" value
NEXT

-- or --

Value1 VAR WORD
FOR Value1= 0 TO 100 STEP 10 ' Walk value of Value1 from 0 to 100.
 DEBUG ? Value1 MAX 50 ' Show Value1, but use MAX to clamp at 50.
NEXT

The Digit operator (DIG) returns the specified decimal digit of a 16-bit
positive value. Digits are numbered from 0 (the rightmost digit) to 4 (the
leftmost digit of a 16-bit number; 0 to 65535). Example:

Value VAR WORD
Idx VAR BYTE
Value = 9742
DEBUG ? Value DIG 2 ' Show digit 2 (7)

FOR Idx = 0 TO 4
 DEBUG ? Value DIG Idx ' Show digits 0 through 4 of 9742.
NEXT

The Shift Left operator (<<) shifts the bits of a value to the left a specified
number of places. Bits shifted off the left end of a number are lost; bits
shifted into the right end of the number are 0s. Shifting the bits of a value
left n number of times has the same effect as multiplying that number by 2
to the nth power. For instance 100 << 3 (shift the bits of the decimal number
100 left three places) is equivalent to 100 * 23. Here's an example:

Value VAR WORD
Idx VAR BYTE
Value = %1111111111111111
FOR Idx = 1 TO 16 ' Repeat with Idx = 1 to 16.
 DEBUG BIN ? Value << Idx ' Shift Value left Idx places.
NEXT

The Shift Right operator (>>) shifts the bits of a variable to the right a
specified number of places. Bits shifted off the right end of a number are
lost; bits shifted into the left end of the number are 0s. Shifting the bits of a

2 e
2

sx
2

p
2

1

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

DIGIT: DIG

SHIFT LEFT: <<

SHIFT RIGHT: >>

4: BASIC Stamp Architecture – REV, &, |

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 73

value right n number of times has the same effect as dividing that number
by 2 to the nth power. For instance 100 >> 3 (shift the bits of the decimal
number 100 right three places) is equivalent to 100 / 23. Here's an example:

Value VAR WORD
Idx VAR BYTE
Value = %1111111111111111
FOR Idx = 1 TO 16 ' Repeat with Idx = 1 to 16.
 DEBUG BIN ? Value >> Idx ' Shift Value right Idx places.
NEXT

The Reverse operator (REV) returns a reversed (mirrored) copy of a
specified number of bits of a value, starting with the rightmost bit (lsb).
For instance, %10101101 REV 4 would return %1011, a mirror image of the
first four bits of the value. Example:

DEBUG BIN ? %11001011 REV 4 ' Mirror 1st 4 bits (%1101)

The And operator (&) returns the bitwise AND of two values. Each bit of
the values is subject to the following logic:

0 AND 0 = 0
0 AND 1 = 0
1 AND 0 = 0
1 AND 1 = 1

The result returned by & will contain 1s in only those bit positions in
which both input values contain 1s. Example:

SYMBOL Value1 = B0
SYMBOL Value2 = B1
SYMBOL Result = B2
Value1 = %00001111
Value2 = %10101101
Result = Value1 & Value2
DEBUG %Result ' Show AND result (%00001101)

-- or --

DEBUG BIN ? %00001111 & %10101101 ' Show AND result (%00001101)

The OR operator (|) returns the bitwise OR of two values. Each bit of the
values is subject to the following logic:

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

1

REVERSE: REV

AND: &

OR: |

1 2 e
2

sx
2

p
2

1 2 e
2

sx
2

p
2

BASIC Stamp Architecture – ^

Page 74 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

0 OR 0 = 0
0 OR 1 = 1
1 OR 0 = 1
1 OR 1 = 1

The result returned by | will contain 1s in any bit positions in which one
or the other (or both) input values contain 1s. Example:

SYMBOL Value1 = B0
SYMBOL Value2 = B1
SYMBOL Result = B2
Value1 = %00001111
Value2 = %10101001
Result = Value1 | Value2
DEBUG %Result ' Show OR result (%10101111)

-- or --

DEBUG BIN ? %00001111 | %10101001 ' Show OR result (%10101111)

The Xor operator (^) returns the bitwise XOR of two values. Each bit of the
values is subject to the following logic:

0 XOR 0 = 0
0 XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0

The result returned by ^ will contain 1s in any bit positions in which one
or the other (but not both) input values contain 1s. Example:

SYMBOL Value1 = B0
SYMBOL Value2 = B1
SYMBOL Result = B2
Value1 = %00001111
Value2 = %10101001
Result = Value1 ^ Value2
DEBUG %Result ' Show OR result (%10100110)

-- or --

DEBUG BIN ? %00001111 ^ %10101001 ' Show XOR result (%10100110)

2 e
2

sx
2

p
2

1

2 e
2

sx
2

p
2

1

XOR: ^

1 2 e
2

sx
2

p
2

4: BASIC Stamp Architecture – &/, |/, ^/

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 75

The And Not operator (&/) returns the bitwise AND NOT of two values.
Each bit of the values is subject to the following logic:

0 AND NOT 0 = 0
0 AND NOT 1 = 0
1 AND NOT 0 = 1
1 AND NOT 1 = 0

The result returned by &/ will contain 1s in any bit positions in which the
first value is 1 and the second value is 0. Example:

SYMBOL Value1 = B0
SYMBOL Value2 = B1
SYMBOL Result = B2
Value1 = %00001111
Value2 = %10101001
Result = Value1 &/ Value2
DEBUG %Result ' Show AND NOT result (%00000110)

The Or Not operator (|/) returns the bitwise OR NOT of two values. Each
bit of the values is subject to the following logic:

0 OR NOT 0 = 1
0 OR NOT 1 = 0
1 OR NOT 0 = 1
1 OR NOT 1 = 1

The result returned by |/ will contain 1s in any bit positions in which the
first value is 1 or the second value is 0. Example:

SYMBOL Value1 = B0
SYMBOL Value2 = B1
SYMBOL Result = B2
Value1 = %00001111
Value2 = %10101001
Result = Value1 |/ Value2
DEBUG %Result ' Show OR NOT result (%01011111)

The Xor Not operator (^/) returns the bitwise XOR NOT of two values.
Each bit of the values is subject to the following logic:

1

1

1

1

1

AND NOT: &/

OR NOT: |/

XOR NOT: ^/

BASIC Stamp Architecture – ^/

Page 76 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

0 XOR NOT 0 = 1
0 XOR NOT 1 = 0
1 XOR NOT 0 = 0
1 XOR NOT 1 = 1

The result returned by ^/ will contain 1s in any bit positions in which the
first value and second values are equal. Example:

SYMBOL Value1 = B0
SYMBOL Value2 = B1
SYMBOL Result = B2
Value1 = %00001111
Value2 = %10101001
Result = Value1 ^/ Value2
DEBUG %Result ' Show OR NOT result (%01011001)

1

5: BASIC Stamp Command Reference

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 77

This chapter provides detail on all the available PBASIC instructions for
the BS1, BS2, BS2e, BS2sx and BS2p. The following icons will appear to
indicate where there are differences between versions of the BASIC Stamp:

One or more of these icons indicates the item
applies only to the BS1, BS2, BS2e, BS2sx or BS2p,
respectively.

All instructions listed below exist on all versions of the BASIC Stamp,
except where noted.

BRANCHING
 IF...THEN Compare and conditionally branch.

 BRANCH Branch to address specified by offset.

 GOTO Branch to address.

 GOSUB Branch to subroutine at address.

 RETURN Return from subroutine.

 RUN Switch execution to another program page.

 POLLRUN Switch execution to another program page upon the
occurrence of a polled interrupt.

LOOPING
 FOR...NEXT Establish a FOR-NEXT loop.

EEPROM ACCESS
 EEPROM Store data in EEPROM before downloading PBASIC

program.

 DATA Store data in EEPROM before downloading PBASIC
program.

 READ Read EEPROM byte into variable.

 WRITE Write byte into EEPROM.

 STORE Switch READ/WRITE access to different program
slot.

1 2 e
2

sx
2

p
2

p
2

1

e
2

sx
2

p
2

2 e
2

sx
2

p
2

p
2

BASIC Stamp Command Reference

Page 78 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

RAM ACCESS
 GET Read Scratch Pad RAM byte into variable.

 PUT Write byte into Scratch Pad RAM.

NUMERICS
 LET Optional instruction to perform variable

manipulation, such as A=5, B=A+2, etc. This
instruction is not required and only exists on the
BASIC Stamp 1.

 LOOKUP Lookup data specified by offset and store in
variable. This instruction provides a means to make
a lookup table.

 LOOKDOWN Find target’s match number (0-N) and store in
variable.

 RANDOM Generate a pseudo-random number.

DIGITAL I/O
 INPUT Make pin an input.

 OUTPUT Make pin an output.

 REVERSE Reverse direction of a pin. If pin is an output, make
it an input. If pin is an input, make it an output.

 LOW Make pin output low.

 HIGH Make pin output high.

 TOGGLE Make pin an output and toggle state.

 PULSIN Measure an input pulse.

 PULSOUT Output a timed pulse by inverting a pin for some
time.

 BUTTON Debounce button, perform auto-repeat, and branch
to address if button is in target state.

 COUNT Count cycles on a pin for a given amount of time.

 XOUT Generate X-10 power line control codes. For use
with TW523 or TW513 power line interface module.

 AUXIO Activates auxiliary I/O pins in place of main I/O.

 MAINIO Activates main I/O pins in place of auxiliary I/O.

1

p
2

p
2

e
2

sx
2

p
2

e
2

sx
2

p
2

e
2

sx
2

p
2

e
2

sx
2

p
2

5: BASIC Stamp Command Reference

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 79

 IOTERM Activates specified I/O pin group.

 POLLIN Specify pin and state for a polled-interrupt.

 POLLOUT Specify pin and state for output upon a polled-
interrupt.

 POLLMODE Specifies the polled-interrupt mode.

ASYNCHRONOUS SERIAL I/O
 SERIN Input data in an asynchronous serial stream.

 SEROUT Output data in an asynchronous serial stream.

 OWIN Input data from a 1-wire device.

 OWOUT Output data to a 1-wire device.

SYNCHRONOUS SERIAL I/O
 SHIFTIN Shift data in from synchronous serial device.

 SHIFTOUT Shift data out to synchronous serial device.

 I2CIN Input data in from I2C serial device.

 I2COUT Output data out toI2C serial device.

PARALLEL I/O
 LCDCMD Writes a command to an LCD.

 LCDIN Reads data from an LCD.

 LCDOUT Writes data to an LCD.

ANALOG I/O
 PWM Output PWM, then return pin to input. This can be

used to output analog voltages (0-5V) using a
capacitor and resistor.

 POT Read a 5K - 50K ohm potentiometer and scale result.

 RCTIME Measure an RC charge/discharge time. Can be used
to measure potentiometers.

TIME
 PAUSE Pause execution for 0–65535 milliseconds.

 POLLWAIT Pause until a polled-interrupt occurs.

p
2

p
2

p
2

p
2

p
2

p
2

p
2

p
2

p
2

p
2

p
2

1

p
2

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

BASIC Stamp Command Reference

Page 80 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

SOUND
 SOUND Generate tones or white noise.

 FREQOUT Generate one or two sine waves of specified
frequencies.

 DTMFOUT Generate DTMF telephone tones.

POWER CONTROL
 NAP Nap for a short period. Power consumption is

reduced.

 SLEEP Sleep for 1-65535 seconds. Power consumption is
reduced.

 END Sleep until the power cycles or the PC connects.
Power consumption is reduced.

PROGRAM DEBUGGING
 DEBUG Send information to the PC for viewing.

1
2 e

2
sx
2

p
2

2 e
2

sx
2

p
2

5: BASIC Stamp Command Reference - AUXIO

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 81

AUXIO BS1 BS2 BS2e BS2sx BS2p

AUXIO
Function
Switch from control of main I/O pins to auxiliary I/O pins (on the BS2p40
only).
Quick Facts

 BS2p

I/O pin IDs 0 – 15 (just like main I/O, but after AUXIO command, all references affect
physical pins 21 – 36).

Special notes Both the BS2p24 and the BS2p40 accept this command, however, only
the BS2p40 gives access to the auxiliary I/O pins.

Explanation
The BS2p is available in two module styles, 1) a 24-pin module (called the
BS2p24) that is pin compatible with the BS2, BS2e and BS2sx and 2) a 40-
pin module (called the BS2p40) that has an additional 16 I/O pins (for a
total of 32). The BS2p40's extra, or auxiliary, I/O pins can be accessed in
the same manner as the main I/O pins (by using the IDs 0 to 15) but only
after issuing an AUXIO or IOTERM command. The AUXIO command
causes the BASIC Stamp to affect the auxiliary I/O pins instead of the
main I/O pins in all further code until the MAINIO command is reached,
or the BASIC Stamp is reset or power-cycled.

The following example illustrates this:

HIGH 0
AUXIO
LOW 0

The first line of the above example will set I/O pin 0 of the main I/O pins
(physical pin 5) high. Afterward, the AUXIO command tells the BASIC
Stamp that all commands following it should affect the auxiliary I/O pins.
The following LOW command will set I/O pin 0 of the auxiliary I/O pins
(physical pin 21) low.

Note that the main I/O and auxiliary I/O pins are independent of each
other; the states of the main I/O pins remain unchanged while the
program affects the auxiliary I/O pins, and vice versa.

Other commands that affect I/O group access are MAINIO and IOTERM.

Table 5.1: AUXIO Quick Facts.

p
2

A SIMPLE AUXIO EXAMPLE.

MAIN I/O AND AUXILIARY I/O PINS ARE
INDEPENDENT AND UNAFFECTED BY

CHANGES IN THE OPPOSITE GROUP.

AUXIO - BASIC Stamp Command Reference

Page 82 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Demo Program (AUX_MAIN_TERM.bsp)
' This program demonstrates the use of the AUXIO, MAINIO and IOTERM commands to
' affect I/O pins in the auxiliary and main I/O groups.

'{$STAMP BS2p} 'STAMP directive (specifies a BS2p)

Port VAR BIT

Loop:
 MAINIO 'Switch to main I/O pins
 TOGGLE 0 'Toggle state of I/O pin 0 (physical pin 5)
 PWM 1, 100, 40 'Generate PWM on I/O pin 1 (physical pin 6)

 AUXIO 'Switch to auxiliary I/O pins
 TOGGLE 0 'Toggle state of I/O pin 0 (physical pin 21)
 PULSOUT 1, 1000 'Generate a pulse on I/O pin 1 (physical pin 22)
 PWM 2, 100, 40 'Generate PWM on I/O pin 2 (physical pin 23)

 IOTERM Port 'Switch to main or aux I/Os (depending on Port)
 TOGGLE 3 'Toggle state of I/O pin 3 (on main and aux, alternately)
 Port = ~Port 'Invert port (switch between 0 and 1)
 PAUSE 1000
GOTO Loop

p
2

NOTE: This is written for the BS2p
but its effects can only be seen on
the 40-pin version: the BS2p40.

5: BASIC Stamp Command Reference - BRANCH

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 83

BRANCH BS1 BS2 BS2e BS2sx BS2p

BRANCH Offset, (Address0, Address1, ...AddressN)
BRANCH Offset, [Address0, Address1, ...AddressN]

Function
Go to the address specified by offset (if in range).

• Offset is a variable/constant/expression (0 – 255) that specifies the
index of the address, in the list, to branch to (0 – N).

• Addresses are labels that specify where to go. BRANCH will ignore
any list entries beyond offset 255.

Quick Facts
 BS1 BS2, BS2e, BS2sx and BS2p

Limit of
Address
entries

Limited only by memory 256

Explanation
The BRANCH instruction is useful when you want to write something like
this:

IF value = 0 THEN case_0 ' value =0: go to label "case_0"
IF value = 1 THEN case_1 ' value =1: go to label "case_1"
IF value = 2 THEN case_2 ' value =2: go to label "case_2"

You can use BRANCH to organize this into a single statement:

BRANCH value, [case_0, case_1, case_2]

This works exactly the same as the previous IF...THEN example. If the
value isn’t in range (in this case if value is greater than 2), BRANCH does
nothing and the program continues with the next instruction after
BRANCH.

BRANCH can be teamed with the LOOKDOWN instruction to create a
simplified SELECT CASE statement. See LOOKDOWN for an example.

BS1 syntax not shown here.

1
2 e

2
sx
2

p
2

1

1
NOTE: Expressions are not
allowed as arguments on the BS1.

Table 5.2: BRANCH Quick Facts.

BRANCH - BASIC Stamp Command Reference

Page 84 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Demo Program (BRANCH.bas)
This program shows how the value of Idx controls the destination of the BRANCH instruction.

'{$STAMP BS1} ‘STAMP directive (specifies a BS1)
SYMBOL Idx = B0

Start:
FOR Idx = 0 to 3
 DEBUG “Idx: “, #Idx
 BRANCH Idx, (Case0, Case1, Case2) ‘If Idx = 0..2 branch to specified label
GOTO Start 'If Idx>2 then Start.

Case0:
 DEBUG “Branched to Case0”,cr
GOTO Start

Case1:
 DEBUG “Branched to Case1”,cr
GOTO Start

Case2:
 DEBUG “Branched to Case2”,cr
GOTO Start

Demo Program (BRANCH.bs2)
This program shows how the value of Idx controls the destination of the BRANCH instruction.

'{$STAMP BS2} ‘STAMP directive (specifies a BS2)
Idx VAR BYTE

Start:
FOR Idx = 0 to 3
 DEBUG “Idx: “, DEC Idx
 BRANCH Idx, [Case0, Case1, Case2] ‘If Idx = 0..2 branch to specified label
GOTO Start 'If Idx>2 then Start.

Case0:
 DEBUG “Branched to Case0”,cr
GOTO Start

Case1:
 DEBUG “Branched to Case1”,cr
GOTO Start

Case2:
 DEBUG “Branched to Case2”,cr
GOTO Start

1

2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS2e, BS2sx or
BS2p.

5: BASIC Stamp Command Reference - BUTTON

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 85

BUTTON BS1 BS2 BS2e BS2sx BS2p

BUTTON Pin, DownState, Delay, Rate, Workspace, TargetState, Address

Function
Debounce button input, perform auto-repeat, and branch to address if
button is in target state. Button circuits may be active-low or active-high.

• Pin is a variable/constant/expression (0–15) that specifies the I/O
pin to use. This pin will be set to input mode.

• DownState is a variable/constant/expression (0 or 1) that specifies
which logical state occurs when the button is pressed.

• Delay is a variable/constant/expression (0 – 255) that specifies how
long the button must be pressed before auto-repeat starts. The delay
is measured in cycles of the Button routine. Delay has two special
settings: 0 and 255. If Delay is 0, Button performs no debounce or
auto-repeat. If Delay is 255, Button performs debounce, but no auto-
repeat.

• Rate is a variable/constant/expression (0 – 255) that specifies the
number of cycles between auto-repeats. The rate is expressed in
cycles of the BUTTON routine.

• Workspace is a byte variable used by BUTTON for workspace. It
must be cleared to 0 before being used by BUTTON for the first time
and should not be adjusted outside of the BUTTON command.
NOTE: All RAM is cleared to 0 by default upon power-up or reset
of the BASIC Stamp.

• TargetState is a variable/constant/expression (0 or 1) that specifies
which state the button should be in for a branch to occur. (0=not
pressed, 1=pressed)

• Address is a label that specifies where to branch if the button is in the
target state.

Explanation
When you press a button or flip a switch, the contacts make or break a
connection. A brief (1 to 20-ms) burst of noise occurs as the contacts scrape
and bounce against each other. BUTTON’s debounce feature prevents this
noise from being interpreted as more than one switch action. (For a

1 2 e
2

sx
2

p
2

1
NOTE: Expressions are not
allowed as arguments on the BS1.
The range of the Pin argument on
the BS1 is 0 – 7.

BUTTON - BASIC Stamp Command Reference

Page 86 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

demonstration of switch bounce, see the demo program for the Count
instruction.)

BUTTON also lets PBASIC react to a button press the way your computer
keyboard does to a key press. When you press a key, a character
immediately appears on the screen. If you hold the key down, there’s a
delay, then a rapid-fire stream of characters appears on the screen.
BUTTON’s auto-repeat function can be set up to work much the same
way.

BUTTON is designed for use inside a program loop. Each time through
the loop, BUTTON checks the state of the specified pin. When it first
matches DownState, BUTTON debounces the switch. Then, in accordance
with TargetState, it either branches to address (TargetState = 1) or doesn’t
(TargetState = 0).

If the switch stays in DownState, BUTTON counts the number of program
loops that execute. When this count equals Delay, BUTTON once again
triggers the action specified by TargetState and address. Hereafter, if the
switch remains in DownState, BUTTON waits Rate number of cycles
between actions. The Workspace variable is used by BUTTON to keep
track of how many cycles have occurred since the pin switched to
TargetState or since the last auto-repeat.

BUTTON does not stop program execution. In order for its delay and auto
repeat functions to work properly, BUTTON must be executed from
within a program loop.

Figure 5.1: Sample BUTTON
circuits. Active-high (left) and
active-low (right).

to I/O pin
PB Switch

10 kΩ

Vdd

Vss

active-high
(downstate = 1)

to I/O pin
PB Switch

10 kΩ

Vdd

Vss

active-low
(downstate = 0)

5: BASIC Stamp Command Reference - BUTTON

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 87

Demo Program (BUTTON.bas)
Connect the active-low circuit shown in Figure 5.1 to pin P0 of the BS1. When you press the
button, the Debug screen will display an asterisk (*). Feel free to modify the program to see
the effects of your changes on the way BUTTON responds.

'{$STAMP BS1} ‘STAMP directive (specifies a BS1)
SYMBOL BtnWrk = B0 ' Workspace for BUTTON instruction.

Loop:
 ' Try changing the Delay value (255) in BUTTON to see the effect of
 ' its modes: 0=no debounce; 1-254=varying delays before auto-repeat;
 ' 255=no auto-repeat (one action per button press).
 BUTTON 0,0,255,250,BtnWk,0,NoPress ' Go to NoPress unless P0 = 0.
 DEBYG "* "
NoPress:
 GOTO Loop ' Repeat endlessly.

Demo Program (BUTTON.bs2)
Connect the active-low circuit shown in Figure 5.1 to pin P0 of the BS2. When you press the
button, the Debug screen will display an asterisk (*). Feel free to modify the program to see
the effects of your changes on the way BUTTON responds.

'{$STAMP BS2} ‘STAMP directive (specifies a BS2)
BtnWrk VAR BYTE ' Workspace for BUTTON instruction.

Loop:
 ' Try changing the Delay value (255) in BUTTON to see the effect of
 ' its modes: 0=no debounce; 1-254=varying delays before auto-repeat;
 ' 255=no auto-repeat (one action per button press).
 BUTTON 0,0,255,250,BtnWk,0,NoPress ' Go to NoPress unless P0 = 0.
 debug "* "
NoPress:
 GOTO Loop

1

2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS2e, BS2sx or
BS2p.

BUTTON - BASIC Stamp Command Reference

Page 88 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

5: BASIC Stamp Command Reference - COUNT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 89

COUNT BS1 BS2 BS2e BS2sx BS2p

COUNT Pin, Period, Variable

Function
Count the number of cycles (0-1-0 or 1-0-1) on the specified pin during the
Period time frame and store that number in Variable.

• Pin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to use. This pin will be set to input mode.

• Period is a variable/constant/expression (1 – 65535) specifying the
time during which to count. The unit of time for Period is described
in Table 5.3.

• Variable is a variable (usually a word) in which the count will be
stored.

Quick Facts
 BS2 BS2e BS2sx BS2p

Units in Period 1 ms 1 ms 400 µs 287 µs

Period range 1 ms to
65.535 s

1 ms to
65.535 s

400 µs to
26.214 s

287 µs to
18.809 s

Minimum pulse
width

4.16 µs 4.16 µs 1.66 µs 1.20 µs

Maximum
frequency

(square wave)
120,000 Hz 120,000 Hz 300,000 Hz 416,700 Hz

Explanation
The COUNT instruction makes the Pin an input, then for the specified
period of time, counts cycles on that pin and stores the total in a variable.
A cycle is a change in state from 1 to 0 to 1, or from 0 to 1 to 0.

According to Table 5.3, COUNT on the BS2 can respond to transitions
(pulse widths) as small as 4.16 microseconds (µs). A cycle consists of two
transitions (e.g., 0 to 1, then 1 to 0), so COUNT (on the BS2) can respond to
square waves with periods as short as 8.32 µs; up to 120 kilohertz (kHz) in
frequency. For non-square waves (those whose high time and low time are
unequal), the shorter of the high and low times must be at least 4.16 µs in
width (on the BS2). Refer to Table 5.3 for data on other BASIC Stamps.

2 e
2

sx
2

p
2

Table 5.3: COUNT Quick Facts.
NOTE: All timing values are
approximate.

COUNT - BASIC Stamp Command Reference

Page 90 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

If you use COUNT on slowly changing analog waveforms like sine waves,
you may find that the value returned is higher than expected. This is
because the waveform may pass through the BASIC Stamp’s 1.4-volt logic
threshold slowly enough that noise causes false counts. You can fix this by
passing the signal through a Schmitt Trigger, like one of the inverters of a
74HCT14.

Demo Program (COUNT.bs2)
Connect the active-low circuit shown in Figure 5.1 (BUTTON instruction) to pin P0 of the BS2.
The Debug screen will prompt you to press the button as quickly as possible for a 1-second
count. When the count is done, the screen will display your “score,” the total number of
cycles registered by COUNT. Note that this score will almost always be greater than the
actual number of presses because of switch bounce.

'{$STAMP BS2} ‘STAMP directive (specifies a BS2)
Cycles var word ' Variable to store counted cycles.

Loop:
 DEBUG cls,"How many times can you press the button in 1 second?",cr
 PAUSE 1000
 DEBUG "Ready, set... "
 PAUSE 500
 DEBUG "GO!",cr
 COUNT 0,1000,Cycles
 DEBUG cr,"Your score: ", DEC Cycles,cr
 PAUSE 3000
 DEBUG "Press button to go again."
Hold:
 IF IN0 = 1 THEN Hold
GOTO Loop

2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also (with
modifications). Locate the proper
source code file or modify the
STAMP directive and the period of
the COUNT command before
downloading to the BS2e, BS2sx or
BS2p.

5: BASIC Stamp Command Reference - DATA

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 91

DATA BS1 BS2 BS2e BS2sx BS2p

(See EEPROM)
{Symbol} DATA DataItem {, DataItem…}

Function
Write data to the EEPROM during program download.

• Symbol is an optional, unique symbol name that will be
automatically defined as a constant equal to the location number of
the first data item.

• DataItem is a constant/expression (0 – 65535) indicating a value or
how to store a value.

Explanation
When you download a program into the BASIC Stamp, it is stored in the
EEPROM starting at the highest address (2047) and working towards the
lowest address. Most programs don’t use the entire EEPROM, so the
lower portion is available for other uses. The DATA directive allows you
to define a set of data to store in the available EEPROM locations. It is
called a “directive” rather than a “command” because it performs an
activity at compile-time rather than at run-time (ie: the DATA directive is
not downloaded to the BASIC Stamp, but the data it contains is
downloaded).

The simplest form of the DATA directive is something like the following:

DATA 100, 200, 52, 45

This example, when downloaded, will cause the values 100, 200, 52 and 45
to be written to EEPROM locations 0, 1, 2 and 3, respectively. You can
then use the READ and WRITE commands in your code to access these
locations and the data you’ve stored there.

DATA uses a counter, called a pointer, to keep track of available EEPROM
addresses. The value of the pointer is initially 0. When a program is
downloaded, the DATA directive stores the first byte value at the current
pointer address, then increments (adds 1 to) the pointer. If the program
contains more than one DATA directive, subsequent DATAs start with the
pointer value left by the previous DATA. For example, if the program
contains:

1
2 e

2
sx
2

p
2

WRITING SIMPLE, SEQUENTIAL DATA.

THE DATA POINTER (COUNTER).

DATA - BASIC Stamp Command Reference

Page 92 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

DATA 72, 69, 76, 76, 79
DATA 104, 101, 108, 108, 111

The first DATA directive will start at location 0 and increment the pointer
for each data value it stores (1, 2, 3, 4 and 5). The second DATA directive
will start with the pointer value of 5 and work upward from there. As a
result, the first 10 bytes of EEPROM will look like the following:

 EEPROM Location (address)
 0 1 2 3 4 5 6 7 8 9
Contents 72 69 76 76 79 104 101 108 108 111

What if you don’t want to store values starting at location 0? Fortunately,
the DATA directive has an option to specify the next location to use. You
can specify the next location number (to set the pointer to) by inserting a
DataItem in the form @x ;where x is the location number. The following
code writes the same data in Table 5.4 to locations 100 through 109:

DATA @100, 72, 69, 76, 76, 79, 104, 101, 108, 108, 111

In this example, the first DataItem is @100. This tells the DATA directive to
store the following DataItem(s) starting at location 100. All the DataItems to
the right of the @100 are stored in their respective locations (100, 101,
102… 109).

In addition, the DATA directive allows you to specify new starting
locations at any time within the DataItem list. If, for example, you wanted
to store 56 at location 100 and 47 at location 150 (while leaving every other
location intact), you could type the following:

DATA @100, 56, @150, 47

If you have multiple DATA directives in your program, it may be difficult
to remember exactly what locations contain the desired data. For this
reason, the DATA directive can optionally be prefixed with a unique
symbol name. This symbol becomes a constant that is set equal to the
location number of the first byte of data within the directive. For example,

MyNumbers DATA @100, 72, 73

This would store the values 72 and 73 starting with location 100 and will
create a constant, called MyNumbers, which is set equal to 100. Your

Table 5.4: Example EEPROM
storage.

WRITING DATA TO OTHER LOCATIONS.

AUTOMATIC CONSTANTS FOR DEFINED
DATA.

5: BASIC Stamp Command Reference - DATA

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 93

program can then use the MyNumbers constant as a reference to the start of
the data within a READ or WRITE command. Each DATA directive can
have a unique symbol preceding it, allowing you to reference the data
defined at different locations.

There may be a time when you wish to reserve a section of EEPROM for
use by your BASIC code, but not necessarily store data there to begin with.
To do this, simply specify a DataItem within parentheses, as in:

DATA @100, (20)

The above DATA directive will reserve 20 bytes of EEPROM, starting with
location 100. It doesn’t store any values there, rather it simply leaves the
data as it is and increments DATA’s location pointer by 20. A good reason
to do this is when you have a program already downloaded into the
BASIC Stamp that has created or manipulated some data in EEPROM. To
protect that section of EEPROM from being overwritten by your next
program (perhaps a new version of the same program) you can reserve the
space as shown above. The EEPROM’s contents from locations 100 to 119
will remain intact. NOTE: This only "reserves" the space for the program
you are currently downloading; the BASIC Stamp does not know to
"reserve" the space for future programs. In other words, make sure use
this feature of the DATA directive in every program you download if you
don't want to risk overwriting valuable EEPROM data.

It is important to realize that EEPROM is not overwritten during
programming unless it is needed for program storage, or is filled by a
DATA directive specifying data to be written. During downloading,
EEPROM is always written in 16-byte sections if, and only if, any
location within that section needs writing.

DATA can also store the same number in a block of consecutive locations.
This is similar to reserving a block of EEPROM, above, but with a value
added before the first parenthesis. For example,

DATA @100, 0 (20)

This statement writes the value 0 in all the EEPROM locations from 100 to
119.

RESERVING EEPROM LOCATIONS.

WRITING A BLOCK OF THE SAME
VALUE.

IMPORTANT CONCEPT: HOW DATA
AND PROGRAMS ARE DOWNLOADED

EEPROM.

DATA - BASIC Stamp Command Reference

Page 94 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

A common use for DATA is to store strings; sequences of bytes
representing text. PBASIC converts quoted text like "A" into the
corresponding ASCII character code (65 in this case). To make data entry
easier, you can place quotes around a whole chunk of text used in a DATA
directive, and PBASIC will understand it to mean a series of bytes (see the
last line of code below). The following three DATA directives are
equivalent:

DATA 72, 69, 76, 76, 79
DATA "H", "E", "L", "L", "O"
DATA "HELLO"

All three lines of code, above, will result in the numbers 72, 69, 76, 76, and
79 being stored into EEPROM upon downloading. These numbers are
simply the ASCII character codes for "H", "E", "L", "L", and "O",
respectively. See the Demo Program, below, for an example of storing and
reading multiple text strings.

The EEPROM is organized as a sequential set of byte-sized memory
locations. By default, the DATA directive stores bytes into EEPROM. If
you try to store a word-size value (ex: DATA 1125) only the lower byte of
the value will be stored. This does not mean that you can't store word-
sized values, however. A word consists of two bytes, called a low-byte
and a high-byte. If you wanted to store the value 1125 using the DATA
directive, simply insert the prefix "word" before the number, as in:

DATA word 1125

The directive above will automatically break the word-size value into two
bytes and store them into two sequential EEPROM locations (the low-byte
first, followed by the high-byte). In this case, the low-byte is 101 and the
high byte is 4 and they will be stored in locations 0 and 1, respectively. If
you have multiple word-size values, you must prefix each value with
"word", as in:

DATA word 1125, word 2000

To retrieve a word-size value, you'll need to use two READ commands
and a word-size variable (along with some handy modifiers). For
example,

WRITING TEXT STRINGS.

WRITING WORD VALUES VS. BYTE
VALUES.

5: BASIC Stamp Command Reference - DATA

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 95

Result VAR WORD
DATA word 1125

READ 0, Result.LOWBYTE
READ 1, Result.HIGHBYTE
DEBUG DEC Result

This code would write the low-byte and high-byte of the number 1125 into
locations 0 and 1 during download. When the program runs, the two
READ commands will read the low-byte and high-byte out of EEPROM
(reconstructing it in a word-size variable) and then display the value on
the screen. See the READ and WRITE commands for more information.

Demo Program (DATA.bs2)
This program stores a number of large text strings into EEPROM with the DATA directive and
then sends them, one character at a time via the DEBUG command. This is a good
demonstration of how to save program space by storing large amounts of data in EEPROM
directly, rather than embedding the data into DEBUG commands.

'{$STAMP BS2} ‘STAMP directive (specifies a BS2)
'-----Define variables-----
Index VAR WORD 'Holds current location number
PhraseNum VAR NIB 'Holds current phrase number
Character VAR BYTE 'Holds current character to print

'-----Define all text phrases (out of order, just for fun!)-----
Text1 DATA "Here is the first part of a large chunk of textual data", CR
 DATA "that needs to be transmitted. There's a 12 second delay", CR
 DATA "between text paragraphs.", CR, 255

Text3 DATA "The alternative (having multiple DEBUGs or SEROUTs, each", CR
 DATA "with their own line of text) consumes MUCH more EEPROM", CR
 DATA "(program) space; up to 854 more bytes, in this case!", CR, CR, 255

Text6 DATA "The 255 is used by this program to indicate we've reached the", CR
 DATA "End of Text. The Main routine pauses in between each block of", CR
 DATA "text, and then uses a LOOKUP command to retrieve the location", CR
 DATA "of the next desired block of text to print.", 255

Text4 DATA CLS, "This program also demonstrates retrieving data out of order", CR
 DATA "in relation to the way it is stored in EEPROM. Additionally", CR
 DATA "control codes (like carriage-returns, clear-screens, etc) can", CR
 DATA "be embedded right in the data, as it is here.", CR, CR, 255

Text2 DATA "This is an example of a good way to save space in your", CR
 DATA "BASIC Stamp's program by storing data into EEPROM and", CR
 DATA "retrieving it, one byte at a time, and transmitting it", CR
 DATA "with just a single DEBUG (or SEROUT) command.", CR, CR, 255

Text5 DATA "The PrintIt routine simply takes the Index variable, retrieves", CR

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS2e, BS2sx or
BS2p.

2 e
2

sx
2

p
2

DATA - BASIC Stamp Command Reference

Page 96 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

 DATA "the character at the EEPROM location pointed to by it, and", CR
 DATA "prints it to the screen until if finds a byte with a value", CR
 DATA "of 255.", CR, CR, 255

'-----Main Routine-----
Main:
 FOR PhraseNum = 1 TO 6 'For all text blocks, print them one by one
 LOOKUP PhraseNum-1,[Text1, Text2, Text3, Text4, Text5, Text6], Index
 GOSUB PrintIt
 PAUSE 12000 'Pause for 12 seconds in between text blocks
 NEXT
STOP

'-----PrintIt Subroutine-----
PrintIt:
 READ Index, Character 'Get next character
 IF Character = 255 THEN Done 'If it is 255, we're done with this block
 DEBUG Character 'Otherwise, transmit it
 Index = Index + 1 'Increment Index to the next EEPROM
location
GOTO PrintIt 'Loop again

Done:
 RETURN 'Return to the main routine

5: BASIC Stamp Command Reference - DEBUG

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 97

DEBUG BS1 BS2 BS2e BS2sx BS2p

DEBUG OutputData {, OutputData}

Function
Display information on the PC screen within the BASIC Stamp editor
program. This command can be used to display text or numbers in
various formats on the PC screen in order to follow program flow (called
debugging) or as part of the functionality of the BASIC Stamp application.

• OutputData is a variable/constant/expression (0 – 65535) that
specifies the information to output. Valid data can be ASCII
characters (text strings and control characters), decimal numbers (0 -
65535), hexadecimal numbers ($0000 - $FFFF) or binary numbers (up
to %1111111111111111). Data can be modified with special
formatters as explained below.

Explanation
DEBUG provides a convenient way for your BASIC Stamp to send
messages to the PC screen while running. The name “debug” suggests its
most popular use; debugging programs by showing you the value of a
variable or expression, or by indicating what portion of a program is
currently executing. DEBUG is also a great way to rehearse programming
techniques. Throughout this manual, we use DEBUG to give you
immediate feedback on the effects of instructions. The following example
demonstrates using the DEBUG command to send the text string message
“Hello World!”.

DEBUG "Hello World!" ' Test message.

After you download this one-line program, the BASIC Stamp Editor will
open a Debug Terminal on your PC screen and wait for a response from
the BASIC Stamp. A moment later, the phrase "Hello World!" will appear.
Note that if you close the Debug Terminal, your program keeps executing,
but you can’t see the DEBUG data anymore.

Multiple pieces of data can be sent with one DEBUG command by
separating the data with commas (,). The following example produces
exactly the same results as the example above.

DEBUG "Hello ", "World!" 'Test message

1 2 e
2

sx
2

p
2

1
NOTE: Expressions are not
allowed as arguments on the BS1.
The only constant allowed for the
BS1 DEBUG command is a text
string.

DEBUG - BASIC Stamp Command Reference

Page 98 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

DEBUG can also print and format numbers (values) from both constants
and variables. The formatting methods for DEBUG are very different for
the BS1, than for any other BASIC Stamp. Please read the appropriate
sections, below, carefully.

BASIC Stamp 1 Formatting
On the BS1, the DEBUG command, by default, displays numbers in the
format "symbol = value" (followed by a carriage return), using the decimal
number system. For example,

SYMBOL X = B0
X = 75
DEBUG X

displays "X = 75" on the screen. To display the value, in decimal, without
the "X =" text, use the decimal formatter (#) before the variable name. For
example, the following code displays "75" on the screen.

SYMBOL X = B0
X = 75
DEBUG #X

To display numbers in hexadecimal or binary form, use the $ or %
formatter, respectively. The code below displays the same number in its
hexadecimal and binary forms.

SYMBOL X = B0
X = 75
DEBUG $X, %X

After running the above code, "X = $4B" and "X = %01001011" should
appear on the screen. The hexadecimal ($) and binary (%) formatters
always display the number using the format "symbol = value" (followed
by a carriage return). There is no built-in way to display hexadecimal or
binary numbers in any other form when using the BS1's DEBUG
command.

To display a number as its ASCII character equivalent, use the ASCII
formatter (@). Typing DEBUG @X (in place of the DEBUG statement in
the code above) would display "X = 'K'" on the screen.

1

DISPLAYING DECIMAL NUMBERS
(BS1).

DISPLAYING HEXADECIMAL OR BINARY
NUMBERS (BS1).

DISPLAYING ASCII CHARACTERS
(BS1).

5: BASIC Stamp Command Reference - DEBUG

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 99

Two pre-defined symbols, CR and CLS, can be used to send a carriage-
return or clear-screen command to the Debug Terminal. The CR symbol
will cause the Debug Terminal to start a new line and the CLS symbol will
cause the Debug Terminal to clear itself and place the cursor at the top-left
corner of the screen. The following code demonstrates this.

DEBUG "You can not see this.", CLS, "Here is line 1", CR, "Here is line 2"

When the above is run, the final result is "Here is line 1" on the first line of
the screen and "Here is line 2" on the second line. You may or may not
have seen "You can not see this." appear first. This is because it was
immediately followed by a clear-screen symbol, CLS, which caused the
display to clear the screen before displaying the rest of the information.

NOTE: The rest of this discussion does not apply to the BASIC Stamp 1.

BASIC Stamp 2, 2e, 2sx and 2p Formatting
On the all BASIC Stamps except the BS1, the DEBUG command, by
default, displays everything as ASCII characters. What if you want to
display a number? You might think the following example would do this:

x VAR BYTE
x = 65
DEBUG x ' Try to show decimal value of x.

Since we set X equal to 65 (in line 2), you might expect the DEBUG line to
display “65” on the screen. Instead of “65”, however, you’ll see the letter
“A” if you run this example. The problem is that we never told the BASIC
Stamp how to output X, and it defaults to ASCII (the ASCII character at
position 65 is “A”). Instead, we need to tell it to display the “decimal
form” of the number in X. We can do this by using the decimal formatter
(DEC) before the variable. The example below will display “65” on the
screen.

x VAR BYTE
x = 65
DEBUG DEC x ' Show decimal value of x.

In addition to decimal (DEC), DEBUG can display numbers in
hexadecimal (HEX) and binary (BIN). See Table 6.3 for a complete list of
formatters.

2 e
2

sx
2

p
2

USING CR AND CLS (BS1).

DISPLAYING ASCII CHARACTERS.

DISPLAYING DECIMAL NUMBERS.

DISPLAYING HEXADECIMAL AND
BINARY NUMBERS.

DEBUG - BASIC Stamp Command Reference

Page 100 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Expressions are allowed within the DEBUG command arguments as well.
In the above code, DEBUG DEC x+25 would yield "95" and DEBUG
DEC x*10/2-3 would yield "322".

Formatter Description
? Displays "symbol = x" + carriage return; where x is a number.

Default format is decimal, but may be combined with number
formatters below (ex: bin ? x to display "x = binary_number").

ASC ? Displays "symbol = 'x'" + carriage return; where x is an ASCII
character.

DEC{1..5} Decimal text, optionally fixed for 1 to 5 digits.
SDEC{1..5} Signed decimal text, optionally fixed for 1 to 5 digits.
HEX{1..4} Hexadecimal text, optionally fixed for 1 to 4 digits.
SHEX{1..4} Signed hex text, optionally fixed for 1 to 4 digits.
IHEX{1..4} Indicated hex text ($ prefix; ex.: $7A3), optionally fixed for 1 to 4

digits.
ISHEX{1..4} Indicated, signed hex text, optionally fixed for 1 to 4 digits.
BIN{1..16} Binary text, optionally fixed for 1 to 16 digits.
SBIN{1..16} Signed binary text, optionally fixed for 1 to 16 digits.
IBIN{1..16} Indicated binary text (% prefix; ex.: %1001), optionally fixed for 1

to 16 digits.
ISBIN{1..16} Indicated, signed binary text, optionally fixed for 1 to 16 digits.
STR bytearray ASCII string from bytearray until byte = 0.
STR bytearray\n ASCII string consisting of n bytes from bytearray.
REP byte\n Display ASCII character n times.

As seen in Table 6.3, special versions of the DEC, HEX and BIN formatters
allow for the display of indicated, signed and fixed-width numbers. The
term "indicated" simply means that a special symbol is displayed, before
the number, indicating what number system it belongs to. For example,

x VAR BYTE
x = 65
DEBUG HEX x ' Show hexadecimal value of x.

displays "41" (65, in decimal, is 41, in hexadecimal). You might see a
problem here… unless you knew the number was supposed to be
hexadecimal, you might think it was 41, in decimal… a totally different
number. To help avoid this, use the IHEX formatter (the "I" stands for
indicated). Changing the DEBUG line to read: DEBUG IHEX x would
print "$41" on the screen. A similar formatter for binary also exists, IBIN,
which prints a "%" before the number.

DISPLAYING "INDICATED" NUMBERS.

EXPRESSIONS IN DEBUG
COMMANDS.

Table 5.5: DEBUG Formatters.

5: BASIC Stamp Command Reference - DEBUG

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 101

Signed numbers are preceded with a space () or a minus sign (-) to
indicate a positive or negative number, respectively. Normally, any
number displayed by the BASIC Stamp is shown in its unsigned (positive)
form without any indicator. The signed formatters allow you to display
the number as a signed (rather than unsigned) value. NOTE: Only Word-
sized variables can be used for signed number display. The code below
demonstrates the difference in all three numbering schemes.

x VAR WORD
x = -65
DEBUG "Signed: ", SDEC x, " ", ISHEX x, " ", ISBIN x, CR
DEBUG "Unsigned: ", DEC x, " ", IHEX x, " ", IBIN x

This code will generate the display shown below:

Signed: -65 -$41 -%1000001
Unsigned: 65471 $FFBF %1111111110111111

The signed form of the number –65 is shown in decimal, hexadecimal and
then in binary on the top line. The unsigned form, in all three number
systems, is shown on the bottom line. If the unsigned form looks strange
to you, it's because negative numbers are stored in twos-compliment
format within the BASIC Stamp.

Suppose that your program contained several DEBUG instructions
showing the contents of different variables. You would want some way to
tell them apart. One possible way is to do the following:

x VAR BYTE
y VAR BYTE
x = 100
y = 250
DEBUG "X = ", DEC x, CR ' Show decimal value of x
DEBUG "Y = ", DEC y, CR ' Show decimal value of y

but typing the name of the variables in quotes (for the display) can get a
little tedious. A special formatter, the question mark (?), can save you a lot
of time. The code below does exactly the same thing (with less typing):

DISPLAYING SIGNED VS. UNSIGNED
NUMBERS.

AUTOMATIC NAMES IN THE DISPLAY.

DEBUG - BASIC Stamp Command Reference

Page 102 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

x VAR BYTE
y VAR BYTE
x = 100
y = 250
DEBUG DEC ? x ' Show decimal value of x
DEBUG DEC ? y ' Show decimal value of y

The display would look something like this:

x = 100
y = 250

The ? formatter always displays data in the form "symbol = value"
(followed by a carriage return). In addition, it defaults to displaying in
decimal, so we really only needed to type: DEBUG ? x for the above
code. You can, of course, use any of the three number systems. For
example: DEBUG HEX ? x or DEBUG BIN ? y.

It's important to note that the "symbol" it displays is taken directly from
what appears to the right of the ?. If you were to use an expression, for
example: DEBUG ? x*10/2+3 in the above code, the display would
show: "x*10/2+3 = 503".

A special formatter, ASC, is also available for use only with the ? formatter
to display ASCII characters, as in: DEBUG ASC ? x.

What if you need to display a table of data; multiple rows and columns?
The Signed/Unsigned code (above) approaches this but, if you notice, the
columns don't line up. The number formatters (DEC, HEX and BIN) have
some useful variations to make the display fixed-width (see Table 6.3). Up
to 5 digits can be displayed for decimal numbers. To fix the value to a
specific number of decimal digits, you can use DEC1, DEC2, DEC3, DEC4
or DEC5. For example:

x VAR BYTE
x = 165
DEBUG DEC5 x ' Show decimal value of x in 5 digits.

displays "00165". Notice that leading zeros? The display is "fixed" to 5
digits, no more and no less. Any unused digits will be filled with zeros.

DISPLAYING FIXED-WIDTH NUMBERS.

5: BASIC Stamp Command Reference - DEBUG

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 103

Using DEC4 in the same code would display "0165". DEC3 would display
"165". What would happen if we used DEC2? Regardless of the number,
the BASIC Stamp will ensure that it is always the exact number of digits
you specified. In this case, it would truncate the "1" and only display "65".

Using the fixed-width version of the formatters in the Signed/Unsigned
code above, may result in the following code:

x VAR WORD
x = -65
DEBUG "Signed: ", SDEC5 x, " ", ISHEX4 x, " ", ISBIN16 x, CR
DEBUG "Unsigned: ", DEC5 x, " ", IHEX4 x, " ", IBIN16 x

and displays:

Signed: -00065 -$0041 -%0000000001000001
Unsigned: 65471 $FFBF %1111111110111111

Note: The columns don't line up exactly (due to the extra "sign" characters
in the first row), but it certainly looks better than the alternative.

If you have a string of characters to display (a byte array), you can use the
STR formatter to do so. The STR formatter has two forms (as shown in
Table 6.3) for variable-width and fixed-width data. The example below is
the variable-width form.

x VAR BYTE(5)
x(0) = "A"
x(1) = "B"
x(2) = "C"
x(3) = "D"
x(4) = 0
DEBUG STR x

This code displays "ABCD" on the screen. In this form, the STR formatter
displays each character contained in the byte array until it finds a
character that is equal to 0 (value 0, not "0"). This is convenient for use
with the SERIN command's STR formatter, which appends 0's to the end
of variable-width character string inputs. NOTE: If your byte array
doesn't end with 0, the BASIC Stamp will read and output all RAM
register contents until it finds a 0 or until it cycles through all RAM
locations.

DISPLAYING STRINGS (BYTE ARRAYS).

VARIABLE-WIDTH STRINGS.

DEBUG - BASIC Stamp Command Reference

Page 104 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

To specify a fixed-width format for the STR formatter, use the form STR
x\n; where x is the byte array and n is the number of characters to print.
Changing the DEBUG line in the example above to: DEBUG STR x\2
would display "AB" on the screen.

If you need to display the same ASCII character multiple times, the REP
(repeat) formatter can help. REP takes the form: REP x\n ;where x is the
character and n is the number of times to repeat it. For example:

DEBUG REP "-"\10

would display 10 hyphens on the screen, "----------".

Since individual DEBUG instructions can grow to be fairly complicated,
and since a program can contain many DEBUGS, you’ll probably want to
control the character positioning of the Debug Terminal screen. DEBUG
supports a number of different control characters, some with pre-defined
symbols (see Table 6.4). The Debug Terminal in the Windows version of
the editor supports all the control characters in Table 6.4, while the DOS
version only supports a few of them.

Some of the control characters have pre-defined symbols associated with
them. In your DEBUG commands, you can use those symbols, for
example: DEBUG "Hello", CR displays "Hello" followed by a carriage
return. You can always use the ASCII value for any of the control
characters, however. For example: DEBUG "Hello", 13 is exactly the
same as the code above.

The Move To control character is perhaps the most unique of the set. If the
Debug Terminal receives this character, it expects to see an x and y
position value to follow (in the next two characters received). The
following line moves the cursor to column number 4 in row number 5 and
displays "Hello":

DEBUG 2, 4, 5, "Hello"

The upper-left cursor position is 0,0 (that is column 0, row 0). The right-
most cursor positions depend on the size of the Debug Terminal window
(which is user adjustable). If a character position that is out of range is

FIXED-WIDTH STRINGS.

REPEATING CHARACTERS.

SPECIAL CONTROL CHARACTERS.

5: BASIC Stamp Command Reference - DEBUG

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 105

received, the Debug Terminal wraps back around to the opposite side of
the screen.

The Clear Right control character clears the characters that appear to the
right of, and on, the cursor's current position. The cursor is not moved by
this action.

The Clear Down control character clears the characters that appear below,
and on, the cursor's current line. The cursor is not moved by this action.

Name Symbol ASCII
Value

Description

Clear Screen CLS 0 Clear the screen and place cursor at home
position.

Home HOME 1 Place cursor at home in upper-left corner of
the screen.

Move To (x,y)* 2 Move cursor to specified location. Must be
followed by two values (x and then y)

Cursor Left* 3 Move cursor one character to left.
Cursor Right* 4 Move cursor one character to right.
Cursor Up* 5 Move cursor one character up.
Cursor Down* 6 Move cursor one character down.
Bell BELL 7 Beep the PC speaker.
Backspace BKSP 8 Back up cursor to left one space.
Tab TAB 9 Tab to the next column.
Line Feed* 10 Move cursor down one line.
Clear Right* 11 Clear line contents to the right of cursor.
Clear Down* 12 Clear screen contents below cursor.
Carriage Return CR 13 Move cursor to the first column of the next

line (shift any data on the right down to that
line as well)

* This control character only works with the Windows version of the editor software.

DEBUG is actually a special case of the SEROUT instruction. It is set for
inverted (RS-232-compatible) serial output through the programming
connector (the SOUT pin) at 9600 baud, no parity, 8 data bits, and 1 stop
bit. For example,

DEBUG "Hello"

is exactly like:

SEROUT 16, $4054, ["Hello"]

Table 5.6: Special Control
Characters.

2

TECHNICAL BACKGROUND

DEBUG - BASIC Stamp Command Reference

Page 106 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

in terms of function (on a BS2). The DEBUG line actually takes less
program space, and is obviously easier to type.

You may view DEBUG's output using a terminal program set to the above
parameters, but you may have to modify either your carrier board or the
serial cable to temporarily disconnect pin 3 of the BASIC Stamp (pin 4 of
the DB-9 connector). See the SEROUT command for more detail.

5: BASIC Stamp Command Reference - DTMFOUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 107

DTMFOUT BS1 BS2 BS2e BS2sx BS2p

DTMFOUT Pin, {OnTime, OffTime,} [Tone {, Tone…}]

Function
Generate dual-tone, multifrequency tones (DTMF, i.e., telephone “touch”
tones).

• Pin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to use. This pin will be set to output mode during generation of
tones and set to input mode aftwerwards.

• OnTime is an optional variable/constant/expression (0 – 65535)
specifying a duration of the tone. The unit of time and the default
time for OnTime is described in Table 5.7.

• OffTime is an optional variable/constant/expression (0 – 65535)
specifying the length of silent pause after a tone (or between tones, if
multiple tones are specified). The unit of time and the default time
for OffTime is described in Table 5.7.

• Tone is a variable/constant/expression (0 – 15) specifying the DTMF
tone to generate. Tones 0 through 11 correspond to the standard
layout of the telephone keypad, while 12 through 15 are the fourth-
column tones used by phone test equipment and in ham-radio
applications.

Quick Facts
 BS2, BS2e BS2sx BS2p

Default OnTime 200 ms 80 ms 55 ms
Default OffTime 50 ms 50 ms 50 ms
Units in OnTime

and OffTime
1 ms 0.4 ms 0.265 ms

Explanation
DTMF tones are used to dial the phone or remotely control certain radio
equipment. The BASIC Stamp can generate these tones digitally using the
DTMFOUT instruction. Figure 5.2 shows how to connect a speaker or
audio amplifier to hear these tones and Figure 5.3 shows how to connect
the BASIC Stamp to the phone line.

2 e
2

sx
2

p
2

Table 5.7: DTMFOUT Quick Facts.

DTMFOUT - BASIC Stamp Command Reference

Page 108 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

The following DTMFOUT instruction will generate DTMF tones on I/O
pin 0:

DTMFOUT 0, [6, 2, 4, 8, 3, 3, 3] ' Call Parallax.

If the BASIC Stamp is connected to the phone line properly, the above
command would be equivalent to dialing 624-8333 from a phone keypad.
If you wanted to slow the pace of the dialing to accommodate a noisy
phone line or radio link, you could use the optional OnTime and OffTime
values:

DTMFOUT 0, 500, 100, [6, 2, 4, 8, 3, 3, 3] ' Call Parallax, slowly.

In this example, on a BS2 the OnTime is set to 500 ms (1/2 second) and
OffTime to 100 ms (1/10th second).

Tone Value Corresponding Telephone Key
0 – 9 Digits 0 through 9

10 Star (*)
11 Pound (#)

12 – 15 Fourth column tones A through D

10µF (both)

++
≥40Ω Speaker
(or 8Ω in series
with 33Ω resistor)

from I/O pin

C1 C2

Notes:
C1 may be omitted for piezo speakers
C2 is optional, but reduces high-frequency noise

from I/O pin

Driving a Speaker

1k

0.1µF 0.01µF

1k

Driving an Audio Amplifier

Amplifier
(e.g., Radio Shack
277-1008C)

Vss Vss

Vss Vss Vss

Figure 5.2: Example RC Filter
Circuits for Driving an Audio
Amplifier or a Speaker.

Table 5.8: DTMF Tones and
Corresponding Telephone Keys.

5: BASIC Stamp Command Reference - DTMFOUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 109

The BASIC Stamp controller is a purely digital device. DTMF tones are
analog waveforms, consisting of a mixture of two sine waves at different
audio frequencies. So how does a digital device generate analog output?
The BASIC Stamp creates and mixes the sine waves mathematically, then
uses the resulting stream of numbers to control the duty cycle of a very
fast pulse-width modulation (PWM) routine. So what’s actually coming
out of the I/O pin is a rapid stream of pulses. The purpose of the filtering
arrangements shown in Figures 5.2 and 5.3 is to smooth out the high-
frequency PWM, leaving only the lower frequency audio behind.

Keep this in mind if you want to interface BASIC Stamp's DTMF output to
radios and other equipment that could be adversely affected by the
presence of high-frequency noise on the input. Make sure to filter the
DTMF output thoroughly. The circuits in Figure 5.2 are only a starting
point; you may want to use an active low-pass filter with a roll-off point
around 2 kHz.

Demo Program (DTMFOUT.bs2)
This demo program is a rudimentary memory dialer. Since DTMF digits fit within a nibble (four
bits), the program below packs two DTMF digits into each byte of three EEPROM data tables.
The end of a phone number is marked by the nibble $F, since this is not a valid phone-dialing
digit.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)
'-----Define variables-----
EEloc VAR BYTE ' EEPROM address of stored number.
EEByte VAR BYTE ' Byte containing two DTMF digits.

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS2e, BS2sx or
BS2p.

2 e
2

sx
2

p
2

Jameco (JC), 1-800-831-4242
or 415-592-8097

Interfacing to the Telephone Line

600-600Ω
transformer

(JC: 117760)

270V “Sidactor”
(DK: P3000AA61-ND

P3000AA61-ND)

10Ω
(both)

3.9V zeners (both)
DK: 1N5228BCT-ND

phone line
(red and green)

0.001µF

0.1µF1 kΩconnect switch (or
relay contacts)

Digi-Key (DK), 1-800-344-4539
or 218-681-6674

from I/O pin

Vss

Figure 5.3: Example DAA Circuit to
Interface to a Standard Telephone
Line.

TECHNICAL BACKGROUND.

DTMFOUT - BASIC Stamp Command Reference

Page 110 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

DTdigit VAR EEBYTE.highNIB ' Digit to dial.
Phone VAR NIB ' Pick a phone #.
HiLo VAR BIT ' Bit to select upper and lower nibble.

'-----Define data-----
Parallax DATA $19,$16,$62,$48,$33,$3F ' Phone: 1-916-624-8333
ParallaxFax DATA $19,$16,$62,$48,$00,$3F ' Phone: 1-916-624-8003
Information DATA $15,$20,$55,$51,$21,$2F ' Phone: 1-520-555-1212

'-----Main Routine-----
FOR Phone = 0 TO 2 ' For each phone #, get location of # in
EEPROM.
 LOOKUP Phone,[Parallax,ParallaxFax,Information],EEloc

Dial:
 READ EEloc,EEByte ' Retrieve byte from EEPROM.
 FOR HiLo = 0 to 1 ' Dial upper and lower digits.
 IF DTdigit = $F THEN Done ' Hex $F is end-of-number flag
 DTMFout 11,[DTdigit] ' Dial digit.
 EEBYTE = EEBYTE << 4 ' Shift in next digit.
 NEXT
 EEloc = EEloc + 1 ' next pair of digits.
GOTO dial ' Keep dialing until done ($F in DTdigit).

 done: ' This number is done.
 PAUSE 2000 ' Wait a couple of seconds.
 NEXT
 ' Dial next phone number.
STOP

5: BASIC Stamp Command Reference - EEPROM

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 111

EEPROM BS1 BS2 BS2e BS2sx BS2p

EEPROM {Location,} (DataItem {, DataItem,…})
(See DATA)

Function
Write data to the EEPROM during program download.

• Location is an optional variable/constant (0 – 255) that specifies the
starting location in the EEPROM at which data should be stored. If
no location is given, data is written starting at the next available
location.

• DataItem is a constant (0 – 255) to be stored in EEPROM.

Explanation
When you download a program into the BASIC Stamp 1, it is stored in the
EEPROM starting at the highest address (255) and working towards the
lowest address. Most programs don’t use the entire EEPROM, so the
lower portion is available for other uses. The EEPROM directive allows
you to define a set of data to store in the available EEPROM locations. It is
called a “directive” rather than a “command” because it performs an
activity at compile-time rather than at run-time (ie: the EEPROM directive
is not downloaded to the BASIC Stamp 1, but the data it contains is
downloaded).

The simplest form of the EEPROM directive is something like the
following:

EEPROM (100, 200, 52, 45)

This example, when downloaded, will cause the values 100, 200, 52 and 45
to be written to EEPROM locations 0, 1, 2 and 3, respectively. You can
then use the READ and WRITE commands in your code to access these
locations and the data you’ve stored there.

The EEPROM directive uses a counter, called a pointer, to keep track of
available EEPROM addresses. The value of the pointer is initially 0. When
a program is downloaded, the EEPROM directive stores the first byte
value at the current pointer address, then increments (adds 1 to) the
pointer. If the program contains more than one EEPROM directive,

1
2 e

2
sx
2

p
2

WRITING SIMPLE, SEQUENTIAL DATA.

THE EEPROM POINTER (COUNTER).

EEPROM - BASIC Stamp Command Reference

Page 112 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

subsequent EEPROM directives start with the pointer value left by the
previous EEPROM directive. For example, if the program contains:

EEPROM (72, 69, 76, 76, 79)
EEPROM (104, 101, 108, 108, 111)

The first EEPROM directive will start at location 0 and increment the
pointer for each data value it stores (1, 2, 3, 4 and 5). The second EEPROM
directive will start with the pointer value of 5 and work upward from
there. As a result, the first 10 bytes of EEPROM will look like the
following:

 EEPROM Location (address)
 0 1 2 3 4 5 6 7 8 9
Contents 72 69 76 76 79 104 101 108 108 111

What if you don’t want to store values starting at location 0? Fortunately,
the EEPROM directive has an option to specify the next location to use.
You can specify the next location number (to set the pointer to) by using
the optional Location argument before the list of Dataitems. The following
code writes the same data in Table 5.9 to locations 50 through 59:

DATA 50, (72, 69, 76, 76, 79, 104, 101, 108, 108, 111)

In this example, the Location argument is given and tells the EEPROM
directive to store the following DataItem(s) starting at location 50. The
DataItems in the list are stored in their respective locations (50, 51, 52…
59).

It is important to realize that the entire BASIC Stamp 1 EEPROM is
overwritten during programming. Any EEPROM location not containing
a PBASIC program or DataItems from an EEPROM directive is written
with a 0.

A common use for EEPROM is to store strings; sequences of bytes
representing text. PBASIC converts quoted text like "A" into the
corresponding ASCII character code (65 in this case). To make data entry
easier, you can place quotes around a whole chunk of text used in a
EEPROM directive, and PBASIC will understand it to mean a series of
bytes (see the last line of code below). The following three EEPROM
directives are equivalent:

WRITING DATA TO OTHER LOCATIONS.

WRITING TEXT STRINGS.

IMPORTANT CONCEPT: HOW DATA
AND PROGRAMS ARE DOWNLOADED

EEPROM.

Table 5.9: Example EEPROM
storage.

5: BASIC Stamp Command Reference - EEPROM

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 113

EEPROM (72, 69, 76, 76, 79)
EEPROM ("H", "E", "L", "L", "O")
EEPROM ("HELLO")

All three lines of code, above, will result in the numbers 72, 69, 76, 76, and
79 being stored into EEPROM upon downloading. These numbers are
simply the ASCII character codes for "H", "E", "L", "L", and "O",
respectively. See the Demo Program, below, for an example of storing and
reading multiple text strings.

The EEPROM is organized as a sequential set of byte-sized memory
locations. The EEPROM directive only stores bytes into EEPROM. If you
try to store a word-size value, for example: EEPROM (1125), only the
lower byte of the value will be stored (in this case, 101). This does not
mean that you can't store word-sized values, however. A word consists of
two bytes, called a low-byte and a high-byte. If you wanted to store the
value 1125 using the EEPROM directive you'll have to calculate the low-
byte and the high-byte and insert them in the list in the proper order, as in:

EEPROM (101, 4)

The directive above will store the two bytes into two sequential EEPROM
locations (the low-byte first, followed by the high-byte). We calculated
this in the following manner: 1) high-byte is INT(value / 256) and 2) low-
byte is value – (high-byte * 256).

To retrieve a word-size value, you'll need to use two READ commands
and a word-size variable. For example,

SYMBOL Result = W0 'The full word-sized variable
SYMBOL Result_Low = B0 'B0 happens to be the low-byte of W0
SYMBOL Result_High = B1 'B1 happens to be the high-byte of W0
EEPROM (101, 4)

READ 0, Result_Low
READ 1, Result_High
DEBUG #Result

This code would write the low-byte and high-byte of the number 1125 into
locations 0 and 1 during download. When the program runs, the two
READ commands will read the low-byte and high-byte out of EEPROM
(reconstructing it in a word-size variable) and then display the value on
the screen. See the READ and WRITE commands for more information.

WRITING WORD VALUES VS. BYTE

VALUES.

EEPROM - BASIC Stamp Command Reference

Page 114 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Demo Program (EEPROM.bas)
This program stores a couple of text strings into EEPROM with the EEPROM directive and
then sends them, one character at a time via the SEROUT command. This is a good
demonstration of how to save program space by storing large amounts of data in EEPROM
directly, rather than embedding the data into SEROUT commands.

'{$STAMP BS1} 'STAMP directive (specifies a BS1)
'-----Define variables-----
SYMBOL Index = B0 'Holds current location number
SYMBOL Phrase = B1
SYMBOL Character = B2 'Holds current character to print

'-----Define all text phrases -----
EEPROM ("Here is a long message that needs to be transmitted.", 255)
EEPROM ("Here is some more text to be transmitted.", 255)

'-----Main Routine-----
Main:
 Index = 0
 FOR Phrase = 1 TO 2
 GOSUB PrintIt
 PAUSE 12000 'Pause for 12 seconds in between text blocks
 NEXT
END

'-----PrintIt Subroutine-----
PrintIt:
 READ Index, Character 'Get next character
 IF Character = 255 THEN Done 'If it is 255, we're done with this block
 SEROUT 0,N2400,(Character) 'Otherwise, transmit it
 Index = Index + 1 'Increment Index to the next EEPROM location
GOTO PrintIt 'Loop again

Done:
 RETURN 'Return to the main routine

1

5: BASIC Stamp Command Reference - END

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 115

END BS1 BS2 BS2e BS2sx BS2p

END

Function
End the program, placing the BASIC Stamp into low-power mode
indefinitely. This is equivalent to having a program that does not loop
continuously; once the BASIC Stamp reaches the end of the PBASIC
program, it enters low-power mode indefinitely. The END command is
optional and is rarely used.

Quick Facts

 BS1 BS2 BS2e BS2sx BS2p
Apx. current
draw @ 5 vdc
during run*

2 mA 8 mA 25 mA 60 mA 40 mA

Apx. current
draw @ 5 vdc
during end*

20 µA 40 µA 60 µA 60 µA 60 µA

* This is an approximate value, not including loads on the I/O pins.

Explanation
END puts the BASIC Stamp into its inactive, low-power mode. In this
mode the Stamp's current draw (excluding loads driven by the I/O pins) is
reduced to the amount shown in Table 5.10. END keeps the BASIC Stamp
inactive until the reset line is activated, the power is cycled off and back on
or the PC downloads another program.

Just as with the SLEEP command, pins will retain their input or output
settings after the BASIC Stamp is deactivated by END. For example, if the
BASIC Stamp is powering an LED when END executes, the LED will stay
lit after END, but every 2.3 seconds, there will be a visible wink of the LED
as the output pin switches to the input direction for 18 ms. (See the SLEEP
command for more information).

1 2 e
2

sx
2

p
2

Table 5.10: END Quick Facts.
Note: Current Consumption is
approximate and assumes no
loads.

END - BASIC Stamp Command Reference

Page 116 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

5: BASIC Stamp Command Reference – FOR…NEXT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 117

FOR…NEXT BS1 BS2 BS2e BS2sx BS2p

FOR Counter = StartValue TO EndValue {STEP {-} StepValue} … NEXT {Counter}
FOR Counter = StartValue TO EndValue {STEP StepValue} … NEXT

Function
Create a repeating loop that executes the program lines between FOR and
NEXT, incrementing or decrementing Counter according to StepValue until
the value of the Counter variable passes the EndValue.

• Counter is a variable (usually a byte or a word) used as a counter.

• StartValue is a variable/constant/expression (0 – 65535) that
specifies the initial value of the variable (Counter).

• EndValue is a variable/constant/expression (0 – 65535) that specifies
the end value of the variable (Counter). When the value of Counter is
outside of the range StartValue to EndValue, the FOR...NEXT loop
stops executing and the program goes on to the instruction after
NEXT.

• StepValue is an optional variable/constant/expression (0 – 65535) by
which the Counter increases or decreases with each iteration through
the FOR…NEXT loop. On the BS1, use a minus sign (-) in front of
the StepValue to indicate a negative step. On all other BASIC
Stamps, if StartValue is larger than EndValue, PBASIC understands
StepValue to be negative, even though no minus sign is used.

Quick Facts
 BS1 BS2, BS2e, BS2sx and BS2p

Max. nested
commands

8 16

To decrement
counter
variable

Set StartValue > EndValue
and enter negative

StepValue*
Set StartValue > EndValue

Counter
comparison

Exit loop if Counter exceeds
EndValue

Exit loop if Counter outside of range set by
StartValue to EndValue

* Direction (ie: increment/decrement) cannot be changed at runtime.

1
2 e

2
sx
2

p
2

1
NOTE: Expressions are not
allowed as arguments on the BS1.

1
NOTE: Use a minus sign to
indicate negative StepValues on the
BS1.

Table 5.11: FOR…NEXT Quick
Facts.

FOR…NEXT - BASIC Stamp Command Reference

Page 118 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Explanation
FOR...NEXT loops let your program execute a series of instructions for a
specified number of repetitions (called iterations). By default, each time
through the loop, the counter variable is incremented by 1. It will
continue to loop until the result of the counter is outside of the range set
by StartValue and EndValue. Also, FOR…NEXT loops always execute at
least once. The simplest form is shown here:

Reps VAR NIB ' Counter for the FOR/NEXT loop.
FOR Reps = 1 TO 3 ' Repeat with Reps = 1, 2, 3.
 DEBUG "*" ' Each repetition, put one * on the screen.
NEXT

In the above code, the FOR command sets Reps = 1. Then the DEBUG line
(within the FOR…NEXT loop) is executed; printing an asterisk (*) on the
screen. When the BASIC Stamp sees the NEXT command, it goes back to
the previous FOR command, adds 1 to Reps and compares the result to the
range set by StartValue and EndValue. If Reps is still within range, it
executes the code in the loop again. Each time the FOR...NEXT loop
executes, the value of Reps is updated (incremented by 1) and the code
within the loop (the DEBUG line) is executed; printing another asterisk on
the screen. This code will run through the loop three times; setting Reps to
1, 2 and 3, and printing three asterisks on the screen. After the third loop,
again the BASIC Stamp goes back up to the FOR command, adds 1 to Reps
and compares the result (4 in this case) to the range. Since the range is 1 to
3 and the value is 4 (outside the range) the FOR…NEXT loop is done and
the BASIC Stamp will jump down to the first line of code following the
NEXT command.

You can view the changing values of Reps by including the Reps variable in
a DEBUG command within the loop:

Reps VAR NIB ' Counter for the FOR/NEXT loop.
FOR Reps = 1 TO 3 ' Repeat with Reps = 1, 2, 3.
 DEBUG DEC Reps, CR ' Each repetition, put the number of the
NEXT ' repetition on the screen.

Running this example should display "1" , "2", and "3" on the screen.

FOR…NEXT can also be made to decrement (rather than increment) the
counter variable. The BS1 does this when you specify a negative StepValue
(as well as a StartValue that is greater than the EndValue). All other BASIC

1
NOTE: Replace the first line with
SYMBOL Reps = B0
on the BS1.

NOTE: Change the first line as
noted above and replace line 3 with
DEBUG #Reps, CR
on the BS1.

1

SIMPLEST FORM OF FOR…NEXT.

DECREMENTING THE COUNTER

INSTEAD OF INCREMENTING IT.

PROCESSING A FOR…NEXT LOOP.

1
NOTE: On the BS1, the loop will
continue until Counter has gone
past EndValue.

5: BASIC Stamp Command Reference – FOR…NEXT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 119

Stamps do this automatically when the StartValue is greater than the
EndValue. Examples of both are shown below:

SYMBOL Reps = B0 ' Counter for the FOR/NEXT loop.
FOR Reps = 3 TO 1 STEP -1 ' Repeat with Reps = 3, 2, 1.
 DEBUG #Reps, CR ' Each repetition, put the number of the
NEXT ' repetition on the screen.

-- or --

Reps VAR NIB ' Counter for the FOR/NEXT loop.
FOR Reps = 3 TO 1 ' Repeat with Reps = 3, 2, 1.
 DEBUG DEC Reps, CR ' Each repetition, put the number of the
NEXT ' repetition on the screen.

Note that the code for the BS2, BS2e, BS2sx and BS2p did not use the
optional STEP argument. This is because we wanted to decrement by
positive 1 anyway (the default unit) and the BASIC Stamp realizes it needs
to decrement because the StartValue is greater than the EndValue. A
negative StepValue on the BS2, BS2e, BS2sx and BS2p would be treated as
its positive, two's compliment counterpart. For example, –1 in two’s
complement is 65535. So the following code executes only once:

Reps VAR NIB ' Counter for the FOR/NEXT loop.
FOR Reps = 3 TO 1 STEP -1 ' This will try to decrement 3 by 65535.
 DEBUG DEC Reps, CR ' Each repetition, put the number of the
NEXT ' repetition on the screen.

The above code would run through the loop once with Reps set to 3. The
second time around, it would decrement Reps by 65535 (-1 is 65535 in
two's compliment) effectively making the number –65532 (4 in two's
compliment) which is outside the range of the loop.

All the arguments in the FOR…NEXT command can be constants,
variables or expressions (on the BS2, BS2e, BS2sx and BS2p). This leads to
some interesting uses. For example, if you make the StartValue and
EndValue a variable, and change their values within the loop, you'll change
the behavior of the loop itself. Try the following:

1

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

USING VARIABLES AS ARGUMENTS.

FOR…NEXT - BASIC Stamp Command Reference

Page 120 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Reps VAR BYTE ' Counter for the FOR/NEXT loop.
StartVal VAR BYTE
EndVal VAR BYTE

StartVal = 1 ' Initialize StartVal to 1
EndVal = 3 ' Initialize EndVal to 3
FOR Reps = StartVal TO EndVal ' Repeat until Reps is not in range 1 to 3.
 DEBUG DEC Reps,CR
 IF Reps <> 3 THEN Done ' If Reps <> 3 then continue as normal
 StartVal = 3 ' otherwise, swap StartVal and EndVal
 EndVal = 1
Done:
NEXT

Here the loop starts with a range of 1 to 3. First, the DEBUG line prints the
value of Reps. Then the IF…THEN line makes a decision; if Reps is not
equal to 3, jump to the label "Done." If, however, Reps is equal to 3, the
two lines following IF…THEN swap the order of StartVal and EndVal,
making the range 3 to 1. The next time through the loop, Reps will be
decremented instead of incremented because StartVal is greater than
EndVal. The result is a display on the screen of the numbers 1, 2, 3, 2, 1.

The following example uses the value of Reps as the StepValue. This
creates a display of power's of 2 (1, 2, 4, 8, 16, 32, 64, etc):

Reps VAR WORD ' Counter for the loop.
FOR Reps = 1 TO 256 STEP Reps ' Each loop add current value of Reps
 DEBUG DEC ? Reps ' Show reps in debug window.
NEXT

There is a potential bug that you should be careful to avoid. The BASIC
Stamp uses unsigned 16-bit integer math for any math operation it
performs, regardless of the size of values or variables. The maximum
value the BASIC Stamp can internally calculate is 65535 (the largest 16-bit
number). If you add 1 to 65535, you get 0 as the 16-bit register rolls over
(like a car’s odometer does when you exceed the maximum mileage it can
display). Similarly, if you subtract 1 from 0, you'll get 65535 as the 16-bit
register rolls under (a rollover in the opposite direction).

If you write a FOR...NEXT loop who's StepValue would cause the counter
variable to go past 65535, this rollover may cause the loop to execute more
times than you expect. Try the following example:

WATCH OUT FOR 16-BIT ROLLOVER,
OR VARIABLE RANGE, ERRORS.

1
NOTE: The increment/decrement
direction of the FOR…NEXT loop
cannot be changed on the BS1.

2 e
2

sx
2

p
2

NOTE: For BS1's, change line 1 to
SYMBOL Reps = W0
and line 3 to
DEBUG Reps

1

5: BASIC Stamp Command Reference – FOR…NEXT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 121

Reps VAR WORD ' Counter for the loop.
FOR Reps = 0 TO 65535 STEP 3000 ' Each loop add 3000.
 DEBUG DEC ? Reps ' Show reps in debug window.
NEXT

The value of reps increases by 3000 each trip through the loop. As it
approaches the EndValue, an interesting thing happens; Reps is: 57000,
60000, 63000, 464, 3464... It passes the EndValue, rolls over and keeps
going. That’s because the result of the calculation 63000 + 3000 exceeds the
maximum capacity of a 16-bit number and then rolls over to 464. When
the result of 464 is tested against the range (“Is Reps > 0 and is Reps <
65500?”) it passes the test and the loop continues.

A similar symptom can be seen in a program who's EndValue is mistakenly
set higher than what the counter variable can hold. The example below
uses a byte-sized variable, but the EndValue is set to a number greater than
what will fit in a byte:

SYMBOL Reps = B0 ' Counter for the loop.
FOR Reps = 0 TO 300 ' Each loop add 1.
 DEBUG Reps ' Show reps in debug window.
NEXT

-- or --

Reps VAR BYTE ' Counter for the loop.
FOR Reps = 0 TO 300 ' Each loop add 1.
 DEBUG DEC ? Reps ' Show reps in debug window.
NEXT

Here, Reps is a byte variable; which can only hold the number range 0 to
255. The EndValue is set to 300, however; greater than 255. This code will
loop endlessly because when Reps is 255 and the FOR…NEXT loop adds 1,
Reps becomes 0 (bytes will rollover after 255 just like words will rollover
after 65535). The result, 0, is compared against the range (0 – 255) and it is
found to be within the range, so the FOR…NEXT loop continues.

It's important to realize that on the BS2, BS2e, BS2sx and BS2p, the test is
against the entire range, not just the EndValue. The code below is a slight
modification of the previous example (the StartValue is 10 instead of 0) and
will not loop endlessly.

1
NOTE: On the BS1, the loop will
continue until Counter has gone
past EndValue. The rollover error
will still occur if the BS1 cannot
determine if Counter went past
EndValue.

2 e
2

sx
2

p
2

1

NOTE: For BS1's, change line 1 to
SYMBOL Reps = W0
and line 3 to
DEBUG Reps

1

FOR…NEXT - BASIC Stamp Command Reference

Page 122 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Reps VAR BYTE ' Counter for the loop.
FOR Reps = 10 to 300 ' Each loop add 1.
 DEBUG DEC ? Reps ' Show reps in debug window.
NEXT

Reps still rolls over to 0, as before, however, this time it is outside the range
of 10 to 255. The loop stops, leaving Reps at 0. Note that this code is still in
error since Reps will never reach 300 until it is declared as a WORD.

Demo Program (FORNEXT.bas)
' This example uses a FOR...NEXT loop to churn out a series of sequential squares
' (numbers 1, 2, 3, 4... raised to the second power) by using a variable to set the
' FOR...NEXT StepValue, and incrementing StepValue within the loop. Sir Isaac Newton
' is generally credited with the discovery of this technique.

'{$STAMP BS1} 'STAMP directive (specifies a BS1)
SYMBOL Square = B0 ' FOR/NEXT counter and series of squares.
SYMBOL StepSize = B1 ' Step size, which will increase by 2 each
loop.

StepSize = 1
Square = 1
FOR Square = 1 TO 250 STEP StepSize ' Show squares up to 250.
 DEBUG Square ' Display on screen.
 StepSize = StepSize + 2 ' Add 2 to StepSize
NEXT ' Loop til square > 250.

Demo Program (FORNEXT.bs2)
' This example uses a FOR...NEXT loop to churn out a series of sequential squares
' (numbers 1, 2, 3, 4... raised to the second power) by using a variable to set the
' FOR...NEXT StepValue, and incrementing StepValue within the loop. Sir Isaac Newton
' is generally credited with the discovery of this technique.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)
Square VAR BYTE ' FOR/NEXT counter and series of squares.
StepSize VAR BYTE ' Step size, which will increase by 2 each
loop.

StepSize = 1
Square = 1
FOR Square = 1 TO 250 STEP StepSize ' Show squares up to 250.
 DEBUG DEC ? Square ' Display on screen.
 StepSize = StepSize + 2 ' Add 2 to StepSize
NEXT ' Loop til square > 250.

1

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS2e, BS2sx or
BS2p.

5: BASIC Stamp Command Reference – FREQOUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 123

FREQOUT BS1 BS2 BS2e BS2sx BS2p

(See SOUND)
FREQOUT Pin, Period, Freq1 {, Freq2}

Function
Generate one or two sine-wave tones for a specified period.

• Pin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to use. This pin will be set to output mode.

• Period is a variable/constant/expression (0 - 65535) specifying the
amount of time to generate the tone(s). The unit of time for Period is
described in Table 5.12.

• Freq1 is a variable/constant/expression (0 – 32767) specifying
frequency of the first tone. The unit of Freq1 is described in Table
5.12.

• Freq2 is an optional argument exactly like Freq1. When specified,
two frequencies will be mixed together on the specified I/O pin.

Quick Facts
 BS2, BS2e BS2sx BS2p

Units in Period 1 ms 0.4 ms 0.265 ms
Units in Freq1

and Freq2
1 Hz 2.5 Hz 3.77 Hz

Range of
frequency

0 to 32767 Hz 0 to 81.917 kHz 0 to 123.531 kHz

Explanation
FREQOUT generates one or two sine waves using a pulse-width
modulation algorithm. The circuits shown in Figure 5.4 will filter the
signal in order to play the tones through a speaker or audio amplifier.
Here’s a simple FREQOUT command:

FREQOUT 2, 1000, 2500

On the BS2, this command generates a 2500 Hz tone for 1 second (1000 ms)
on I/O pin 2. See Table 5.12 for timing data on other BASIC Stamps.

To play two tones on the same I/O pin at once:

1
2 e

2
sx
2

p
2

SIMPLEST FORM OF FREQOUT.

GENERATING TWO TONES AT ONCE.

Table 5.12: FREQOUT Quick
Facts.

FREQOUT - BASIC Stamp Command Reference

Page 124 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

FREQOUT 2, 1000, 2500, 3000

This will generate a 2500 Hz and 3000 Hz tone (on the BS2) for 1 second.
The frequencies will mix together for a chord- or bell-like sound. To
generate a silent pause, specify frequency value(s) of 0.

The circuits in Figure 5.4 work by filtering out the high-frequency PWM
used to generate the sine waves. FREQOUT works over a very wide range
of frequencies (as shown in Table 5.12) so at the upper end of its range,
those PWM filters will also filter out most of the desired frequency. You
may find it necessary to reduce values of the parallel capacitors shown in
the circuit, or to devise a custom active filter for your application.

Demo Program (FREQOUT.bs2)
' This program plays "Mary Had a Little Lamb" by reading the notes from a LOOKUP table.
' It was designed to sound good on the piezo speaker that comes with the BASIC Stamp
' Activity Board. To demonstrate the effect of mixing sine waves, the first frequency
' is the musical note itself, while the second is 8 Hz lower. The difference creates a
' quiver (vibrato) on each note. Subtracting 8 from the note frequency poses a problem
' when the frequency is 0, because the BASIC Stamp's positive-integer math wraps around
' to 65528. FREQOUT would ignore the highest bit of this value and generate a frequency
' of 32760 Hz rather than a truly silent pause. Although humans can't hear 32762 Hz,
' slight imperfections in filtering will cause an audible noise in the speaker. To clean
' this up, we use the expression "(f-8) max 32768," which changes 65528 to 32768.
FREQOUT
' discards the highest bit of 32768, which results in 0, the desired silent pause.

2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS2e, BS2sx or
BS2p.

10µF (both)

++
≥40Ω Speaker
(or 8Ω in series
with 33Ω resistor)

from I/O pin

C1 C2

Notes:
C1 may be omitted for piezo speakers
C2 is optional, but reduces high-frequency noise

from I/O pin

Driving a Speaker

1k

0.1µF 0.01µF

1k

Driving an Audio Amplifier

Amplifier
(e.g., Radio Shack
277-1008C)

Vss Vss

Vss Vss Vss

Figure 5.4: Example RC filter
circuits for driving an audio amplifier
or a speaker.

FREQUENCY CONSIDERATIONS.

5: BASIC Stamp Command Reference – FREQOUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 125

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

i VAR BYTE ' Counter for position in tune.
f VAR WORD ' Frequency of note for FREQOUT.
C CON 2092 ' C note
D CON 2348 ' D note
E CON 2636 ' E note
G CON 3136 ' G note
R CON 8 ' Silent pause (rest).

FOR i = 0 TO 28 ' Play the 29 notes of the LOOKUP table.
 LOOKUP i,[E,D,C,D,E,E,E,R,D,D,D,R,E,G,G,R,E,D,C,D,E,E,E,E,D,D,E,D,C],f
 FREQOUT 11,225,f,(f-8) MAX 32768
NEXT
STOP

FREQOUT - BASIC Stamp Command Reference

Page 126 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

5: BASIC Stamp Command Reference – GET

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 127

GET BS1 BS2 BS2e BS2sx BS2p

GET Location, Variable

Function
Read value from Scratch Pad RAM Location and store in Variable.

• Location is a variable/constant/expression (0 – 63 for Bs2e and BS2sx
and 0 – 127 for BS2p) that specifies the Scratch Pad RAM location to
read from.

• Variable is a variable (usually a byte) to store the value into.

Quick Facts
 BS2e, BS2sx BS2p

Scratch Pad
RAM size and
organization

64 bytes (0 – 63). Organized as
bytes only.

128 bytes (0 – 127). Organized as
bytes only.

General purpose
locations

0 - 62 0 – 126

Special use
location

Current program slot number in
read-only location 63.

Current program slot number in
lowest nibble of read-only location

127. Current read/write slot number
 in highest nibble of location 127.

Explanation
The GET command reads a byte-sized value from the specified Scratch
Pad RAM location and stores it into Variable. All values in all locations can
be retrieved from within any of the 8 program slots.

Scratch Pad RAM is useful for passing data to programs in other program
slots and for additional workspace. It is different than regular RAM in
that symbol names cannot be assigned directly to locations and each
location is always configured as a byte only. The following code will read
the value at location 25, store it in a variable called Temp and display it:

Temp VAR BYTE
GET 25, Temp
DEBUG DEC Temp

Scratch Pad RAM locations 0 though 62 are available for general use. The
highest location (63 for BS2e and BS2sx and 127 for the BS2p) is a special,
read-only, location that always contains the number of the currently
running program slot. On the BS2p, the upper nibble of location 127 also

e
2

sx
2

p
2

USES FOR SCRATCH PAD RAM.

SCRATCH PAD RAM LOCATIONS AND

THEIR PURPOSE.

Table 5.13: GET Quick Facts.

GET - BASIC Stamp Command Reference

Page 128 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

contains the current program slot that will be used for the READ and
WRITE commands. See the demo program below for an example of use.

Demo Program (GETPUT1.bsx)
' This example demonstrates the use of the GET and PUT commands. First, location 63
' is read using GET to display the currently running program number. Then a set of
' values are written (PUT) into locations 0 to 9. Afterwards, program number 1 is run.
' This program is a BS2sx project consisting of GETPUT1.bsx and GETPUT2.bsx. See the
' BASIC Stamp Project section in the manual for more information.

'{$STAMP BS2sx, GETPUT2.BSX} 'STAMP directive (specifies a BS2sx and
 'a second program, GETPUT2.BSX)

Value VAR BYTE
Index VAR BYTE

GET 63, Value
DEBUG "Program #",DEC Value, CR

FOR Index = 0 TO 9
 Value = (Index + 3) * 8
 PUT Index, Value
 DEBUG " Writing: ", DEC2 Value, " to location: ", DEC2 Index, CR
NEXT

RUN 1

 Demo Program (GETPUT2.bsx)
' This example demonstrates the use of the GET and PUT commands. First, location 63
' is read using GET to display the currently running program number. Then a set of
' values are read (GET) from locations 0 to 9 and displayed on the screen for verification.
' This program is a BS2sx project consisting of GETPUT1.bsx and GETPUT2.bsx. See the
' BASIC Stamp Project section in the manual for more information.

'{$STAMP BS2sx} 'STAMP directive (specifies a BS2sx)

Value VAR BYTE
Index VAR BYTE

GET 63, Value
DEBUG CR, "Program #",DEC Value, CR

FOR Index = 0 TO 9
 GET Index, Value
 DEBUG " Reading: ", DEC2 Value, " from location: ", DEC2 Index, CR
NEXT

STOP

e
2

sx
2

p
2

e
2

sx
2

p
2

NOTE: This is written for the BS2sx
but can be used for the BS2e, and
BS2p also. Locate the proper
source code file or modify the
STAMP directive before
downloading to the BS2e, or BS2p.

NOTE: This is written for the BS2sx
but can be used for the BS2e, and
BS2p also. Locate the proper
source code file or modify the
STAMP directive before
downloading to the BS2e, or BS2p.

5: BASIC Stamp Command Reference – GOSUB

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 129

GOSUB BS1 BS2 BS2e BS2sx BS2p

GOSUB Address

Function
Store the address of the next instruction after GOSUB, then go to the point
in the program specified by Address; with the intention of returning to the
stored address.

• Address is a label that specifies where to go.

Quick Facts
 BS1 BS2, BS2e, BS2sx and BS2p

Max. GOSUBs
per program

16 255

Max. nested
GOSUBs

4 4

Explanation
GOSUB is a close relative of GOTO, in fact, its name means, "GO to a
SUBroutine". When a PBASIC program reaches a GOSUB, the program
executes the code beginning at the specified address label. Unlike GOTO,
GOSUB also stores the address of the instruction immediately following
itself. When the program encounters a RETURN command, it interprets it
to mean, “go to the instruction that follows the most recent GOSUB.” In
other words, a GOSUB makes the BASIC Stamp do a similar operation as
you do when you see a table or figure reference in this manual; 1) you
remember where you are, 2) you go to the table or figure and read the
information there, and 3) when you've reached the end of it, you "return"
to the place you were reading originally.

GOSUB is mainly used to execute the same piece of code from multiple
locations. If you have, for example, a block of three lines of code that need
to be run from 10 different locations in your entire program you could
simple copy and paste those three lines to each of those 10 locations. This
would amount to a total of 30 lines of repetitive code (and extra space
wasted in the program memory). A better solution is to place those three
lines in a separate routine, complete with it's own label and followed by a
RETURN command, then just use a GOSUB command at each of the 10
locations to access it. This technique can save a lot of program space.

1 2 e
2

sx
2

p
2

Table 5.14: GOSUB Quick Facts.

GOSUB CAN SAVE EEPROM
(PROGRAM) SPACE.

GOSUB - BASIC Stamp Command Reference

Page 130 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Try the example below:

GOSUB Hello
DEBUG "How are you?"
END

Hello:
 DEBUG "Hello my friend.", CR
RETURN

The above code will start out by GOSUB'ing to the section of code
beginning with the label Hello. It will print "Hello my friend." on the
screen then RETURN to the line after the GOSUB… which prints "How are
you?" and ENDs.

There's another interesting lesson here; what would happen if we removed
the END command from this example? Since the BASIC Stamp reads the
code from left to right / top to bottom (like the English language) once it
had returned to and run the "How are you?" line, it would naturally "fall
into" the Hello routine again. Additionally, at the end of the Hello routine,
it would see the RETURN again (although it didn't GOSUB to that routine
this time) and because there wasn't a previous place to return to, the
BASIC Stamp will start the entire program over again. This would cause
an endless loop. The important thing to remember here is to always make
sure your program doesn't allow itself to "fall into" a subroutine.

Only a limited number of GOSUBs are allowed per program (as shown in
Table 5.14), but they may be nested only four levels deep. In other words,
the subroutine that’s the destination of a GOSUB can contain a GOSUB to
another subroutine, and so on, to a maximum depth (total number of
GOSUBS before the first RETURN) of four. Any deeper, and the program
will "forget" its way back to the starting point (the instruction following
the very first GOSUB).

When GOSUBS are nested, each RETURN takes the program back to the
instruction after the most-recent GOSUB. As is mentioned above, if the
BASIC Stamp encounters a RETURN without a previous GOSUB, the
entire program starts over from the beginning. Take care to avoid these
phenomena.

WATCH OUT FOR SUBROUTINES THAT

YOUR PROGRAM CAN "FALL INTO."

GOSUB LIMITATIONS.

1
NOTE: On the BS1, a RETURN
without a GOSUB will return the
program to the last GOSUB (or will
end the program if no GOSUB was
executed).

5: BASIC Stamp Command Reference – GOSUB

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 131

Demo Program (GOSUB.bas)
' This program is a guessing game that generates a random number in a subroutine called
' PickANumber. It is written to stop after three guesses. To see a common bug associated
' with GOSUB, delete or comment out the line beginning with STOP after the FOR/NEXT
' loop. This means that after the loop is finished, the program will wander into the
' PickANumber subroutine. When the RETURN at the end executes, the program will go back
' to the beginning of the program. This will cause the program to execute endlessly. Make
' sure that your programs can't accidentally execute subroutines!

'{$STAMP BS1} 'STAMP directive (specifies a BS1)
SYMBOL Rounds = B2 ' Number of reps.
SYMBOL NumGen = W0 ' Random number holder (must be 16 bits).
SYMBOL MyNum = B3 ' Random number, 1-10.

NumGen = 11500 ' Initialize random "seed"

FOR Rounds = 1 TO 3 ' Go three rounds.
 DEBUG CLS,"Pick a number from 1 to 10", CR
 GOSUB PickANumber ' Get a random number, 1-10.
 PAUSE 2000 ' Dramatic pause.
 DEBUG "My number was: ", #MyNum ' Show the number.
 PAUSE 2000 ' Another pause.
NEXT
END ' When done, stop execution here.

' Random-number subroutine. A subroutine is just a piece of code with the RETURN
' instruction at the end. Always make sure your program enters subroutines with a GOSUB.
' If you don't, the RETURN won't have the correct address, and your program will have a bug!
PickANumber:
 RANDOM NumGen ' Stir up the bits of NumGen.
 DEBUG NumGen
 MyNum = NumGen / 6550 MIN 1 ' Scale to fit 1-10 range.
RETURN ' Go back to the 1st instruction
 ' after the GOSUB that got us here.

Demo Program (GOSUB.bs2)
' This program is a guessing game that generates a random number in a subroutine called
' PickANumber. It is written to stop after three guesses. To see a common bug associated
' with GOSUB, delete or comment out the line beginning with STOP after the FOR/NEXT
' loop. This means that after the loop is finished, the program will wander into the
' PickANumber subroutine. When the RETURN at the end executes, the program will go back
' to the beginning of the program. This will cause the program to execute endlessly. Make
' sure that your programs can't accidentally execute subroutines!

'{$STAMP BS2} 'STAMP directive (specifies a BS2)
Rounds VAR NIB ' Number of reps.
NumGen VAR WORD ' Random-number holder (must be 16 bits).
MyNum VAR NIB ' Random number, 1-10.

2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS2e, BS2sx or
BS2p.

1

GOSUB - BASIC Stamp Command Reference

Page 132 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

FOR Rounds = 1 TO 3 ' Go three rounds.
 DEBUG CLS,"Pick a number from 1 to 10", CR
 GOSUB PickANumber ' Get a random number, 1-10.
 PAUSE 2000 ' Dramatic pause.
 DEBUG "My number was: ", DEC MyNum ' Show the number.
 PAUSE 2000 ' Another pause.
NEXT
STOP ' When done, stop execution here.

' Random-number subroutine. A subroutine is just a piece of code with the RETURN
' instruction at the end. Always make sure your program enters subroutines with a GOSUB.
' If you don't, the RETURN won't have the correct address, and your program will have a bug!
PickANumber:
 RANDOM NumGen ' Stir up the bits of NumGen.
 MyNum = NumGen / 6550 MIN 1 ' Scale to fit 1-10 range.
RETURN ' Go back to the 1st instruction
 ' after the GOSUB that got us here.

5: BASIC Stamp Command Reference – GOTO

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 133

GOTO BS1 BS2 BS2e BS2sx BS2p

GOTO Address

Function
Go to the point in the program specified by Address.

• Address is a label that specifies where to go.

Quick Facts
 BS1, BS2, BS2e, BS2sx and BS2p

Max. GOTOs
per program

Unlimited, but good programming practices suggest using the least
amount possible.

Explanation
The GOTO command makes the BASIC Stamp execute the code that starts
at the specified Address location. The BASIC Stamp reads PBASIC code
from left to right / top to bottom, just like in the English language. The
GOTO command forces the BASIC Stamp to jump to another section of
code.

A common use for GOTO is to create endless loops; programs that repeat a
group of instructions over and over. For example:

Loop:
 DEBUG "Hi", CR
GOTO Loop

The above code will print "Hi" on the screen, over and over again. The
GOTO Loop line simply tells it to go back to the code that begins with the
label Loop.

Demo Program (GOTO.bs2)
' This program is not very practical, but demonstrates the use of GOTO to jump around
' the code. This code jumps between three different routines, each of which print
' something different on the screen. The routines are out of order for this example.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

GOTO Routine1

Routine2:
 DEBUG "We're in routine #2",CR
 PAUSE 1000

1 2 e
2

sx
2

p
2

1 2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS1, BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS1, BS2e,
BS2sx or BS2p.

Table 5.15: GOTO Quick Facts.

GOTO - BASIC Stamp Command Reference

Page 134 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

GOTO Routine3

Routine1:
 DEBUG "We're in routine #1",CR
 PAUSE 1000
GOTO Routine2

Routine3:
 DEBUG "We're in routine #3",CR
 PAUSE 1000
GOTO Routine1

5: BASIC Stamp Command Reference – HIGH

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 135

HIGH BS1 BS2 BS2e BS2sx BS2p

HIGH Pin

Function
Make the specified pin output high.

• Pin is a variable/constant/expression (0 – 15) that specifies which
I/O pin to set high. This pin will be placed into output mode.

Explanation
The HIGH command sets the specified pin to 1 (a +5 volt level) and then
sets its mode to output. For example,

HIGH 6

does exactly the same thing as:

OUT6 = 1
DIR6 = 1

Using the HIGH command is faster, in this case.

Connect an LED and a resister as shown in Figure 5.5 for the demo
program below.

1 2 e
2

sx
2

p
2

Figure 5.5: Example LED Circuit.

1
NOTE: Expressions are not
allowed as arguments on the BS1.
The range of the Pin argument on
the BS1 is 0 – 7.

P0

470 Ω

LED

Vss

HIGH - BASIC Stamp Command Reference

Page 136 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Demo Program (HIGH.bs2)
' This simple program sets I/O pin 0 high for 1/2 second and low for 1/2 second
' in an endless loop.
'{$STAMP BS2} 'STAMP directive (specifies a BS2)

Loop:
 HIGH 0
 PAUSE 500
 LOW 0
 PAUSE 500
GOTO Loop

1 2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS1, BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS1, BS2e,
BS2sx or BS2p.

5: BASIC Stamp Command Reference – I2CIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 137

I2CIN BS1 BS2 BS2e BS2sx BS2p

I2CIN Pin, SlaveID, Address {\LowAddress}, [InputData]
Function
Receive data from a device using the I2C protocol.

• Pin is a variable/constant/expression (0 or 8) that specifies which
I/O pins to use. I2C devices require two I/O pins to communicate.
The Pin argument serves a double purpose; specifying the first pin
(for connection to the chip's SDA pin) and, indirectly, the other
required pin (for connection to the chip's SCL pin). See explanation
below. Both I/O pins will be toggled between output and input
mode during the I2CIN command and both will be set to input
mode by the end of the I2CIN command.

• SlaveID is a variable/constant/expression (0 – 255) indicating the
unique ID of the I2C chip.

• Address is a variable/constant/expression (0 – 255) indicating the
desired address within the I2C chip to receive data from. The
Address argument may be used with the optional LowAddress
argument to indicate a word-sized address value.

• LowAddress is a variable/constant/expression (0 – 255) indicating
the low-byte of the word-sized address within the I2C chip to receive
data from. This argument must be used along with the Address
argument.

• InputData is a list of variables and modifiers that tells I2CIN what to
do with incoming data. I2CIN can store data in a variable or array,
interpret numeric text (decimal, binary, or hex) and store the
corresponding value in a variable, wait for a fixed or variable
sequence of bytes, or ignore a specified number of bytes. These
actions can be combined in any order in the InputData list.

Quick Facts

 BS2p
Values for Pin 0 or 8

I/O pin
arrangement

When Pin is 0: When Pin is 8:
0: Serial Data (SDA) pin 8: Serial Data (SDA) pin
1: Serial Clock (SCL) pin 9: Serial Clock (SCL) pin

Transmission
Rate

Approximately 81 kbits/sec (not including overhead).

Special notes
Both the SDA and SCL pins must have 4.7 KΩ pull-up resisters.
The I2CIN command does not allow for multiple masters.
The BASIC Stamp cannot operate as an I2C slave device.

Table 5.16: I2CIN Quick Facts.

p
2

I2CIN - BASIC Stamp Command Reference

Page 138 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Explanation
The I2C protocol is a form of synchronous serial communication developed
by Phillips Semiconductors. It only requires two I/O pins and both pins
can be shared between multiple I2C devices. The I2CIN command allows
the BASIC Stamp to receive data from an I2C device.

The following is an example of the I2CIN command:

Result VAR BYTE
I2CIN 0, $A1, 0, [Result]

This code will transmit a "read" command to an I2C device (connected to
I/O pins 0 and 1) and then will receive one byte and store it in the variable
Result. Though it may seem strange, the I2CIN command first transmits
some data and then receives data. It must first transmit information (ID,
read/write and address) in order to tell the I2C device what information it
would like to receive. The exact information transmitted ($A1, 0) depends
on the I2C device that is being used.

The above example will read a byte of data from location 0 of a 24LC16B
EEPROM from Microchip. Figure 5.6 shows the proper wiring for this
example to work. The SlaveID argument ($A1) is both the ID of the chip
and the command to read from the chip; the 1 means read. The Address
argument (0) is the EEPROM location to read from.

The I2CIN command's InputData argument is similar to the SERIN
command's InputData argument. This means data can be received as
ASCII character values, decimal, hexadecimal and binary translations and
string data as in the examples below. (Assume the 24LC16B EEPROM is
used and it has the string, "Value: 3A:101" stored, starting at location 0).

A SIMPLE I2CIN EXAMPLE.

RECEIVING FORMATTED DATA.

Figure 5.6: Example Circuit for the
I2CIN command and a 24LC16B
EEPROM. Note: The 4.7 KΩΩ
resisters are required for the
I2CIN command to function
properly.

Vss

P1
Vdd

4.7 kΩ

P0

24LC16B
(DIP)

4.7 kΩ

SDA

SCL

1
2
3
4

8
7
6
5

5: BASIC Stamp Command Reference – I2CIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 139

Value VAR BYTE(13)
I2CIN 0, $A1, 0, [Value] 'receive the ASCII value for "V"
I2CIN 0, $A1, 0, [DEC Value] 'receive the number 3.
I2CIN 0, $A1, 0, [HEX Value] 'receive the number $3A.
I2CIN 0, $A1, 0, [BIN Value] 'receive the number %101.
I2CIN 0, $A1, 0, [STR Value\13] 'receive the string "Value: 3A:101"

Tables 5.17 and 5.18 list all the available conversion formatters and special
formatters available to the I2CIN command. See the SERIN command for
additional information and examples of their use.

Conversion
Formatter

Type of Number Numeric Characters Accepted Notes

DEC{1..5} Decimal, optionally limited to 1 –
5 digits

0 through 9 1

SDEC{1..5} Signed decimal, optionally
limited to 1 – 5 digits

-, 0 through 9 1,2

HEX{1..4} Hexadecimal, optionally limited
to 1 – 4 digits

0 through 9, A through F 1,3

SHEX{1..4} Signed hexadecimal, optionally
limited to 1 – 4 digits

-, 0 through 9, A through F 1,2,3

IHEX{1..4} Indicated hexadecimal,
optionally limited to 1 – 4 digits

$, 0 through 9, A through F 1,3,4

ISHEX{1..4} Signed, indicated hexadecimal,
optionally limited to 1 – 4 digits

-, $, 0 through 9, A through F 1,2,3,4

BIN{1..16} Binary, optionally limited to
1 – 16 digits

0, 1 1

SBIN{1..16} Signed binary, optionally limited
to 1 – 16 digits

-, 0, 1 1,2

IBIN{1..16} Indicated binary, optionally
limited to 1 – 16 digits

%, 0, 1 1,4

ISBIN{1..16} Signed, indicated binary,
optionally limited to 1 – 16 digits

-, %, 0, 1 1,2,4

1 All numeric conversions will continue to accept new data until receiving either the specified
number of digits (ex: three digits for DEC3) or a non-numeric character.

2 To be recognized as part of a number, the minus sign (-) must immediately precede a
numeric character. The minus sign character occurring in non-numeric text is ignored and
any character (including a space) between a minus and a number causes the minus to be
ignored.

3 The hexadecimal formatters are not case-sensitive; “a” through “f” means the same as “A”
through “F”.

4 Indicated hexadecimal and binary formatters ignore all characters, even valid numerics,
until they receive the appropriate prefix ($ for hexadecimal, % for binary). The indicated
formatters can differentiate between text and hexadecimal (ex: ABC would be interpreted
by HEX as a number but IHEX would ignore it unless expressed as $ABC). Likewise, the
binary version can distinguish the decimal number 10 from the binary number %10. A
prefix occurring in non-numeric text is ignored, and any character (including a space)
between a prefix and a number causes the prefix to be ignored. Indicated, signed
formatters require that the minus sign come before the prefix, as in -$1B45.

Table 5.17: I2CIN Conversion
Formatters.

I2CIN - BASIC Stamp Command Reference

Page 140 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Special Formatter Action

STR ByteArray \L {\E}
Input a character string of length L into an array. If specified, an
end character E causes the string input to end before reaching
length L. Remaining bytes are filled with 0s (zeros).

WAITSTR ByteArray {\L}

Wait for a sequence of bytes matching a string stored in an array
variable, optionally limited to L characters. If the optional L
argument is left off, the end of the array-string must be marked
by a byte containing a zero (0).

SKIP Length Ignore Length bytes of characters.

The I2C protocol has a well-defined standard for the information passed at
the start of each transmission. First of all, any information sent must be
transmitted in units of 1 byte (8-bits). The first byte, we call the SlaveID, is
an 8-bit pattern whose upper 7-bits contain the unique ID of the device
you wish to communicate with. The lowest bit indicates whether this is a
write operation (0) or a read operation (1). Figure 5.7 shows this format.

The second byte, immediately following the SlaveID, is the Address. It
indicates the 8-bit address (within the device) containing the data you
would like to receive.

Some devices require more than 8 bits of address. For this case, the
optional LowAddress argument can be used for the low-byte of the required
address. When using the LowAddress argument, the Address argument is
effectively the high-byte of the address value. For example, if the entire
address value is 2050, use 8 for the Address argument and 2 for the
LowAddress argument (8 * 256 + 2 = 2050).

Following the last address byte is the first byte of data. This data byte may
be transmitted or received by the BASIC Stamp. In the case of the I2CIN
command, this data byte is transmitted by the device and received by the
BASIC Stamp. Additionally, multiple data bytes can follow the address,
depending on the I2C device. Note that every device has different
limitations regarding how may contiguous bytes they can receive or
transmit in one session. Be aware of these device limitations and program
accordingly.

THE I2C PROTOCOL FORMAT.

Table 5.18: I2CIN Special
Formatters.

Figure 5.7: SlaveID Format.

7

A6

6

A5

5

A4

4

A3

3

A2

2

A1

1

A0

0

R/W

USING LONG ADDRESSES.

5: BASIC Stamp Command Reference – I2CIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 141

Every I2C transmission session begins with a Start Condition and ends
with a Stop Condition. Additionally, immediately after every byte is
transmitted, an extra clock cycle is used to send or receive an
acknowledgment signal (ACK). All of these operations are automatically
taken care of by the I2CIN command so that you need not be concerned
with them. The general I2C transmission format is shown in Figure 5.8.

Since the I2CIN command is intended for input only, it actually overrides
the "R/W" bit (bit 0) in the SlaveID argument. This is done so that it can
use the I2C protocol's "Combined Format" for receiving data. Put simply,
this means a command such as: I2CIN 0, $A1, 10, [Result] actually
transmits $A0, then 10, then $A1 and then it reads the data back from the
device. The $A0 means "write", the 10 is the address to write to and,
finally, the $A1 indicates a change of direction; to "read" the location,
instead. Even though the I2CIN command really doesn't care what the
value of the SlaveID's LSB is, it is suggested that you still set it
appropriately for clarity.

Also note that the I2CIN command does not support multiple I2C masters
and the BASIC Stamp cannot operate as an I2C slave device.

Demo Program (I2C.bsp)
' This program demonstrates writing and reading every location in the 24LC16B EEPROM
' using the BS2p's I2C commands. Connect the BS2p to the 24LC16B DIP EEPROM as
' shown in the diagram in the I2CIN or I2COUT command description.

'{$STAMP BS2p} 'STAMP directive (specifies a BS2p)

SPECIAL NOTE ABOUT I2CIN
INPLIMENTATION.

Figure 5.8: I2C Transmission
Format.

S P

S
T
A
R
T

SlaveID A
C
K

Address A
C
K

Data A
C
K

S
T
O
P

B
U
S

F
R
E
E

a6 a5 a4 a3 a2 a1 a0 rw a6 a5 a4 a3 a2 a1 a0a7 d6 d5 d4 d3 d2 d1 d0d7

NOTES:
S = Start Condition
P = Stop Condition
a = id or address bit
d = data bit (transmitted by the BASIC Stamp or the I C device)
ACK = Acknowledge signal. (Most acknowledge signals are generated by the I C device)

2

2

p
2

START AND STOP CONDITIONS AND

ACKNOWLEDGMENTS.

I2CIN - BASIC Stamp Command Reference

Page 142 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Idx VAR WORD 'Index variable for address
Check VAR NIB 'Index for checking returned values
Result VAR BYTE(16) '16-byte array for returned value

WriteToEEPROM:
 DEBUG "Writing...", CR
 PAUSE 2000
 FOR Idx = 0 TO 2047 STEP 16 'For all 2K locations,
 I2COUT 0, $A0+((Idx>>8)*2), Idx, [REP Idx>>4\16] 'Write 16 bytes at once
 PAUSE 5
 DEBUG "Addr: ", DEC4 Idx, "-", DEC4 Idx+15, " Value: ", DEC3 Idx>>4 & $FF, CR
 NEXT
 PAUSE 2000

ReadFromEEPROM:
 DEBUG CR, "Reading...", CR
 PAUSE 2000
 FOR Idx = 0 TO 2047 STEP 16 'For all 2K locations,
 I2CIN 0, $A1+((Idx>>8)*2), Idx, [STR Result\16] 'Read 16 bytes at once
 FOR Check = 0 TO 15 'Check all 16 for
 IF Result(Check) <> Idx>>4 & $FF THEN Error 'accuracy, stop if error
 NEXT
 DEBUG "Addr: ", DEC4 Idx, "-", DEC4 Idx+15, " Value: ", DEC3 Result, CR
 NEXT
 PAUSE 1000
 DEBUG CR, " All Locations PASSED!"
STOP

Error:
 DEBUG "Error at location: ", DEC4 Idx+Check, CR
 DEBUG "Found: ", DEC3 Result(Check), " Expected: ", DEC3 Idx>>4 & $FF
STOP

5: BASIC Stamp Command Reference – I2COUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 143

I2COUT BS1 BS2 BS2e BS2sx BS2p

I2COUT Pin, SlaveID, Address {\LowAddress}, [OutputData]
Function
Send data to a device using the I2C protocol.

• Pin is a variable/constant/expression (0 or 8) that specifies which
I/O pins to use. I2C devices require two I/O pins to communicate.
The Pin argument serves a double purpose; specifying the first pin
(for connection to the chip's SDA pin) and, indirectly, the other
required pin (for connection to the chip's SCL pin). See explanation
below. Both I/O pins will be toggled between output and input
mode during the I2COUT command and both will be set to input
mode by the end of the I2COUT command.

• SlaveID is a variable/constant/expression (0 – 255) indicating the
unique ID of the I2C chip.

• Address is a variable/constant/expression (0 – 255) indicating the
desired address within the I2C chip to send data to. The Address
argument may be used with the optional LowAddress argument to
indicate a word-sized address value.

• LowAddress is a variable/constant/expression (0 – 255) indicating
the low-byte of the word-sized address within the I2C chip to receive
data from. This argument must be used along with the Address
argument.

• OutputData is a list of variables, constants, expressions and
formatters that tells I2COUT how to format outgoing data. I2COUT
can transmit individual or repeating bytes, convert values into
decimal, hexadecimal or binary text representations, or transmit
strings of bytes from variable arrays. These actions can be combined
in any order in the OutputData list.

Quick Facts

 BS2p
Values for Pin 0 or 8

I/O pin
arrangement

When Pin is 0: When Pin is 8:
0: Serial Data (SDA) pin 8: Serial Data (SDA) pin
1: Serial Clock (SCL) pin 9: Serial Clock (SCL) pin

Transmission
Rate

Approximately 81 kbits/sec (not including overhead).

Special notes
Both the SDA and SCL pins must have 4.7 KΩ pull-up resisters.
The I2COUT command does not allow for multiple masters.
The BASIC Stamp cannot operate as an I2C slave device.

Table 5.19: I2COUT Quick Facts.

p
2

I2COUT - BASIC Stamp Command Reference

Page 144 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Explanation
The I2C protocol is a form of synchronous serial communication developed
by Phillips Semiconductors. It only requires two I/O pins and both pins
can be shared between multiple I2C devices. The I2COUT command
allows the BASIC Stamp to send data to an I2C device.

The following is an example of the I2COUT command:

I2COUT 0, $A0, 5, [100]

This code will transmit a "write" command to an I2C device (connected to
I/O pins 0 and 1), followed by an address of 5 and finally will transmit the
number 100.

The above example will write a byte of data to location 5 of a 24LC16B
EEPROM from Microchip. Figure 5.9 shows the proper wiring for this
example to work. The SlaveID argument ($A0) is both the ID of the chip
and the command to write to the chip; the 0 means write. The Address
argument (5) is the EEPROM location to write to.

The I2COUT command's OutputData argument is similar to the DEBUG
and SEROUT command's OutputData argument. This means data can be
sent as literal text, ASCII character values, repetitive values, decimal,
hexadecimal and binary translations and string data as in the examples
below. (Assume the 24LC16B EEPROM is being used).

A SIMPLE I2COUT EXAMPLE.

SENDING AND FORMATTING DATA.

Figure 5.9: Example Circuit for the
I2COUT command and a 24LC16B
EEPROM. Note: The 4.7 KΩΩ
resisters are required for the
I2COUT command to function
properly.

Vss

P1
Vdd

4.7 kΩ

P0

24LC16B
(DIP)

4.7 kΩ

SDA

SCL

1
2
3
4

8
7
6
5

5: BASIC Stamp Command Reference – I2COUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 145

Value VAR BYTE
Value = 65
I2COUT 0, $A0, 0, [Value] 'send the ASCII value for "A"
I2COUT 0, $A0, 0, [REP Value\5] 'send the ASCII value for "A" five times, ie: "AAAAA"
I2COUT 0, $A0, 0, [DEC Value] 'send two characters, "6" and "5"
I2COUT 0, $A0, 0, [HEX Value] 'send two characters, "4" and "1"
I2COUT 0, $A0, 0, [BIN Value] 'send seven characters, "1000001"

Tables 5.20 and 5.21 list all the available conversion formatters and special
formatters available to the I2COUT command. See the DEBUG and
SEROUT commands for additional information and examples of their use.

Conversion
Formatter

Type of Number Notes

DEC{1..5} Decimal, optionally fixed to 1 – 5 digits 1
SDEC{1..5} Signed decimal, optionally fixed to 1 – 5 digits 1,2
HEX{1..4} Hexadecimal, optionally fixed to 1 – 4 digits 1

SHEX{1..4} Signed hexadecimal, optionally fixed to 1 – 4 digits 1,2
IHEX{1..4} Indicated hexadecimal, optionally fixed to 1 – 4 digits ($ prefix) 1

ISHEX{1..4} Signed, indicated hexadecimal, optionally fixed to 1 – 4 digits
($ prefix)

1,2

BIN{1..16} Binary, optionally fixed to 1 – 16 digits 1
SBIN{1..16} Signed binary, optionally fixed to 1 – 16 digits 1,2
IBIN{1..16} Indicated binary, optionally fixed to 1 – 16 digits (% prefix) 1

ISBIN{1..16} Signed, indicated binary, optionally fixed to 1 – 16 digits (% prefix) 1,2
1 Fixed-digit formatters like DEC4 will pad the number with leading 0s if necessary; ex:

DEC4 65 sends 0065. If a number is larger than the specified number of digits, the
leading digits will be dropped; ex: DEC4 56422 sends 6422.

2 Signed modifiers work under two's complement rules.

Special Formatter Action

?

Displays "symbol = x' + carriage return; where x is a number.
Default format is decimal, but may be combined with
conversion formatters (ex: BIN ? x to display
"x = binary_number").

ASC ? Displays "symbol = 'x'" + carriage return; where x is an ASCII
character.

STR ByteArray {\L}

Send character string from an array. The optional \L argument
can be used to limit the output to L characters, otherwise,
characters will be sent up to the first byte equal to 0 or the end
of RAM space is reached.

REP Byte \L Send a string consisting of Byte repeated L times
(ex: REP "X"\10 sends "XXXXXXXXXX").

The I2C protocol has a well-defined standard for the information passed at
the start of each transmission. First of all, any information sent must be
transmitted in units of 1 byte (8-bits). The first byte, we call the SlaveID, is
an 8-bit pattern whose upper 7-bits contain the unique ID of the device

Table 5.20: I2COUT Conversion
Formatters.

THE I2C PROTOCOL FORMAT.

Table 5.21: I2COUT Special
Formatters.

I2COUT - BASIC Stamp Command Reference

Page 146 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

you wish to communicate with. The lowest bit indicates whether this is a
write operation (0) or a read operation (1). Figure 5.10 shows this format.

The second byte, immediately following the SlaveID, is the Address. It
indicates the 8-bit address (within the device) you would like to send data
to.

Some devices require more than 8 bits of address. For this case, the
optional LowAddress argument can be used for the low-byte of the required
address. When using the LowAddress argument, the Address argument is
effectively the high-byte of the address value. For example, if the entire
address value is 2050, use 8 for the Address argument and 2 for the
LowAddress argument (8 * 256 + 2 = 2050).

Following the last address byte is the first byte of data. This data byte may
be transmitted or received by the BASIC Stamp. In the case of the I2COUT
command, this data byte is transmitted by the BASIC Stamp and received
by the device. Additionally, multiple data bytes can follow the address,
depending on the I2C device. Note that every device has different
limitations regarding how may contiguous bytes they can receive or
transmit in one session. Be aware of these device limitations and program
accordingly.

Figure 5.10: SlaveID Format.

7

A6

6

A5

5

A4

4

A3

3

A2

2

A1

1

A0

0

R/W

USING LONG ADDRESSES.

5: BASIC Stamp Command Reference – I2COUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 147

Every I2C transmission session begins with a Start Condition and ends
with a Stop Condition. Additionally, immediately after every byte is
transmitted, an extra clock cycle is used to send or receive an
acknowledgment signal (ACK). All of these operations are automatically
taken care of by the I2CIN command so that you need not be concerned
with them. The general I2C transmission format is shown in Figure 5.11.

Since the I2COUT command is intended for output only, it actually
overrides the "R/W" bit (bit 0) in the SlaveID argument. This is done to
avoid device conflicts should the value be mistyped. Put simply, this
means commands such as: I2COUT 0, $A0, 10, [0] and I2COUT 0, $A1,
10, [0] both transmit the same thing ($A0, then 10, then the data). Even
though the I2COUT command really doesn't care what the value of the
SlaveID's LSB is, it is suggested that you still set it appropriately for clarity.

Also note that the I2COUT command does not support multiple I2C
masters and the BASIC Stamp cannot operate as an I2C slave device.

Demo Program (I2C.bsp)
' This program demonstrates writing and reading every location in the 24LC16B EEPROM
' using the BS2p's I2C commands. Connect the BS2p to the 24LC16B DIP EEPROM as
' shown in the diagram in the I2CIN or I2COUT command description.

'{$STAMP BS2p} 'STAMP directive (specifies a BS2p)

Idx VAR WORD 'Index variable for address
Check VAR NIB 'Index for checking returned values
Result VAR BYTE(16) '16-byte array for returned value

WriteToEEPROM:

SPECIAL NOTE ABOUT I2COUT

INPLIMENTATION.

S P

S
T
A
R
T

SlaveID A
C
K

Address A
C
K

Data A
C
K

S
T
O
P

B
U
S

F
R
E
E

a6 a5 a4 a3 a2 a1 a0 rw a6 a5 a4 a3 a2 a1 a0a7 d6 d5 d4 d3 d2 d1 d0d7

NOTES:
S = Start Condition
P = Stop Condition
a = id or address bit
d = data bit (transmitted by the BASIC Stamp or the I C device)
ACK = Acknowledge signal. (Most acknowledge signals are generated by the I C device)

2

2

p
2

Figure 5.11: I2C Transmission
Format.

START AND STOP CONDITIONS AND

ACKNOWLEDGMENTS.

I2COUT - BASIC Stamp Command Reference

Page 148 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

 DEBUG "Writing...", CR
 PAUSE 2000
 FOR Idx = 0 TO 2047 STEP 16 'For all 2K locations,
 I2COUT 0, $A0+((Idx>>8)*2), Idx, [REP Idx>>4\16] 'Write 16 bytes at once
 PAUSE 5
 DEBUG "Addr: ", DEC4 Idx, "-", DEC4 Idx+15, " Value: ", DEC3 Idx>>4 & $FF, CR
 NEXT
 PAUSE 2000

ReadFromEEPROM:
 DEBUG CR, "Reading...", CR
 PAUSE 2000
 FOR Idx = 0 TO 2047 STEP 16 'For all 2K locations,
 I2CIN 0, $A1+((Idx>>8)*2), Idx, [STR Result\16] 'Read 16 bytes at once
 FOR Check = 0 TO 15 'Check all 16 for
 IF Result(Check) <> Idx>>4 & $FF THEN Error 'accuracy, stop if error
 NEXT
 DEBUG "Addr: ", DEC4 Idx, "-", DEC4 Idx+15, " Value: ", DEC3 Result, CR
 NEXT
 PAUSE 1000
 DEBUG CR, " All Locations PASSED!"
STOP

Error:
 DEBUG "Error at location: ", DEC4 Idx+Check, CR
 DEBUG "Found: ", DEC3 Result(Check), " Expected: ", DEC3 Idx>>4 & $FF
STOP

5: BASIC Stamp Command Reference – IF…THEN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 149

IF…THEN BS1 BS2 BS2e BS2sx BS2p

IF Condition THEN Address

Function
Evaluate Condition and, if it is true, go to the point in the program marked
by Address.

• Condition is a statement, such as “x = 7” that can be evaluated as
true or false. The Condition can be a very simple or very complex
relationship, as described below.

• Address is a label that specifies where to go in the event that
Condition is true.

Quick Facts
 BS1 BS2, BS2e, BS2sx and BS2p

Comparison
operators

=, <>, >, <, >=, <= =, <>, >, <, >=, <=

Conditional
logic operators

AND, OR NOT, AND, OR, XOR

Format of
condition

Variable Comparison Value
;where Value is a variable

or constant

Value1 Comparison Value2
;where Value1 and Value2 can by

any of variable, constant or
expression

Parentheses Not Allowed Allowed

Explanation
IF...THEN is PBASIC’s decision maker. It tests a condition and, if that
condition is true, goes to a point in the program specified by an address
label. The condition that IF...THEN tests is written as a mixture of
comparison and logic operators. The available comparison operators are:

Comparison Operator
Symbol

Definition

= Equal
<> Not Equal
> Greater Than
< Less Than

>= Greater Than or Equal To
<= Less Than or Equal To

Comparisons are always written in the form: Value1 Comparison Value2.
The values to be compared can be any combination of variables (any size),

1 2 e
2

sx
2

p
2

Table 5.23: IF…THEN Comparison
Operators.

NOTE: On the BS1, expressions
are not allowed as arguments.
Also, the Value1 (to the left of
comparison) must be a variable.

NOTE: Expressions are not allowed
as arguments on the BS1. The
range of the Pin argument on the

Table 5.22: IF…THEN Quick Facts.

IF…THEN - BASIC Stamp Command Reference

Page 150 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

constants, or expressions. The following example is an IF…THEN
command with a simple condition:

IF 10 < 200 THEN Loop

This code will compare the number 10 to the number 200. If 10 is less than
200, the condition is true. In this case, 10 is less than 200 (and always will
be), so the program will jump (or GOTO) the label called Loop. Of course,
this is a silly example (10 is always less than 200 so this line will always
cause a jump to Loop). Most of the time, you'll use at least one variable in
your condition:

Value VAR WORD
Loop:
 PULSIN 0, Value
 DEBUG DEC Value, CR
 IF Value < 4000 THEN Loop
 DEBUG "Value was greater than 4000!"

Here, the BASIC Stamp will look for and measure a pulse on I/O pin 0,
then compare the result, Value, against 4000. If Value is less than (<) 4000,
it will jump back to Loop. Each time through the loop, it displays the
measured value and once it is greater than or equal to 4000, it displays,
"Value was greater than 4000!"

On the BS2, BS2e, BS2sx and BS2p, the values can be expressions as well.
This leads to very flexible and sophisticated comparisons. The IF…THEN
statement below is functionally the same as the one in the program above:

 IF Value < 45 * 100 – (25 * 20) THEN Loop

Here the BASIC Stamp evaluates the expression: 45 * 100 = 4500, 25 * 20 =
500, and 4500 – 500 = 4000. Then the BAISC Stamp performs the
comparison: is Value < 4000? Another example that is functionally the
same:

 IF Value / 100 < 40 THEN Loop

It's important to realize that all comparisons are performed using
unsigned, 16-bit math. This can lead to strange results if you mix signed
and unsigned numbers in IF...THEN conditions. Watch what happens
here when we include a signed number (–99):

NOTE: For BS1's, change line 1 to
SYMBOL Value = W0
and line 4 to
DEBUG #Value, CR

1

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

A SIMPLE FORM OF IF…THEN

WATCH OUT FOR UNSIGNED MATH

COMPARISON ERRORS

2 e
2

sx
2

p
2

5: BASIC Stamp Command Reference – IF…THEN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 151

IF -99 < 100 THEN IsLess
DEBUG "Greater than or equal to 100"
END

IsLess:
DEBUG "Less than 100"
END

Although –99 is obviously less than 100, the program will say it is greater.
The problem is that –99 is internally represented as the two’s complement
value 65437, which (using unsigned math) is greater than 100. This
phenomena will occur whether or not the negative value is a constant,
variable or expression.

IF...THEN supports the conditional logic operators NOT, AND, OR, and
XOR. See Table 5.24 for a list of the operators and their effects.

The NOT operator inverts the outcome of a condition, changing false to
true, and true to false. The following IF...THENs are equivalent:

IF x <> 100 THEN NotEqual ' Goto NotEqual if x is not 100.
IF NOT x = 100 THEN NotEqual ' Goto NotEqual if x is not 100.

The operators AND, OR, and XOR can be used to join the results of two
conditions to produce a single true/false result. AND and OR work the
same as they do in everyday speech. Run the example below once with
AND (as shown) and again, substituting OR for AND:

Value1 VAR BYTE
Value2 VAR BYTE
Value1 = 5
Value2 = 9
IF Value1 = 5 AND Value2 = 10 THEN True ' Change AND to OR and see
DEBUG "Statement was false." ' what happens.
END

True:
DEBUG "Statement was true."

The condition “Value1 = 5 AND Value2 = 10” is not true. Although
Value1 is 5, Value2 is not 10. The AND operator works just as it does in
English; both conditions must be true for the statement to be true. The OR
operator also works in a familiar way; if one or the other or both
conditions are true, then the statement is true. The XOR operator (short
for exclusive-OR) may not be familiar, but it does have an English

NOTE: For BS1's, change line 1
and 2 to:
SYMBOL Value1 = B0
SYMBOL Value2 = B1

1

LOGICAL OPERATORS (NOT, AND,
OR AND XOR).

1
NOTE: The NOT operator is not
available on the BS1.

1
NOTE: The XOR operator is not
available on the BS1.

NOTE: The XOR operator is not
available on the BS1.

1

IF…THEN - BASIC Stamp Command Reference

Page 152 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

counterpart: If one condition or the other (but not both) is true, then the
statement is true.

Table 5.24 below summarizes the effects of the conditional logic operators.
As with math, you can alter the order in which comparisons and logical
operations are performed by using parentheses. Operations are normally
evaluated left-to-right. Putting parentheses around an operation forces
PBASIC2 to evaluate it before operations not in parentheses.

Condition A NOT A
False True
True False

Condition A Condition B A AND B

False False False
False True False
True False False
True True True

Condition A Condition B A OR B

False False True
False True True
True False True
True True False

Condition A Condition B A XOR B

False False False
False True True
True False True
True True False

Unlike the IF...THEN commands in other BASIC's, PBASIC’s IF...THEN
can only go to a label as the result of a decision. It cannot conditionally
perform some instruction, as in “IF x < 20 THEN y = y + 1.” To achieve
this in PBASIC, you have to invert the logic using NOT and skip over the
conditional instruction unless the condition is met:

IF NOT x < 20 THEN NoInc ' Don't increment y unless x < 20.
 y = y + 1 ' Increment y if x < 20.
NoInc: ' Program continues.

You can also code a conditional GOSUB, as in “IF x = 100 THEN GOSUB
Centennial.” In PBASIC:

1
NOTE: On the BS1, parentheses
are not allowed within arguments.

Table 5.24: Conditional Logic
Operator's Truth-Table.

IF…THEN CAN ONLY JUMP TO A

LABEL IF THE CONDITION IS TRUE.

MAKING A CONDITIONAL GOSUB.

1
NOTE: The XOR operator is not
available on the BS1.

1
NOTE: The NOT operator is not
available on the BS1.

5: BASIC Stamp Command Reference – IF…THEN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 153

IF NOT x = 100 then NoCent
 GOSUB Centennial ' IF x = 100 THEN GOSUB Centennial.
NoCent: ' Program continues.

Internally, the BASIC Stamp defines “false” as 0 and “true” as any value
other than 0. Consider the following instructions:

Flag VAR BIT
Flag = 1

IF Flag THEN IsTrue
DEBUG "false"
END

IsTrue:
DEBUG "true"
END

Since Flag is 1, IF...THEN would evaluate it as true and print the message
“true” on the screen. Suppose you changed the IF...THEN command to
read “IF NOT Flag THEN IsTrue.” That would also evaluate as true.
Whoa! Isn’t NOT 1 the same thing as 0? No, at least not in the 16-bit world
of the BASIC Stamp.

Internally, the BASIC Stamp sees a bit variable containing 1 as the 16-bit
number %0000000000000001. So it sees the NOT of that as
%1111111111111110. Since any non-zero number is regarded as true, NOT
1 is true. Strange but true.

The easiest way to avoid the kinds of problems this might cause is to
always use a conditional operator with IF...THEN. Change the example
above to read IF Flag = 1 THEN IsTrue. The result of the comparison will
follow IF...THEN rules. Also, the logical operators will work as they
should; IF NOT Flag = 1 THEN IsTrue will correctly evaluate to false
when Flag contains 1.

This also means that you should only use the "named" conditional logic
operators NOT, AND, OR, and XOR with IF...THEN. The conditional logic
operators format their results correctly for IF...THEN instructions. The
other logical operators, represented by symbols ~ & | and ^ do not; they
are binary logic operators.

INTERNAL REPRESENTATION OF

BOOLEAN VALUES (TRUE VS. FALSE).

AVOIDING ERRORS WITH BOOLEAN

RESULTS.

IF…THEN - BASIC Stamp Command Reference

Page 154 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Demo Program (IFTHEN.bas)
' The program below generates a series of 16-bit random numbers and tests each to
' determine whether they're evenly divisible by 3. If a number is evenly divisible
' by 3, then it is printed, otherwise, the program generates another random number.
' The program counts how many numbers it prints, and quits when this number reaches 10.

'{$STAMP BS1} 'STAMP directive (specifies a BS1)

SYMBOL Sample = W0 ' Random number to be tested.
SYMBOL Samps = B2 ' Number of samples taken.
SYMBOL Temp = B3 ' Temporary workspace

Sample = 11500
Mul3:
 RANDOM Sample ' Put a random number into sample.
 Temp = Sample // 3
 IF Temp <> 0 THEN Mul3 ' Not multiple of 3? Try again.
 DEBUG #Sample," is divisible by 3.", CR ' Print message.
 Samps = Samps + 1 ' Count multiples of 3.
 IF Samps = 10 THEN DONE ' Quit with 10 samples.
GOTO Mul3

Done:
DEBUG CR, "All done."
END

Demo Program (IFTHEN.bs2)
' The program below generates a series of 16-bit random numbers and tests each to
' determine whether they're evenly divisible by 3. If a number is evenly divisible
' by 3, then it is printed, otherwise, the program generates another random number.
' The program counts how many numbers it prints, and quits when this number reaches 10.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

Sample VAR WORD ' Random number to be tested.
Samps VAR NIB ' Number of samples taken.

Mul3:
 RANDOM Sample ' Put a random number into sample.
 IF NOT Sample // 3 = 0 THEN Mul3 ' Not multiple of 3? Try again.
 DEBUG DEC Sample," is divisible by 3.",CR ' Print message.
 Samps = Samps + 1 ' Count multiples of 3.
 IF Samps = 10 THEN DONE ' Quit with 10 samples.
GOTO Mul3

Done:
DEBUG CR,"All done."
STOP

2 e
2

sx
2

p
2

1

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS2e, BS2sx or
BS2p.

5: BASIC Stamp Command Reference – INPUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 155

INPUT BS1 BS2 BS2e BS2sx BS2p

INPUT Pin

Function
Make the specified pin an input.

• Pin is a variable/constant/expression (0 – 15) that specifies which
I/O pin to set to input mode.

Explanation
There are several ways to make a pin an input. When a program begins,
all of the BASIC Stamp's pins are inputs. Commands that rely on input
pins, like PULSIN and SERIN, automatically change the specified pin to
input. Writing 0s to particular bits of the variable DIRS makes the
corresponding pins inputs. And then there’s the INPUT command.

When a pin is an input, your program can check its state by reading the
corresponding INS variable (PINS on the BS1). For example:

INPUT 4
Hold:
 IF IN4 = 0 THEN Hold ' Stay here until P4 is 1.

The code above will read the state of P4 as set by external circuitry. If
nothing is connected to P4, it will alternate between states (1 or 0)
apparently at random.

What happens if your program writes to the OUTS bit (PINS bit on the
BS1) of a pin that is set up as an input? The value is stored in OUTS (PINS
on the BS1), but has no effect on the outside world. If the pin is changed to
output, the last value written to the corresponding OUTS bit (or PINS bit
on the BS1) will appear on the pin. The demo program shows how this
works.

Demo Program (INPUT.bas)
' This program demonstrates how the input/output direction of a pin is determined by
' the corresponding bit of DIRS. It also shows that the state of the pin itself (as
' reflected by the corresponding bit of PINS) is determined by the outside world when
' the pin is an input, and by the corresponding bit of PINS when it's an output. To
' set up the demo, connect a 10k resistor from +5V to P7 on the BASIC Stamp. The
' resistor to +5V puts a high (1) on the pin when it's an input. The BASIC Stamp can
' override this state by writing a low (0) to bit 7 of OUTS and changing the pin to output.

1 2 e
2

sx
2

p
2

1

1
NOTE: Expressions are not allowed
as arguments on the BS1. The
range of the Pin argument on the
BS1 is 0 – 7.

INPUT - BASIC Stamp Command Reference

Page 156 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

'{$STAMP BS1} 'STAMP directive (specifies a BS1)

INPUT 7 ' Make I/O pin 7 an input.
DEBUG "State of pin 7: ", #PIN7, CR

PIN7 = 0 ' Write 0 to output latch.
DEBUG "After 0 written to OUT7: ", #PIN7, CR

OUTPUT 7 ' Make I/O pin 7 an output.
DEBUG "After pin 7 changed to output: ", #PIN7

Demo Program (INPUT.bs2)
' This program demonstrates how the input/output direction of a pin is determined by
' the corresponding bit of DIRS. It also shows that the state of the pin itself (as
' reflected by the corresponding bit of INS) is determined by the outside world when
' the pin is an input, and by the corresponding bit of OUTS when it's an output. To
' set up the demo, connect a 10k resistor from +5V to P7 on the BASIC Stamp. The
' resistor to +5V puts a high (1) on the pin when it's an input. The BASIC Stamp can
' override this state by writing a low (0) to bit 7 of OUTS and changing the pin to output.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

INPUT 7 ' Make I/O pin 7 an input.
DEBUG "State of pin 7: ", BIN IN7, CR

OUT7 = 0 ' Write 0 to output latch.
DEBUG "After 0 written to OUT7: ", BIN IN7, CR

OUTPUT 7 ' Make I/O pin 7 an output.
DEBUG "After pin 7 changed to output: ", BIN IN7

2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS2e, BS2sx or
BS2p.

5: BASIC Stamp Command Reference – IOTERM

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 157

IOTERM BS1 BS2 BS2e BS2sx BS2p

IOTERM Port
Function
Switch control to main I/O pins or auxiliary I/O pins (on the BS2p40 only)
depending on state of Port.

• Port is a variable/constant/expression (0 – 1) that specifies which
I/O port to use.

Quick Facts
 BS2p

Values for Port 0 = switch to main I/O group, 1 = switch to auxiliary I/O group.

I/O pin IDs 0 – 15 (after IOTERM command, all references affect physical pins 5 –
20 or 21 – 36 depending on state of Port).

Special notes Both the BS2p24 and the BS2p40 accept this command, however,
only the BS2p40 gives access to the auxiliary I/O pins.

Explanation
The BS2p is available in two module styles, 1) a 24-pin module (called the
BS2p24) that is pin compatible with the BS2, BS2e and BS2sx and 2) a 40-
pin module (called the BS2p40) that has an additional 16 I/O pins (for a
total of 32). The BS2p40's I/O pins are organized into two groups, called
main and auxiliary. The I/O pins in each group can be accessed in the
same manner (by referencing I/O pins 0 – 15) but access is only possible
within one group at a time. The IOTERM command causes the BASIC
Stamp to affect either the main or auxiliary I/O pins in all further code
until the MAINIO, AUXIO or another IOTERM command is reached, or
the BASIC Stamp is reset or power-cycled. The value of Port determines
which group of I/O pins will be referenced. Using 0 for Port will switch to
the main I/O group and using 1 for Port will switch to the auxiliary group.

The following example illustrates this:

HIGH 0
IOTERM 1
LOW 0

The first line of the above example will set I/O pin 0 of the main I/O pins
(physical pin 5) high. Afterward, the IOTERM command tells the BASIC
Stamp that all commands following it should affect the auxiliary I/O pins
(Port = 1). The following LOW command will set I/O pin 0 of the
auxiliary I/O pins (physical pin 21) low.

Table 5.25: IOTERM Quick Facts.

p
2

A SIMPLE IOTERM EXAMPLE.

IOTERM - BASIC Stamp Command Reference

Page 158 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Note that the main I/O and auxiliary I/O pins are independent of each
other; the states of the main I/O pins remain unchanged while the
program affects the auxiliary I/O pins, and vice versa.

Other commands that affect I/O group access are AUXIO and MAINIO.

Demo Program (AUX_MAIN_TERM.bsp)
' This program demonstrates the use of the AUXIO, MAINIO and IOTERM commands to
' affect I/O pins in the auxiliary and main I/O groups.

'{$STAMP BS2p} 'STAMP directive (specifies a BS2p)

Port VAR BIT

Loop:
 MAINIO 'Switch to main I/O pins
 TOGGLE 0 'Toggle state of I/O pin 0 (physical pin 5)
 PWM 1, 100, 40 'Generate PWM on I/O pin 1 (physical pin 6)

 AUXIO 'Switch to auxiliary I/O pins
 TOGGLE 0 'Toggle state of I/O pin 0 (physical pin 21)
 PULSOUT 1, 1000 'Generate a pulse on I/O pin 1 (physical pin 22)
 PWM 2, 100, 40 'Generate PWM on I/O pin 2 (physical pin 23)

 IOTERM Port 'Switch to main or aux I/Os (depending on Port)
 TOGGLE 3 'Toggle state of I/O pin 3 (on main and aux, alternately)
 Port = ~Port 'Invert port (switch between 0 and 1)
 PAUSE 1000
GOTO Loop

p
2

NOTE: This is written for the BS2p
but its effects can only be seen on
the 40-pin version: the BS2p40.

MAIN I/O AND AUXILIARY I/O PINS ARE
INDEPENDENT AND UNAFFECTED BY

CHANGES IN THE OPPOSITE GROUP.

5: BASIC Stamp Command Reference – LCDCMD

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 159

LCDCMD BS1 BS2 BS2e BS2sx BS2p

LCDCMD Pin, Command
Function
Send a command to an LCD display.

• Pin is a variable/constant/expression (0 – 1 or 8 – 9) that specifies
which I/O pins to use. The LCD requires, at most, seven I/O pins to
operate. The Pin argument serves a double purpose; specifying the
first pin and, indirectly, the group of other required pins. See
explanation below. All I/O pins will be set to output mode.

• Command is a variable/constant/expression (0 – 255) indicating the
LCD command to send.

Quick Facts
 BS2p

Values for Pin 0, 1, 8 or 9
I/O pin

arrangement
when Pin is

0 or 1

0 or 1 (depending on pin): LCD Enable (E) pin
2: LCD Read/Write (R/W) pin
3: LCD Register Select (RS) pin
4 – 7: LCD Data Buss (DB4 – DB7, respectively) pins

I/O pin
arrangement
when Pin is

8 or 9

8 or 9 (depending on pin): LCD Enable (E) pin
10: LCD Read/Write (R/W) pin
11: LCD Register Select (RS) pin
12 – 15: LCD Data Buss (DB4 – DB7, respectively) pins

Special notes LCDCMD is designed to use the LCD's 4-bit mode only.

Explanation
The three LCD commands (LCDCMD, LCDIN and LCDOUT) allow the
BS2p to interface directly to standard LCD displays that feature a Hitachi
44780 controller (part #HD44780A). This includes many 1 x 16, 2 x 16 and
4 x 20 character LCD displays.

The Hitachi 44780 LCD controller supports a number of special
instructions for initializing the display, moving the cursor, changing the
default layout, etc. The LCDCMD command is used to send one of these
instructions to the LCD. It is most commonly used to initialize the display
upon a power-up or reset condition.

The following is an example of the LCDCMD command:

LCDCMD 1, 24

Table 5.26: LCDCMD Quick Facts.

p
2

A SIMPLE LCDCMD EXAMPLE.

LCDCMD - BASIC Stamp Command Reference

Page 160 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

The above code will send the Scroll Left command (represented by the
number 24) to the LCD whose enable pin is connected to I/O pin 1. This
will cause the LCD display to scroll, or shift, the entire display one
character to the left.

You may have noticed that the Pin argument in the example above was 1.
The LCDCMD command actually uses more than just this I/O pin,
however. The LCDCMD command requires seven I/O pins. This is
because the standard LCD displays have a parallel interface, rather than a
serial one. The Pin argument can be the numbers 0, 1, 8 or 9 and will
result in the use of the I/O pins shown in Table 5.26. Figure 5.12 shows
the required wiring for the above command to work.

Note that we could have used 0 for the Pin argument and moved the
LCD's Enable pin (pin 6) to I/O pin 0. Similarly, using 9 for the Pin
argument would have required us to wire the LCD's pins to I/O pins 9
through 15, rather than I/O pins 1 through 7.

When the LCD is first powered-up, it will be in an unknown state and
must be properly configured before sending commands like the one

1 2 3 4 5 6 7 8 9 11 12 13 14

Vss

P3

Vdd
10 kΩ

P2
P1
P4
P5
P6
P7

NOTE: Potentiometer between
LCD pin 3 and ground is for
optional contrast control.

Connect LCD pin 3 directly to
ground for maximum contrast.

RS

R/W

E

DB4

DB5

DB6

DB7 Figure 5.12: Example LCD Circuit.
Shown with all connections
necessary for the LCDCMD, LCDIN
and LCDOUT commands.

WIRING THE BASIC STAMP TO AN
LCD.

INITIALIZING THE LCD; THE MOST
IMPORTANT STEP!

5: BASIC Stamp Command Reference – LCDCMD

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 161

shown above. This process is known as initializing the LCD and is the
first thing your program should do upon starting up. The following code
is a good example of LCD initialization.

InitLCD: 'LCD's usually take more than 500 µs to power-up. This pause is
 PAUSE 1000 'to keep the BASIC Stamp from talking to the LCD too early.
 LCDCMD 1, 48 'Send wakeup sequence to LCD (three Wake-Up (48) commands)
 PAUSE 10 'This pause is necessary to meet the LCD specs
 LCDCMD 1, 48
 PAUSE 1 'This pause is necessary to meet the LCD specs
 LCDCMD 1, 48
 PAUSE 1 'This pause is necessary to meet the LCD specs
 LCDCMD 1, 32 'Set data bus to 4-bit mode
 LCDCMD 1, 40 'Set to 2-line mode with 5x8 font
 LCDCMD 1, 8 'Turn display off
 LCDCMD 1, 12 'Turn display on without cursor
 LCDCMD 1, 6 'Set to auto-increment cursor (no display shift)
 LCDCMD 1, 1 'Clear the display

This initialization code is the most commonly used sequence for a 2 x 16
and 4 x 20 LCD display (the 2-line mode instruction sets the 4 x 20 to 4-line
mode). The PAUSE 1000 command is optional, but only if your program
takes more than approximately 700 ms before it executes the InitLCD code
above. Without it, upon powering your circuit, the BASIC Stamp may talk
to the LCD too early, the LCD will then miss some of the commands and
the display will operate strangely, or not at all.

Do not change the "wake-up" and "4-bit mode" sequence commands.
However, the commands below the line that says, "Set data bus to 4-bit
mode" may be modified to set other desired modes.

Table 5.27 shows the most commonly used LCD commands. Here's an
example:

LCDCMD 1, 16

This will make the LCD's cursor move left by one character (16 is the
Cursor Left command), even if the cursor is not visible. The next character
printed on the display (with the LCDOUT command) will appear at the
current cursor's location. Here's another example:

LCDCMD 1, 128 + 64

The above command will move the cursor to the first character position on
the second line (on a 2 x 16 display). 128 is the Move To Display Address

COMMON LCD COMMANDS.

LCDCMD - BASIC Stamp Command Reference

Page 162 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

command and 64 is the location number. See the "Character Positioning"
section, below, for more information.

 Command
(in decimal)

Description

Do Nothing 0 Don't perform any special operation.
Clear Display 1 Clear the display and move cursor to home position.
Home Display 2 Move cursor and display to home position.

Inc Cursor 6 Set cursor direction to right, without a display shift.
Display Off 8 Turn off display (display data is retained).
Display On 12 Turn on display without cursor (display is restored).

Blinking Cursor 13 Turn on display with blinking cursor.
Underline Cursor 14 Turn on display with underline cursor.

Cursor Left 16 Move cursor left one character.
Cursor Right 20 Move cursor right one character.

Scroll Left 24 Scroll display left one character.
Scroll Right 28 Scroll display right one character.

Move To CRAM
Address

64 + address
Move pointer to character RAM location

Move To DRAM
Address

128 + address
Move cursor to display RAM location

While most users will only need the commands shown in Table 5.27,
above, Table 5.28, below, details all of the instructions supported by the
LCD (for advanced users). Many instructions are multipurpose,
depending on the state of special bits. Cleaver manipulation of the
instruction bits will allow for powerful control of the LCD.

The last command shown above (Move To DRAM Address) is used to
move the cursor to a specific position on the LCD. The LCD's DRAM
(Display RAM) is a fixed size with unique position number for each
character cell. The viewable portion of the DRAM depends on the LCD's
logical view position (which can be altered with the Scroll Display
command). The default view position is called the Home position; it
means that the display's upper left character corresponds to DRAM
location 0. Figure 5.13 indicates the position numbers for characters on the
LCD screen.

Note that Figure 5.13 shows the most common DRAM mapping, though
some LCD's may have organized the DRAM differently. A little
experimentation with your LCD may reveal this.

Table 5.27: Common LCD
Commands. These are supported
by LCDs with the Hitachi 44780
controller.

A NOTE ABOUT ADVANCED LCD
COMMANDS.

CHARACTER POSITIONING: MOVING
THE CURSOR.

5: BASIC Stamp Command Reference – LCDCMD

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 163

 Command Code (in binary) Description
 7 6 5 4 3 2 1 0

Clear Display 0 0 0 0 0 0 0 1 Clear entire display and move
cursor home (address 0).

Home Display 0 0 0 0 0 0 1 0 Move cursor home and return
display to home position.

Entry Mode 0 0 0 0 0 1 M S
Sets cursor direction (M: 0=left,
1=right) and display scrolling (S:
0=no scroll, 1=scroll)

Display/Cursor 0 0 0 0 1 D U B
Sets display on/off (D), underline
cursor (U) and blinking block
cursor (B). (0=off, 1=on)

Scroll Display /
Shift Cursor

0 0 0 1 C M 0 0
Shifts display or cursor (C:
0=cursor, 1=display) left or right
(M: 0=left, 1=right).

Function Set 0 0 1 B L F 0 0

Sets buss size (B: 0=4-bits,
1=8-bits), number of lines (L:
0=1-line, 1=2-lines) and font size
(F: 0=5x8, 1=5x10)

Move To CRAM
Address

0 1 A A A A A A
Move pointer to character RAM
location specified by address (A)

Move To DRAM
Address

1 A A A A A A A
Move cursor to display RAM
location specified by address (A)

On a standard 2 x 16 character display, the following command would
move the cursor to the third column of the second line:

LCDCMD 1, 128 + 66

Table 5.28: All LCD Commands (for
advanced users). These are
supported by LCDs with the Hitachi
44780 controller.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

16

80

39

103

…

…

Line 1:

Line 2:

On-screen positions* Off-screen positions*

2 x 16 Display

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Line 1:

Line 2:

4 x 20 Display

Line 3:

Line 4:

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

16 17 18 19

80 81 83

36 37 38 39

100101102103

*Assuming the display is in the home position.

82

Figure 5.13: LCD Character
Positions. NOTE: Many 1 x 16
displays conform to the position
numbers shown on Line 1 of the
2 x 16 display.

LCDCMD - BASIC Stamp Command Reference

Page 164 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

The number 128 tells the LCD we wish to move the cursor and 66 is the
location number of the desired position. Similarly, sending just 128
(128 + 0) would move the cursor to the first character of the first line (the
upper left character if the display is at the home position).

You may have noticed that the 2 x 16 display has many locations that are
not visible; they are to the right of the edge of the screen. These locations
(16 – 39 and 80 to 103) become important for scrolling operations. For
example, it is possible to move the cursor to location 16, print some text
there and then issue a number of Scroll Left instructions (LCDCMD 1, 24)
to slowly scroll the text onto the display from right to left. If you did so,
the DRAM positions that were on the left of the screen would now be past
the left edge of the screen. For example,

LCDCMD 1, 24
LCDCMD 1, 24

would cause the screen to scroll to the left by two characters. At this point,
the upper-left character in the display would actually be DRAM location 2
and the lower-left character would be DRAM location 66. Locations 0, 1,
64 and 65 would be off the left edge of the LCD and would no longer be
visible. Some interesting effects can be achieved by taking advantage of
this feature.

The 4 x 20 LCD has a strange DRAM map. The upper-right character is
location 19 and the next location, 20, appears as the first character of the
third line. This strange mapping is due to constraints in the LCD
controller and the manufacturers design, and unfortunately makes the
scrolling features virtually useless on the 4 x 20 displays.

Even though the LCD requires many pins to talk to it, only the Enable pin
needs to remain dedicated to the LCD and all the other pins can be
multiplexed (shared) with certain other devices (if wired carefully). In
addition, the I/O pin connected to the LCD's R/W pin is only necessary if
the LCDIN command will be used in the application. If the LCDIN
command will not be used, LCD pin 5 (R/W pin) can be connected to
ground and I/O pin 2 (shown above) may be left disconnected. I/O pin 2
will still be set to output mode for each LCDCMD and LCDOUT
command executed, however.

SCROLLING THE DISPLAY.

NOTES ON DRAM MAPPING FOR
4 X 20 LCDS.

DETAILS ON LCD WIRING.

5: BASIC Stamp Command Reference – LCDCMD

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 165

Demo Program (LCDINIT.bsp)
' This program demonstrates initialization and printing on a 2 x 16 character LCD display.
' The set of "LCD constants", below, are provided as pre-defined and useful LCD commands,
' though only a few are actually used in this program.

'{$STAMP BS2p} 'STAMP directive (specifies a BS2p)

'-----Define LCD constants-----
WakeUp CON %00110000 'Wake-up
FourBitMode CON %00100000 'Set to 4-bit mode
OneLine5x8Font CON %00100000 'Set to 1 display line, 5x8 font
OneLine5x10Font CON %00100100 'Set to 1 display line, 5x10 font
TwoLine5x8Font CON %00101000 'Set to 2 display lines, 5x8 font
TwoLine5x10Font CON %00101100 'Set to 2 display lines, 5x10 font
DisplayOff CON %00001000 'Turn off display, data is retained
DisplayOn CON %00001100 'Turn on display, no cursor
DisplayOnULCrsr CON %00001110 'Turn on display, with underline cursor
DisplayOnBLCrsr CON %00001101 'Turn on display, with blinking cursor
IncCrsr CON %00000110 'Auto-increment cursor, no display shift
IncCrsrShift CON %00000111 'Auto-increment cursor, shift display left
DecCrsr CON %00000100 'Auto-decrement cursor, no display shift
DecCrsrShift CON %00000101 'Auto-decrement cursor, shift display right
ClearDisplay CON %00000001 'Clear the display
HomeDisplay CON %00000010 'Move cursor and display to home position
ScrollLeft CON %00011000 'Scroll display to the left
ScrollRight CON %00011100 'Scroll display to the right
CrsrLeft CON %00010000 'Move cursor left
CrsrRight CON %00010100 'Move cursor right
MoveCrsr CON %10000000 'Move cursor to position (must add address)
MoveToCGRAM CON %01000000 'Move to CGRAM position (must add address)

'-----Main Routines-----

Init:
 PAUSE 1000
 GOSUB InitLCD

Start:
 LCDOUT 1, ClearDisplay, ["Hello World!"]
 LCDOUT 1, MoveCrsr+64, ["How are you?"]
STOP

'-----Subroutines-----

InitLCD:
 LCDCMD 1, WakeUp 'Send wakeup sequence to LCD
 PAUSE 10 'These pauses are necessary to meet the LCD specs
 LCDCMD 1, WakeUp
 PAUSE 1
 LCDCMD 1, WakeUp
 PAUSE 1

p
2

LCDCMD - BASIC Stamp Command Reference

Page 166 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

 LCDCMD 1, FourBitMode 'Set buss to 4-bit mode
 LCDCMD 1, TwoLine5x8Font 'Set to 2-line mode with 5x8 font
 LCDCMD 1, DisplayOff 'Turn display off
 LCDCMD 1, DisplayOn 'Turn display on with blinking cursor
 LCDCMD 1, IncCrsr 'Set to auto-increment cursor (no display shift)
 LCDCMD 1, ClearDisplay 'Clear the display
RETURN

5: BASIC Stamp Command Reference – LCDIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 167

LCDIN BS1 BS2 BS2e BS2sx BS2p

LCDIN Pin, Command, [InputData]
Function
Receive data from an LCD display.

• Pin is a variable/constant/expression (0 – 1 or 8 – 9) that specifies
which I/O pins to use. The LCD requires, at most, seven I/O pins to
operate. The Pin argument serves a double purpose; specifying the
first pin and, indirectly, the group of other required pins. See
explanation below. All I/O pins will be set to output mode initially
and the upper I/O pins (4 – 7 or 12 – 15) will be set to input mode by
the end of the LCDIN command.

• Command is a variable/constant/expression (0 – 255) indicating the
LCD command to send.

• InputData is a list of variables and formatters that tells LCDIN what
to do with incoming data. LCDIN can store data in a variable or
array, interpret numeric text (decimal, binary, or hex) and store the
corresponding value in a variable, wait for a fixed or variable
sequence of bytes, or ignore a specified number of bytes. These
actions can be combined in any order in the InputData list.

Quick Facts
 BS2p

Values for Pin 0, 1, 8 or 9
I/O pin

arrangement
when Pin is

0 or 1

0 or 1 (depending on pin): LCD Enable (E) pin
2: LCD Read/Write (R/W) pin
3: LCD Register Select (RS) pin
4 – 7: LCD Data Buss (DB4 – DB7, respectively) pins

I/O pin
arrangement
when Pin is

8 or 9

8 or 9 (depending on pin): LCD Enable (E) pin
10: LCD Read/Write (R/W) pin
11: LCD Register Select (RS) pin
12 – 15: LCD Data Buss (DB4 – DB7, respectively) pins

Special notes LCDIN is designed to use the LCD's 4-bit mode only.

Explanation
The three LCD commands (LCDCMD, LCDIN and LCDOUT) allow the
BS2p to interface directly to standard LCD displays that feature a Hitachi
44780 controller (part #HD44780A). This includes many 1 x 16, 2 x 16 and
4 x 20 character LCD displays.

Table 5.29: LCDIN Quick Facts.

p
2

LCDIN - BASIC Stamp Command Reference

Page 168 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

The LCDIN command is used to send one instruction and then receive at
least one data byte from the LCD's Character RAM or Display RAM. The
following is an example of the LCDIN command:

Char VAR BYTE
LCDIN 1, 128, [Char]

The above code will read the character value at location 0 of the DRAM.
See the "Character Positioning" section, below, for more information.

The LCDIN command actually uses more than just the I/O pin specified
by the Pin argument. The LCDIN command requires seven I/O pins. This
is because the standard LCD displays have a parallel interface, rather than
a serial one. The Pin argument can be the numbers 0, 1, 8 or 9 and will
result in the use of the I/O pins shown in Table 5.29. Please refer to the
LCDCMD command description for information on properly wiring the
LCD display.

When the LCD is first powered-up, it will be in an unknown state and
must be properly configured before sending commands like the one
shown above. This process is known as initializing the LCD and is the
first thing your program should do upon starting up. Please refer to the
LCDCMD command description for information on properly initializing
the LCD display.

The LCDIN command's InputData argument is similar to the SERIN
command's InputData argument. This means data can be received as
ASCII character values, decimal, hexadecimal and binary translations and
string data as in the examples below (assume the LCD display has "Value:
3A:101" starting at the first character of the first line on the screen).

Value VAR BYTE(13)
LCDIN 1, 128, [Value] 'receive the ASCII value for "V"
LCDIN 1, 128, [DEC Value] 'receive the number 3.
LCDIN 1, 128, [HEX Value] 'receive the number $3A.
LCDIN 1, 128, [BIN Value] 'receive the number %101.
LCDIN 1, 128, [STR Value\13] 'receive the string "Value: 3A:101"

Tables 5.30 and 5.31 list all the available conversion formatters and special
formatters available to the LCDIN command. See the SERIN command for
additional information and examples of their use.

A SIMPLE LCDIN EXAMPLE.

TWO VERY IMPORTANT STEPS:
1) WIRING THE BS2P TO AN LCD.
2) INITIALIZING THE LCD.

RECEIVING FORMATTED DATA.

5: BASIC Stamp Command Reference – LCDIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 169

Some possible uses of the LCDIN command are 1) in combination with the
LCDOUT command to store and read data from the unused DRAM or
CRAM locations (as extra variable space), 2) to verify that the data from a
previous LCDOUT command was received and processed properly by the
LCD, and 3) to read character data from CRAM for the purposes of
modifying it and storing it as a custom character.

Conversion
Formatter

Type of Number Numeric Characters Accepted Notes

DEC{1..5} Decimal, optionally limited to
 1 – 5 digits

0 through 9 1

SDEC{1..5} Signed decimal, optionally
limited to 1 – 5 digits

-, 0 through 9 1,2

HEX{1..4} Hexadecimal, optionally limited
to 1 – 4 digits

0 through 9, A through F 1,3

SHEX{1..4} Signed hexadecimal, optionally
limited to 1 – 4 digits

-, 0 through 9, A through F 1,2,3

IHEX{1..4} Indicated hexadecimal,
optionally limited to 1 – 4 digits

$, 0 through 9, A through F 1,3,4

ISHEX{1..4} Signed, indicated hexadecimal,
optionally limited to 1 – 4 digits

-, $, 0 through 9, A through F 1,2,3,4

BIN{1..16} Binary, optionally limited to
1 – 16 digits

0, 1 1

SBIN{1..16} Signed binary, optionally limited
to 1 – 16 digits

-, 0, 1 1,2

IBIN{1..16} Indicated binary, optionally
limited to 1 – 16 digits

%, 0, 1 1,4

ISBIN{1..16} Signed, indicated binary,
optionally limited to 1 – 16 digits

-, %, 0, 1 1,2,4

1 All numeric conversions will continue to accept new data until receiving either the specified
number of digits (ex: three digits for DEC3) or a non-numeric character.

2 To be recognized as part of a number, the minus sign (-) must immediately precede a
numeric character. The minus sign character occurring in non-numeric text is ignored and
any character (including a space) between a minus and a number causes the minus to be
ignored.

3 The hexadecimal formatters are not case-sensitive; “a” through “f” means the same as “A”
through “F”.

4 Indicated hexadecimal and binary formatters ignore all characters, even valid numerics,
until they receive the appropriate prefix ($ for hexadecimal, % for binary). The indicated
formatters can differentiate between text and hexadecimal (ex: ABC would be interpreted
by HEX as a number but IHEX would ignore it unless expressed as $ABC). Likewise, the
binary version can distinguish the decimal number 10 from the binary number %10. A
prefix occurring in non-numeric text is ignored, and any character (including a space)
between a prefix and a number causes the prefix to be ignored. Indicated, signed
formatters require that the minus sign come before the prefix, as in -$1B45.

Table 5.30: LCDIN Conversion
Formatters.

LCDIN - BASIC Stamp Command Reference

Page 170 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Special Formatter Action

STR ByteArray \L {\E}
Input a character string of length L into an array. If specified, an
end character E causes the string input to end before reaching
length L. Remaining bytes are filled with 0s (zeros).

WAITSTR ByteArray {\L}

Wait for a sequence of bytes matching a string stored in an array
variable, optionally limited to L characters. If the optional L
argument is left off, the end of the array-string must be marked
by a byte containing a zero (0).

SKIP Length Ignore Length bytes of characters.

Demo Program (LCDIN.bsp)
' This program demonstrates initialization, printing and reading from a 2 x 16 character
' LCD display.
'{$STAMP BS2p} 'STAMP directive (specifies a BS2p)

Char VAR BYTE(16) 'Variable for holding text read from LCD

Init:
 LCDCMD 1,48 'Send wakeup sequence to LCD
 PAUSE 10 'These pauses are necessary to meet the LCD specs
 LCDCMD 1,48
 PAUSE 1
 LCDCMD 1,48
 PAUSE 1
 LCDCMD 1,32 'Set buss to 4-bit mode
 LCDCMD 1,40 'Set to 2-line mode with 5x8 font
 LCDCMD 1,8 'Turn display off
 LCDCMD 1,12 'Turn display on with blinking cursor
 LCDCMD 1,6 'Set to auto-increment cursor (no display shift)

Start:
 LCDOUT 1,1,["Hello!"]
 GOSUB ReadLCDScreen
 PAUSE 3000
 LCDOUT 1,1,["I'm a 2x16 LCD!"]
 GOSUB ReadLCDScreen
 PAUSE 3000
GOTO Start

ReadLCDScreen:
 DEBUG "LCD Now Says: "
 LCDIN 1,128,[STR Char\16]
 DEBUG STR Char\16,CR,CR
RETURN

Table 5.31: LCDIN Special
Formatters.

p
2

5: BASIC Stamp Command Reference – LCDOUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 171

LCDOUT BS1 BS2 BS2e BS2sx BS2p

LCDOUT Pin, Command, [OutputData]
Function
Send data to an LCD display.

• Pin is a variable/constant/expression (0 – 1 or 8 – 9) that specifies
which I/O pins to use. The LCD requires, at most, seven I/O pins to
operate. The Pin argument serves a double purpose; specifying the
first pin and, indirectly, the group of other required pins. See
explanation below. All I/O pins will be set to output mode initially
and the upper I/O pins (4 – 7 or 12 – 15) will be set to input mode by
the end of the LCDIN command.

• Command is a variable/constant/expression (0 – 255) indicating an
LCD command to send.

• OutputData is a list of variables, constants, expressions and formatters
that tells LCDOUT how to format outgoing data. LCDOUT can
transmit individual or repeating bytes, convert values into decimal,
hex or binary text representations, or transmit strings of bytes from
variable arrays. These actions can be combined in any order in the
OutputData list.

Quick Facts
 BS2p

Values for Pin 0, 1, 8 or 9
I/O pin

arrangement
when Pin is

0 or 1

0 or 1 (depending on pin): LCD Enable (E) pin
2: LCD Read/Write (R/W) pin
3: LCD Register Select (RS) pin
4 – 7: LCD Data Buss (DB4 – DB7, respectively) pins

I/O pin
arrangement
when Pin is

8 or 9

8 or 9 (depending on pin): LCD Enable (E) pin
10: LCD Read/Write (R/W) pin
11: LCD Register Select (RS) pin
12 – 15: LCD Data Buss (DB4 – DB7, respectively) pins

Special notes LCDOUT is designed to use the LCD's 4-bit mode only.

Explanation
The three LCD commands (LCDCMD, LCDIN and LCDOUT) allow the
BS2p to interface directly to standard LCD displays that feature a Hitachi
44780 controller (part #HD44780A). This includes many 1 x 16, 2 x 16 and
4 x 20 character LCD displays.

The LCDOUT command is used to send one instruction followed by at
least one data byte to the LCD. The data that is output is written to the

Table 5.32: LCDOUT Quick Facts.

p
2

A SIMPLE LCDOUT EXAMPLE.

LCDOUT - BASIC Stamp Command Reference

Page 172 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

LCD's Character RAM or Display RAM. The following is an example of
the LCDOUT command:

LCDOUT 1, 1, ["Hello World!"]

The above code will clear the LCD screen and then send "Hello World!" to
the screen. The first argument (1) is the starting I/O pin number and the
second argument (also 1) is the LCD's instruction for Clear Screen.

The LCDOUT command actually uses more than just the I/O pin specified
by the Pin argument. The LCDOUT command requires seven I/O pins.
This is because the standard LCD displays have a parallel interface, rather
than a serial one. The Pin argument can be the numbers 0, 1, 8 or 9 and
will result in the use of the I/O pins shown in Table 5.32. Please refer to
the LCDCMD command description for information on properly wiring
the LCD display.

When the LCD is first powered-up, it will be in an unknown state and
must be properly configured before sending commands like the one
shown above. This process is known as initializing the LCD and is the
first thing your program should do upon starting up. Please refer to the
LCDCMD command description for information on properly initializing
the LCD display.

The LCDOUT command's OutputData argument is exactly like that of the
DEBUG and SEROUT command's OutputData argument. This means data
can be sent as literal text, ASCII character values, repetitive values,
decimal, hexadecimal and binary translations and string data as in the
examples below.

Value VAR BYTE
Value = 65
LCDOUT 1, 0, [Value] 'send the ASCII value for "A"
LCDOUT 1, 0, [REP Value\5] 'send the ASCII value for "A" five time, ie: "AAAAA"
LCDOUT 1, 0, [DEC Value] 'send two characters, "6" and "5"
LCDOUT 1, 0, [HEX Value] 'send two characters, "4" and "1"
LCDOUT 1, 0, [BIN Value] 'send seven characters, "1000001"

Tables 5.33 and 5.34 list all the available conversion formatters and special
formatters available to the LCDOUT command. See the DEBUG and
SEROUT commands for additional information and examples of their use.

TWO VERY IMPORTANT STEPS:
1) WIRING THE BS2P TO AN LCD.
2) INITIALIZING THE LCD.

SENDING AND FORMATTING DATA.

5: BASIC Stamp Command Reference – LCDOUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 173

Conversion
Formatter

Type of Number Notes

DEC{1..5} Decimal, optionally fixed to 1 – 5 digits 1
SDEC{1..5} Signed decimal, optionally fixed to 1 – 5 digits 1,2
HEX{1..4} Hexadecimal, optionally fixed to 1 – 4 digits 1

SHEX{1..4} Signed hexadecimal, optionally fixed to 1 – 4 digits 1,2
IHEX{1..4} Indicated hexadecimal, optionally fixed to 1 – 4 digits ($ prefix) 1

ISHEX{1..4} Signed, indicated hexadecimal, optionally fixed to 1 – 4 digits
($ prefix)

1,2

BIN{1..16} Binary, optionally fixed to 1 – 16 digits 1
SBIN{1..16} Signed binary, optionally fixed to 1 – 16 digits 1,2
IBIN{1..16} Indicated binary, optionally fixed to 1 – 16 digits (% prefix) 1

ISBIN{1..16} Signed, indicated binary, optionally fixed to 1 – 16 digits (% prefix) 1,2
1 Fixed-digit formatters like DEC4 will pad the number with leading 0s if necessary; ex:

DEC4 65 sends 0065. If a number is larger than the specified number of digits, the
leading digits will be dropped; ex: DEC4 56422 sends 6422.

2 Signed modifiers work under two's complement rules.

Special Formatter Action

?
Displays "symbol = x' + carriage return; where x is a number.
Default format is decimal, but may be combined with conversion
formatters (ex: BIN ? x to display "x = binary_number").

ASC ? Displays "symbol = 'x'" + carriage return; where x is an ASCII
character.

STR ByteArray {\L}

Send character string from an array. The optional \L argument
can be used to limit the output to L characters, otherwise,
characters will be sent up to the first byte equal to 0 or the end of
RAM space is reached.

REP Byte \L Send a string consisting of Byte repeated L times
(ex: REP "X"\10 sends "XXXXXXXXXX").

The Command argument is useful for proceeding a set of data with a
special LCD instruction. For example, the code below will move the
cursor to location 64 (the first character on the second line) and print "Hi":

LCDOUT 1, 128 + 64, ["Hi"]

The next example, below, will turn on the blinking block cursor and print
"Yo!":

LCDOUT 1, 13, ["Yo!"]

Occasionally, you will want to send data without preceding it with a
command. To do this, simply use 0 for the Command argument, as in:

LCDOUT 1, 0, ["Hello there!"]

Table 5.34: LCDOUT Special
Formatters.

Table 5.33: LCDOUT Conversion
Formatters.

USING THE COMMAND ARGUMENT.

LCDOUT - BASIC Stamp Command Reference

Page 174 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Another use for the LCDOUT command is to access and create custom
characters. The Hitachi 44780 controller has a built-in character set that is
similar to the ASCII character set (at least for the first 128 characters).
Most of these characters are stored in ROM and are not changeable,
however, the first eight characters (ASCII 0 though 7) are programmable.

Each of the programmable characters is five pixels wide and eight pixels
tall. It takes eight bytes to describe each character; one byte per row (the
left-most three bits are ignored). For example, the character at ASCII
location 0 is defined by the bit patterns stored in bytes 0 through 7 of
Character RAM (CRAM). The character at ASCII location 1 is defined by
the bit patterns stored in bytes 8 through 15 of CRAM, and so on.

To create a custom character, use some graph paper to plot out the bit
pattern (on and off pixels) in a 5 x 8 pattern, as shown in Figure 5.14. Then
calculate the corresponding binary value of the bit pattern for each of the
eight rows of character data.

After the data is calculated for each character (8 byte values per character),
use the LCDOUT command with the "Move To CRAM Address"
instruction to insert the data into the character's CRAM locations. For
example, the code below will store the character shown in Figure 5.14 into
character 0's CRAM data locations. Then it will place the cursor back on
the display (DRAM) and print the character on the screen.

LCDOUT 1, 64+0, [00, 10, 00, 04, 17, 14, 00, 00]
LCDOUT 1, 128+0, ["Custom Char: ", 0]

The number 64 in the Command argument is the LCD's "Move to CRAM
Address" instruction and the 0 that is added to it is the location of the first

4 3 2 1 0

Byte 0:

Character Cell Structure and Data

Byte 1:

Byte 2:

Byte 3:

Byte 4:

Byte 5:

Byte 6:

Byte 7:

---------Bits---------

xxx00000

xxx01010

xxx00000

xxx00100

xxx10001

xxx01110

xxx00000

xxx00000

Binary Values

00

10

00

04

17

14

00

00

Decimal Values

Figure 5.14: LCD Character
Structure.

CREATING CUSTOM CHARACTERS.

5: BASIC Stamp Command Reference – LCDOUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 175

row of data for the character 0. The LCDOUT command will write the
first OutputData value (00) to this location, the second OutputData value
(10) to location 1, etc. If we wanted this custom character to affect
character 1, instead of 0, we'd have to adjust value of the "Move To..."
command, ie: 64+8. To affect character 2, we'd use 64+16.

To try the example above, don't forget to execute the LCD initialization
code (shown in the LCDCMD description) first and never forget to move
the cursor back to the screen (as with the last command, above) when
you're done writing the character data to CRAM.

Demo Program (LCDOUT.bsp)
' This program demonstrates initialization and printing on a 2 x 16 character LCD display.
' This is a modified version of the LCDINIT.bsp program.
'{$STAMP BS2p} 'STAMP directive (specifies a BS2p)

'-----Define LCD constants-----
WakeUp CON %00110000 'Wake-up
FourBitMode CON %00100000 'Set to 4-bit mode
TwoLine5x8Font CON %00101000 'Set to 2 display lines, 5x8 font
DisplayOff CON %00001000 'Turn off display, data is retained
DisplayOn CON %00001100 'Turn on display, no cursor
IncCrsr CON %00000110 'Auto-increment cursor, no display shift
ClearDisplay CON %00000001 'Clear the display
MoveCrsr CON %10000000 'Move cursor to position (must add address)

'-----Main Routines-----
Init:
 PAUSE 1000
 GOSUB InitLCD

Start:
 LCDOUT 1, ClearDisplay, ["Hello my friend."]
 PAUSE 1000
 LCDOUT 1, MoveCrsr+64, ["How are you?"]
 PAUSE 3000
 LCDCMD 1, ClearDisplay
 LCDOUT 1, MoveCrsr+1, ["I'm doing just"]
 LCDOUT 1, MoveCrsr+70, ["fine!"]
 PAUSE 3000
GOTO Start

'-----Subroutines-----
InitLCD:
 LCDCMD 1, WakeUp 'Send wakeup sequence to LCD
 PAUSE 10 'These pauses are necessary to meet the LCD specs
 LCDCMD 1, WakeUp
 PAUSE 1

p
2

LCDOUT - BASIC Stamp Command Reference

Page 176 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

 LCDCMD 1, WakeUp
 PAUSE 1
 LCDCMD 1, FourBitMode 'Set buss to 4-bit mode
 LCDCMD 1, TwoLine5x8Font 'Set to 2-line mode with 5x8 font
 LCDCMD 1, DisplayOff 'Turn display off
 LCDCMD 1, DisplayOn 'Turn display on with blinking cursor
 LCDCMD 1, IncCrsr 'Set to auto-increment cursor (no display shift)
 LCDCMD 1, ClearDisplay 'Clear the display
RETURN

5: BASIC Stamp Command Reference – LOOKDOWN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 177

LOOKDOWN BS1 BS2 BS2e BS2sx BS2p

LOOKDOWN Target, (Value0, Value1, ...ValueN), Variable
LOOKDOWN Target, {ComparisonOp} [Value0, Value1, ...ValueN], Variable

Function
Compare Target value to a list of values and store the index number of the
first value that matches into Variable. If no value in the list matches,
Variable is left unaffected. On the BS2, BS2e, BS2sx and BS2p, the optional
ComparisonOp is used as criteria for the match; the default criteria is "equal
to."

• Target is a variable/constant/expression (0 – 65535) to be compared
to the values in the list.

• ComparisonOp is an optional comparison operator (as described in
Table 5.36) to be used as the criteria when comparing values. When
no ComparisonOp is specified, equal to (=) is assumed. This
argument is not available on the BS1.

• Values are variables/constants/expressions (0 – 65535) to be
compared to Target.

• Variable is a variable (usually a byte) that will be set to the index (0 –
255) of the matching value in the Values list. If no matching value is
found, Variable is left unaffected.

Quick Facts
 BS1, BS2, BS2e, BS2sx and BS2p

Limit of value
entries

256

Starting index
number

0

If value list
contains no

match…
Variable is left unaffected

Explanation
LOOKDOWN works like the index in a book. In an index, you search for a
topic and get the page number. LOOKDOWN searches for a target value
in a list, and stores the index number of the first match in a variable. For
example:

1
2 e

2
sx
2

p
2

1
NOTE: Expressions are not
allowed as arguments on the BS1.

Table 5.35: LOOKDOWN Quick
Facts.

2 e
2

sx
2

p
2

LOOKDOWN - BASIC Stamp Command Reference

Page 178 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

SYMBOL Value = B0
SYMBOL Result = B1
Value = 17
Result = 15

LOOKDOWN Value, (26, 177, 13, 1, 0, 17, 99), Result
DEBUG "Value matches item ", #Result, "in list"

-- or --

Value VAR BYTE
Result VAR NIB
Value = 17
Result = 15

LOOKDOWN Value, [26, 177, 13, 1, 0, 17, 99], Result
DEBUG "Value matches item ", DEC Result, " in list"

DEBUG prints, “Value matches item 5 in list” because the value (17)
matches item 5 of [26, 177, 13, 1, 0, 17, 99]. Note that index numbers count
up from 0, not 1; that is, in this list, 26 is item 0.

What happens if the value doesn’t match any of the items in the list? Try
changing “Value = 17” to “Value = 2.” Since 2 is not on the list,
LOOKDOWN leaves Result unaffected. Since Result contained 15 before
LOOKDOWN executed, DEBUG prints “Value matches item 15 in list.”
By strategically setting the initial value of Result, as we have here, your
program can be written to detect when an item was not found in the list.

Don’t forget that text phrases are just lists of byte values, so they too are
eligible for LOOKDOWN searches, as in this example:

SYMBOL Value = B0
SYMBOL Result = B1
Value = "f"
Result = 255

LOOKDOWN Value, ("The quick brown fox"), Result
DEBUG "Value matches item ", #Result, "in list"

-- or --

Value VAR BYTE
Result VAR NIB
Value = "f"
Result = 255

1

2 e
2

sx
2

p
2

THE INDEX NUMBER OF THE FIRST

ITEM IS 0, NOT 1.

USING TEXT IN THE VALUE LIST.

1

2 e
2

sx
2

p
2

5: BASIC Stamp Command Reference – LOOKDOWN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 179

LOOKDOWN Value, ["The quick brown fox"], Result
DEBUG "Value matches item ", DEC Result, " in list"

DEBUG prints, “Value matches item 16 in list” because the character at
index item 16 is "f" in the phrase, “The quick brown fox”.

The examples above show LOOKDOWN working with lists of constants,
but it also works with variables and expressions also. Note, however, that
expressions are not allowed as argument on the BS1.

On the BS2, BS2e, BS2sx and BS2p, the LOOKDOWN command can also
use another criteria (other than "equal to") for its list. All of the examples
above use LOOKDOWN’s default comparison operator, =, that searches
for an exact match. The entire list of ComaprisonOps is shown in Table 5.36.
The "greater than" comparison operator (>) is used in the following
example:

Value VAR BYTE
Result VAR NIB
Value = 17
Result = 15

LOOKDOWN Value, >[26, 177, 13, 1, 0, 17, 99], Result
DEBUG "Value greater than item ", DEC Result, " in list"

DEBUG prints, “Value greater than item 2 in list” because the first item the
value 17 is greater than is 13 (which is item 2 in the list). Value is also
greater than items 3 and 4, but these are ignored, because LOOKDOWN
only cares about the first item that matches the criteria. This can require a
certain amount of planning in devising the order of the list. See the demo
program below.

LOOKDOWN comparison operators use unsigned 16-bit math. They will
not work correctly with signed numbers, which are represented internally
as two’s complement (large 16-bit integers). For example, the two’s
complement representation of -99 is 65437. So although -99 is certainly
less than 0, it would appear to be larger than zero to the LOOKDOWN
comparison operators. The bottom line is: Don’t used signed numbers
with LOOKDOWN comparisons.

LOOKDOWN CAN USE VARIABLES

AND EXPRESSIONS IN THE VALUE LIST.

2 e
2

sx
2

p
2

USING LOOKDOWN'S COMPARISON

OPERATORS.

WATCH OUT FOR UNSIGNED MATH
ERRORS WHEN USING THE

COMPARISON OPERATORS.

LOOKDOWN - BASIC Stamp Command Reference

Page 180 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

ComparisonOp Symbol Description

= Find the first value Target is equal to
<> Find the first value Target is not equal to
> Find the first value Target is greater than
< Find the first value Target is less than

>= Find the first value Target is greater than or equal to
<= Find the first value Target is less than or equal to

A common application for LOOKDOWN is to use it in conjunction with
the BRANCH command to create selective jumps based on a simple
variable input:

Cmd VAR BYTE
Cmd = "M"

LOOKDOWN Cmd, ["SLMH"], Cmd
BRANCH Cmd, [_Stop, _Low, _Medium, _High]
DEBUG "Command not in list"
END

_Stop: DEBUG "stop"
END

_Low: DEBUG "low"
END

_Medium: DEBUG "medium"
END

_High: DEBUG "high"
END

In this example, Cmd contains “M” (ASCII 77). LOOKDOWN finds that
this is item 2 of a list of one-character commands and stores 2 into Cmd.
BRANCH then goes to item 2 of its list, which is the program label
“_Medium” at which point DEBUG prints “medium” on the PC screen.
This is a powerful method for interpreting user input, and a lot neater
than the alternative IF...THEN instructions.

Another great use of LOOKDOWN is in combination with LOOKUP to
"map" non-contiguous sets of numbers together. For example, you may
have an application where certain numbers are received by the BASIC
Stamp and, in response, the BASIC Stamp needs to send a specific set of
numbers. This may be easy to code if the numbers are contiguous, or
follow some know algebraic equations… but what if they don't? The table

USING LOOKDOWN WITH BRANCH
TO JUMP BASED ON VALUES.

NOTE: For BS1's, change line 1 to:
SYMBOL Cmd = B0
And replace the [and] symbols
with (and) in lines 4 and 5.

USING LOOKDOWN WITH LOOKUP
TO "MAP" NON-CONTIGUOUS SETS OF

NUMBERS.

Table 5.36: LOOKDOWN
Comparison Operators.

5: BASIC Stamp Command Reference – LOOKDOWN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 181

below shows some sample, non-contiguous inputs and the corresponding
outputs the BASIC Stamp needs to respond with:

Each of these values received
(inputs):

Needs to result in each of these
values sent (outputs):

5 16
14 17
1 18

43 24
26 10
22 12
30 11

So, if we receive the number 5, we need to output 16. If we received 43,
we need to output 24, and so on. These numbers are not contiguous and
they don't appear to be derived from any simple algorithm. We can solve
this problem with two lines of code, as follows:

LOOKDOWN Value, [5, 14, 1, 43, 26, 22, 30], Value
LOOKUP Value, [16, 17, 18, 24, 10, 12, 11], Value

Assuming our received number is in Value, the first line (LOOKDOWN)
will find the value in the list and store the index of the location that
matches back into Value. (This step "maps" the non-contiguous numbers:
5, 14, 1, etc, to a contiguous set of numbers: 0, 1, 2, etc). The second line
(LOOKUP) takes our new Value, finds the number at that location and
stores it back into Value. If the received value was 14, LOOKDOWN stores
1 into Value and LOOKUP looks at the value at location 1 and stores 17 in
Value. The number 43 gets mapped to 3, 3 gets mapped to 24, and so on.
This is a quick and easy fix for a potentially messy problem!

Table 5.37: Non-Contiguous
Number Example

LOOKDOWN - BASIC Stamp Command Reference

Page 182 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Demo Program (LOOKDOWN.bas)
' This program uses LOOKDOWN followed by LOOKUP to map the numbers:
' 0, 10, 50, 64, 71 and 98 to 35, 40, 58, 62, 79, and 83, respectively. All other
' numbers are mapped to 255.

'{$STAMP BS1} 'STAMP directive (specifies a BS1)

SYMBOL I = W0 ' Holds current number.
SYMBOL Result = W1 ' Holds mapped result.

FOR I = 0 TO 100
 Result = 255 ' If no match in list, must be 0.
 LOOKDOWN I, (0, 10, 50, 64, 71, 98), Result
 LOOKUP Result, (35, 40, 58, 62, 79, 83), Result
 DEBUG "I= ", #I, "Result=", #Result, CR
 PAUSE 100
NEXT

Demo Program (LOOKDOWN.bs2)
' This program uses LOOKDOWN to determine the number of decimal digits in a number.
' The reasoning is that numbers less than 10 have one digit; greater than or equal
' to 10 but less than 100 have two; greater than or equal to 100 but less than 1000
' have three; greater than or equal to 1000 but less than 10000 have four; and greater
' than or equal to 10000 but less than 65535 (the largest number we can represent in
' 16-bit math) have five. There are two loopholes that we have to plug: (1) The number
' 0 does not have zero digits, and (2) The number 65535 has five digits. To ensure that
' 0 is accorded one-digit status, we just put 0 at the beginning of the LOOKDOWN list.
' Since 0 is not less than 0, an input of 0 results in 1 as it should. At the other end
' of the scale, 65535 is not less than 65535, so LOOKDOWN will end without writing to the
' result variable, NumDig. To ensure that an input of 65535 returns 5 in NumDig, we just
' put 5 into numDig beforehand.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

I VAR WORD ' Variable (0-65535).
NumDig VAR NIB ' Variable (0-15) to hold # of digits.

FOR I = 0 TO 1000 STEP 8
 NumDig = 5 ' If no 'true' in list, must be 65535.
 LOOKDOWN I, <[0, 10, 100, 1000, 10000, 65535], NumDig
 DEBUG "I= ", REP " " \ (5 – NumDig), DEC I, TAB, "digits=", DEC NumDig, CR
 PAUSE 100
NEXT

1

2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS2e, BS2sx or
BS2p.

5: BASIC Stamp Command Reference – LOOKUP

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 183

LOOKUP BS1 BS2 BS2e BS2sx BS2p

LOOKUP Index, (Value0, Value1, ...ValueN), Variable
LOOKUP Index, [Value0, Value1, ...ValueN], Variable

Function
Find the value at location Index and store it in Variable. If Index exceeds the
highest index value of the items in the list, Variable is left unaffected.

• Index is a variable/constant/expression (0 – 255) indicating the list
item to retrieve.

• Values are variables/constants/expressions (0 – 65535).

• Variable is a variable that will be set to the value at the Index location.
If Index exceeds the highest location number, Variable is left
unaffected.

Quick Facts
 BS1, BS2, BS2e, BS2sx and BS2p

Limit of value
entries

256

Starting index
number

0

If index
 exceeds the

highest
location…

Variable is left unaffected

Explanation
LOOKUP retrieves an item from a list based on the item’s position, Index,
in the list. For example:

SYMBOL Index = B0
SYMBOL Result = B1
Index = 3
Result = 255

LOOKUP Index, (26, 177, 13, 1, 0, 17, 99), Result
DEBUG "Item ", #Index, "is: ", #Result

-- or --

1
2 e

2
sx
2

p
2

1
NOTE: Expressions are not
allowed as arguments on the BS1.

Table 5.38: LOOKUP Quick Facts.

1

LOOKUP - BASIC Stamp Command Reference

Page 184 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Index VAR NIB
Result VAR BYTE
Index = 3
Result = 255

LOOKUP Index, [26, 177, 13, 1, 0, 17, 99], Result
DEBUG "Item ", DEC Index, " is: ", DEC Result

In this example, DEBUG prints “Item 3 is: 1.” Note that the first location
number is 0. In the list above, item 0 is 26, item 1 is 177, etc.

If Index is beyond the end of the list, the result variable is unchanged. In
the example above, if index were greater than 6, the message would have
reported the result to be 255, because that’s what Result contained before
LOOKUP executed.

Don’t forget that text phrases are just lists of byte values, so they too are
eligible for LOOKUP searches, as in this example:

SYMBOL Value = B0
SYMBOL Result = B1
Index = 16
Result = " "

LOOKUP Index , ("The quick brown fox"), Result
DEBUG @Result

-- or --

Index VAR BYTE
Result VAR NIB
Index = 16
Result = " "

LOOKUP Index , ["The quick brown fox"], Result
DEBUG ASC? Result

DEBUG prints, “Result = 'f'” because the character at index item 16 is "f" in
the phrase, “The quick brown fox”.

The examples above show LOOKUP working with lists of constants, but it
also works with variables and expressions also. Note, however, that
expressions are not allowed as argument on the BS1.

THE INDEX NUMBER OF THE FIRST

ITEM IS 0, NOT 1.

LOOKUP CAN USE VARIABLES AND

EXPRESSIONS IN THE VALUE LIST.

2 e
2

sx
2

p
2

USING TEXT IN THE VALUE LIST.

1

2 e
2

sx
2

p
2

5: BASIC Stamp Command Reference – LOOKUP

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 185

A great use of LOOKUP is in combination with LOOKDOWN to "map"
non-contiguous sets of numbers together. For example, you may have an
application where certain numbers are received by the BASIC Stamp and,
in response, the BASIC Stamp needs to send a specific set of numbers.
This may be easy to code if the numbers are contiguous, or follow some
know algebraic equations… but what if they don't? The table below
shows some sample, non-contiguous inputs and the corresponding
outputs the BASIC Stamp needs to respond with:

Each of these values received
(inputs):

Needs to result in each of these
values sent (outputs):

5 16
14 17
1 18

43 24
26 10
22 12
30 11

So, if we receive the number 5, we need to output 16. If we received 43,
we need to output 24, and so on. These numbers are not contiguous and
they don't appear to be derived from any simple algorithm. We can solve
this problem with two lines of code, as follows:

LOOKDOWN Value, [5, 14, 1, 43, 26, 22, 30], Value
LOOKUP Value, [16, 17, 18, 24, 10, 12, 11], Value

Assuming our received number is in Value, the first line (LOOKDOWN)
will find the value in the list and store the index of the location that
matches back into Value. (This step "maps" the non-contiguous numbers:
5, 14, 1, etc, to a contiguous set of numbers: 0, 1, 2, etc). The second line
(LOOKUP) takes our new Value, finds the number at that location and
stores it back into Value. If the received value was 14, LOOKDOWN stores
1 into Value and LOOKUP looks at the value at location 1 and stores 17 in
Value. The number 43 gets mapped to 3, 3 gets mapped to 24, and so on.
This is a quick and easy fix for a potentially messy problem!

USING LOOKUP WITH LOOKDOWN
TO "MAP" NON-CONTIGUOUS SETS OF

NUMBERS.

Table 5.39: Non-Contiguous
Number Example.

LOOKUP - BASIC Stamp Command Reference

Page 186 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Demo Program (LOOKDOWN.bas)
' This program uses Lookup to create a debug-window animation of a spinning propeller.
' The animation consists of the four ASCII characters | / - \ which, when printed rapidly
' in order at a fixed location, appear to spin. (A little imagination helps a lot here.)

'{$STAMP BS1} 'STAMP directive (specifies a BS1)

SYMBOL I = B0
SYMBOL Frame = B1

Rotate:
 FOR I = 0 TO 3
 LOOKUP I,("|/-\"),Frame
 DEBUG CLS, @Frame
 PAUSE 50
 NEXT
GOTO Rotate

Demo Program (LOOKUP.bs2)
' This program uses Lookup to create a debug-window animation of a spinning propeller.
' The animation consists of the four ASCII characters | / - \ which, when printed rapidly
' in order at a fixed location, appear to spin. (A little imagination helps a lot here.)

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

I VAR NIB
Frame VAR BYTE

Rotate:
 FOR I = 0 TO 3
 LOOKUP I,["|/-\"],Frame
 DEBUG HOME, Frame
 PAUSE 50
 NEXT
GOTO Rotate

1

2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS2e, BS2sx or
BS2p.

5: BASIC Stamp Command Reference – LOW

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 187

LOW BS1 BS2 BS2e BS2sx BS2p

LOW Pin

Function
Make the specified pin output low.

• Pin is a variable/constant/expression (0 – 15) that specifies which
I/O pin to set low. This pin will be placed into output mode.

Explanation
The LOW command sets the specified pin to 0 (a 0 volt level) and then sets
its mode to output. For example,

LOW 6

does exactly the same thing as:

OUT6 = 0
DIR6 = 1

Using the LOW command is faster, in this case.

Connect an LED and a resister as shown in Figure 5.15 for the demo
program below.

1 2 e
2

sx
2

p
2

Figure 5.15: Example LED Circuit.

1
NOTE: Expressions are not
allowed as arguments on the BS1.
The range of the Pin argument on
the BS1 is 0 – 7.

P0

470 Ω

LED

Vss

LOW - BASIC Stamp Command Reference

Page 188 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Demo Program (LOW.bs2)
' This simple program sets I/O pin 0 high for 1/2 second and low for 1/2 second
' in an endless loop.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

Loop:
 HIGH 0
 PAUSE 500
 LOW 0
 PAUSE 500
GOTO Loop

1 2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS1, BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS1, BS2e,
BS2sx or BS2p.

5: BASIC Stamp Command Reference – MAINIO

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 189

MAINIO BS1 BS2 BS2e BS2sx BS2p

MAINIO
Function
Switch from control of auxiliary I/O pins to main I/O pins (on the BS2p40
only).
Quick Facts

 BS2p

I/O pin IDs 0 – 15 (just like auxiliary I/O, but after MAINIO command, all references
affect physical pins 5 – 20).

Special notes Both the BS2p24 and the BS2p40 accept this command, however,
only the BS2p40 gives access to the auxiliary I/O pins.

Explanation
The BS2p is available in two module styles, 1) a 24-pin module (called the
BS2p24) that is pin compatible with the BS2, BS2e and BS2sx and 2) a 40-
pin module (called the BS2p40) that has an additional 16 I/O pins (for a
total of 32). The BS2p40's extra, or auxiliary, I/O pins can be accessed in
the same manner as the main I/O pins (by using the IDs 0 to 15) but only
after issuing a command called AUXIO or IOTERM. The MAINIO
command causes the BASIC Stamp to affect the main I/O pins (the
default) instead of the auxiliary I/O pins in all further code until the
AUXIO or IOTERM command is reached, or the BASIC Stamp is reset or
power-cycled.

The following example illustrates this:

AUXIO
HIGH 0
MAINIO
LOW 0

The first line of the above example will tell the BASIC Stamp to affect the
auxiliary I/O pins in the commands following it. Line 2, sets I/O pin 0 of
the auxiliary I/O pins (physical pin 21) high. Afterward, the MAINIO
command tells the BASIC Stamp that all commands following it should
affect the main I/O pins. The last command, LOW, will set I/O pin 0 of
the main I/O pins (physical pin 5) low.

Table 5.40: MAINIO Quick Facts.

p
2

A SIMPLE MAINIO EXAMPLE.

MAINIO - BASIC Stamp Command Reference

Page 190 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Note that the main I/O and auxiliary I/O pins are independent of each
other; the states of the main I/O pins remain unchanged while the
program affects the auxiliary I/O pins, and vice versa.

Other commands that affect I/O group access are AUXIO and IOTERM.

Demo Program (AUX_MAIN_TERM.bsp)
' This program demonstrates the use of the AUXIO, MAINIO and IOTERM commands to
' affect I/O pins in the auxiliary and main I/O groups.

'{$STAMP BS2p} 'STAMP directive (specifies a BS2p)

Port VAR BIT

Loop:
 MAINIO 'Switch to main I/O pins
 TOGGLE 0 'Toggle state of I/O pin 0 (physical pin 5)
 PWM 1, 100, 40 'Generate PWM on I/O pin 1 (physical pin 6)

 AUXIO 'Switch to auxiliary I/O pins
 TOGGLE 0 'Toggle state of I/O pin 0 (physical pin 21)
 PULSOUT 1, 1000 'Generate a pulse on I/O pin 1 (physical pin 22)
 PWM 2, 100, 40 'Generate PWM on I/O pin 2 (physical pin 23)

 IOTERM Port 'Switch to main or aux I/Os (depending on Port)
 TOGGLE 3 'Toggle state of I/O pin 3 (on main and aux, alternately)
 Port = ~Port 'Invert port (switch between 0 and 1)
 PAUSE 1000
GOTO Loop

p
2

NOTE: This is written for the BS2p
but its effects can only be seen on
the 40-pin version: the BS2p40.

MAIN I/O AND AUXILIARY I/O PINS ARE
INDEPENDENT AND UNAFFECTED BY

CHANGES IN THE OPPOSITE GROUP.

5: BASIC Stamp Command Reference – NAP

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 191

NAP BS1 BS2 BS2e BS2sx BS2p

NAP Period

Function
Enter sleep mode for a short period. Power consumption is reduced as
indicated in Table 5.41 assuming no loads are being driven.

• Period is a variable/constant/expression (0 – 7) that specifies the
duration of the reduced-power nap. The duration is (2^Period) * 18
ms. Table 5.42 indicates the nap length for any given Period.

Quick Facts
 BS1 BS2 BS2e BS2sx BS2p

Current draw
during run

2 mA 8 mA 25 mA 60 mA 40 mA

Current draw
during NAP

20 µA 40 µA 60 µA 60 µA 60 µA

Accuracy of
NAP

–50 to 100%
(±10% @ 75°F

with stable
power supply)

–50 to 100%
(±10% @ 75°F

with stable
power supply)

–50 to 100%
(±10% @ 75°F

with stable
power supply)

–50 to 100%
(±10% @ 75°F

with stable
power supply)

–50 to 100%
(±10% @ 75°F

with stable
power supply)

Explanation
NAP uses the same shutdown/startup mechanism as SLEEP, with one big
difference. During SLEEP, the BASIC Stamp automatically compensates
for variations in the speed of the watchdog timer oscillator that serves as
its alarm clock. As a result, longer SLEEP intervals are accurate to
approximately ±1 percent.

Period Length of Nap
0 18 ms
1 36 ms
2 72 ms
3 144 ms
4 288 ms
5 576 ms
6 1152 ms (1.152 seconds)
7 2304 ms (2.304 seconds)

NAP intervals are directly controlled by the watchdog timer without
compensation. Variations in temperature, supply voltage, and
manufacturing tolerance of the BASIC Stamp's interpreter chip can cause

1 2 e
2

sx
2

p
2

1
NOTE: Expressions are not
allowed as arguments on the BS1.

Table 5.41: NAP Quick Facts.
Note: Current measurements are
based on no extra loads at 75°F.

Table 5.42: Period and Resulting
Length of NAP.

NAP ACCURACY NOTES.

NAP - BASIC Stamp Command Reference

Page 192 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

the actual timing to vary by as much as –50, +100 percent (i.e., a Period of 0,
NAP can range from 9 to 36 ms). At room temperature with a fresh
battery or other stable power supply, variations in the length of a NAP
will be less than ±10 percent.

One great use for NAP is in a battery-powered application where at least
some small amount of time is spent doing nothing. For example, you may
have a program that loops endlessly, performing some task, and pausing
for approximately 100 ms each time through the loop. You could replace
your PAUSE 100 with NAP 3, as long as the timing of the 100 ms pause
was not critical. The NAP 3 would effectively pause your program for
about 144 ms and, at the same time, would place the BASIC Stamp in low-
power mode, which would extend your battery life.

If your application is driving loads (sourcing or sinking current through
output-high or output-low pins) during a NAP, current will be interrupted
for about 18 ms when the BASIC Stamp wakes up. The reason is that the
watchdog-timer reset that awakens the BASIC Stamp also causes all of the
pins to switch to input mode for approximately 18 ms. When the
interpreter firmware regains control of the processor, it restores the I/O
direction dictated by your program.

If you plan to use END, NAP, or SLEEP in your programs, make sure that
your loads can tolerate these power outages. The simplest solution is
often to connect resistors high or low (to +5V or ground) as appropriate to
ensure a continuing supply of current during the reset glitch.

The demo program can be used to demonstrate the effects of the NAP
glitch with an LED and resistor as shown in Figure 5.16.

A GREAT USE FOR NAP; FREE POWER

SAVINGS.

TIPS FOR DRIVING LOADS DURING

NAP.

5: BASIC Stamp Command Reference – NAP

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 193

Demo Program (NAP.bs2)
' The program below lights an LED by placing a low on pin 0. This completes the circuit from
' +5V, through the LED and resistor, to ground. During the NAP interval, the LED stays lit, but
' blinks off for a fraction of a second. This blink is caused by the NAP wakeup mechanism
' During wakeup, all pins briefly slip into input mode, effectively disconnecting them from
' loads.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

LOW 0 ' Turn LED on.
Snooze:
 NAP 4 ' Nap for 288 ms.
GOTO Snooze

1 2 e
2

sx
2

p
2

P0

Vdd

470 Ω

LED

Figure 5.16: Example LED Circuit.

NOTE: This is written for the BS2
but can be used for the BS1, BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS1, BS2e,
BS2sx or BS2p.

NAP - BASIC Stamp Command Reference

Page 194 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

5: BASIC Stamp Command Reference – OUTPUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 195

OUTPUT BS1 BS2 BS2e BS2sx BS2p

OUTPUT Pin

Function
Make the specified pin an output.

• Pin is a variable/constant/expression (0 – 15) that specifies which
I/O pin to set to output mode.

Explanation
There are several ways to make a pin an output. Commands that rely on
output pins, like PULSOUT and SEROUT, automatically change the
specified pin to output. Writing 1s to particular bits of the variable DIRS
makes the corresponding pins outputs. And then there’s the OUTPUT
command.

When a pin is an output, your program can change its state by writing to
the corresponding bit in the OUTS variable (PINS on the BS1). For
example:

OUTPUT 4
OUT4 = 1

When your program changes a pin from input to output, whatever state
happens to be in the corresponding bit of OUTS (PINS on the BS1) sets the
initial state of the pin. To simultaneously make a pin an output and set its
state use the HIGH and LOW commands.

Demo Program (INOUT.bas)
' This program demonstrates how the input/output direction of a pin is determined by
' the corresponding bit of DIRS. It also shows that the state of the pin itself (as
' reflected by the corresponding bit of PINS) is determined by the outside world when
' the pin is an input, and by the corresponding bit of PINS when it's an output. To
' set up the demo, connect a 10k resistor from +5V to P7 on the BASIC Stamp. The
' resistor to +5V puts a high (1) on the pin when it's an input. The BASIC Stamp can
' override this state by writing a low (0) to bit 7 of OUTS and changing the pin to output.

'{$STAMP BS1} 'STAMP directive (specifies a BS1)

INPUT 7 ' Make I/O pin 7 an input.
DEBUG "State of pin 7: ", #PIN7, CR

PIN7 = 0 ' Write 0 to output latch.
DEBUG "After 0 written to OUT7: ", #PIN7, CR

1 2 e
2

sx
2

p
2

1

1
NOTE: Expressions are not
allowed as arguments on the BS1.
The range of the Pin argument on
the BS1 is 0 – 7.

EFFECTS OF SETTING AN INPUT PIN TO

AN OUTPUT.

OUTPUT - BASIC Stamp Command Reference

Page 196 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

OUTPUT 7 ' Make I/O pin 7 an output.
DEBUG "After pin 7 changed to output: ", #PIN7

Demo Program (INPUT_OUTPUT.bs2)
' This program demonstrates how the input/output direction of a pin is determined by
' the corresponding bit of DIRS. It also shows that the state of the pin itself (as
' reflected by the corresponding bit of INS) is determined by the outside world when
' the pin is an input, and by the corresponding bit of OUTS when it's an output. To
' set up the demo, connect a 10k resistor from +5V to P7 on the BASIC Stamp. The
' resistor to +5V puts a high (1) on the pin when it's an input. The BASIC Stamp can
' override this state by writing a low (0) to bit 7 of OUTS and changing the pin to output.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

INPUT 7 ' Make I/O pin 7 an input.
DEBUG "State of pin 7: ", BIN IN7, CR

OUT7 = 0 ' Write 0 to output latch.
DEBUG "After 0 written to OUT7: ", BIN IN7, CR

OUTPUT 7 ' Make I/O pin 7 an output.
DEBUG "After pin 7 changed to output: ", BIN IN7

2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS2e, BS2sx or
BS2p.

5: BASIC Stamp Command Reference – OWIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 197

OWIN BS1 BS2 BS2e BS2sx BS2p

OWIN Pin, Mode, [InputData]
Function
Receive data from a device using the 1-wire protocol.

• Pin is a variable/constant/expression (0 – 15) that specifies which
I/O pin to use. 1-wire devices require only one I/O pin (called DQ)
to communicate. This I/O pin will be toggled between output and
input mode during the OWIN command and will be set to input
mode by the end of the OWIN command.

• Mode is a variable/constant/expression (0 – 15) indicating the mode
of data transfer. The Mode argument controls placement of reset
pulses (and detection of presence pulses) as well as byte vs. bit input
and normal vs. high speed. See explanation below.

• InputData is a list of variables and modifiers that tells OWIN what to
do with incoming data. OWIN can store data in a variable or array,
interpret numeric text (decimal, binary, or hex) and store the
corresponding value in a variable, wait for a fixed or variable
sequence of bytes, or ignore a specified number of bytes. These
actions can be combined in any order in the InputData list.

Quick Facts

 BS2p
Receive Rate Approximately 20 kbits/sec (low speed, not including reset pulse)
Special notes The DQ pin (specified by Pin) must have a 4.7 KΩ pull-up resister.

Explanation
The 1-wire protocol is a form of asynchronous serial communication
developed by Dallas Semiconductor. It only requires one I/O pin and that
pin can be shared between multiple 1-wire devices. The OWIN command
allows the BASIC Stamp to receive data from a 1-wire device.

The following is an example of the OWIN command:

Result VAR BYTE
OWIN 0, 1, [Result]

This code will transmit a "reset" pulse to a 1-wire device (connected to I/O
pin 0) and then will detect the device's "presence" pulse and then receive
one byte and store it in the variable Result.

Table 5.43: OWIN Quick Facts.

p
2

A SIMPLE OWIN EXAMPLE.

OWIN - BASIC Stamp Command Reference

Page 198 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

The Mode argument is used to control placement of reset pulses (and
detection of presence pulses) and to designate byte vs. bit input and
normal vs. high speed. Figure 5.17 shows the meaning of each of the 4
bits of Mode. Table 5.44 shows just some of the 16 possible values and
their effect.

The proper value for Mode depends on the 1-wire device and the portion
of the communication you're working on. Please consult the data sheet for
the device in question to determine the correct value for Mode. In many
cases, however, when using the OWIN command, Mode should be set for
either No Reset (to receive data from a transaction already started by a
OWOUT command) or a Back-End Reset (to terminate the session after
data is received). This may vary due to device and application
requirements, however.

When using the Bit (rather than Byte) mode of data transfer, all variables
in the InputData argument will only receive one bit. For example, the
following code could be used to receive two bits using this mode:

Mode Effect
0 No Reset, Byte mode, Low speed
1 Reset before data, Byte mode, Low speed
2 Reset after data, Byte mode, Low speed
3 Reset before and after data, Byte mode, Low speed
4 No Reset, Bit mode, Low speed
5 Reset before data, Bit mode, Low speed
8 No Reset, Byte mode, High speed
9 Reset before data, Byte mode, High speed

Low/Hi Byte/Bit BERes

0

FERes

123

Front-End Reset
0=no reset
1=generate reset before data

Back-End Reset
0=no reset
1=generate reset after data

Low/High Speed
0=low
1=high

Byte/Bit Transfer
0=byte
1=bit

Table 5.44: OWIN Mode Values.

Figure 5.17: Mode Format.

5: BASIC Stamp Command Reference – OWIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 199

FirstBit VAR BIT
SecondBit VAR BIT
OWIN 0, 6, [FirstBit, SecondBit]

In the code above, we chose the value "6" for Mode. This sets Bit transfer
and Back-End Reset modes. Also, we could have chosen to make the
FirstBit and SecondBit variables each a byte in size, but they still would
only have received one bit each in the OWIN command (due to the Mode
we chose).

The OWIN command's InputData argument is similar to the SERIN
command's InputData argument. This means data can be received as
ASCII character values, decimal, hexadecimal and binary translations and
string data as in the examples below. (Assume a 1-wire device is used and
that it transmits the string, "Value: 3A:101" every time it receives a Front-
End Reset pulse).

Value VAR BYTE(13)
OWIN 0, 1, [Value] 'receive the ASCII value for "V"
OWIN 0, 1, [DEC Value] 'receive the number 3.
OWIN 0, 1, [HEX Value] 'receive the number $3A.
OWIN 0, 1, [BIN Value] 'receive the number %101.
OWIN 0, 1, [STR Value\13] 'receive the string "Value: 3A:101"

Tables 5.45 and 5.46 list all the available special formatters and conversion
formatters available to the OWIN command. See the SERIN command for
additional information and examples of their use.

Special Formatter Action

STR ByteArray \L {\E}
Input a character string of length L into an array. If specified, an
end character E causes the string input to end before reaching
length L. Remaining bytes are filled with 0s (zeros).

WAITSTR ByteArray {\L}

Wait for a sequence of bytes matching a string stored in an array
variable, optionally limited to L characters. If the optional L
argument is left off, the end of the array-string must be marked
by a byte containing a zero (0).

SKIP Length Ignore Length bytes of characters.

RECEIVING FORMATTED DATA.

Table 5.45: OWIN Special
Formatters.

OWIN - BASIC Stamp Command Reference

Page 200 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Conversion
Formatter

Type of Number Numeric Characters Accepted Notes

DEC{1..5} Decimal, optionally limited to
 1 – 5 digits

0 through 9 1

SDEC{1..5} Signed decimal, optionally
limited to 1 – 5 digits

-, 0 through 9 1,2

HEX{1..4} Hexadecimal, optionally limited
to 1 – 4 digits

0 through 9, A through F 1,3

SHEX{1..4} Signed hexadecimal, optionally
limited to 1 – 4 digits

-, 0 through 9, A through F 1,2,3

IHEX{1..4} Indicated hexadecimal,
optionally limited to 1 – 4 digits

$, 0 through 9, A through F 1,3,4

ISHEX{1..4} Signed, indicated hexadecimal,
optionally limited to 1 – 4 digits

-, $, 0 through 9, A through F 1,2,3,4

BIN{1..16} Binary, optionally limited to
1 – 16 digits

0, 1 1

SBIN{1..16} Signed binary, optionally limited
to 1 – 16 digits

-, 0, 1 1,2

IBIN{1..16} Indicated binary, optionally
limited to 1 – 16 digits

%, 0, 1 1,4

ISBIN{1..16} Signed, indicated binary,
optionally limited to 1 – 16 digits

-, %, 0, 1 1,2,4

1 All numeric conversions will continue to accept new data until receiving either the specified
number of digits (ex: three digits for DEC3) or a non-numeric character.

2 To be recognized as part of a number, the minus sign (-) must immediately precede a
numeric character. The minus sign character occurring in non-numeric text is ignored and
any character (including a space) between a minus and a number causes the minus to be
ignored.

3 The hexadecimal formatters are not case-sensitive; “a” through “f” means the same as “A”
through “F”.

4 Indicated hexadecimal and binary formatters ignore all characters, even valid numerics,
until they receive the appropriate prefix ($ for hexadecimal, % for binary). The indicated
formatters can differentiate between text and hexadecimal (ex: ABC would be interpreted
by HEX as a number but IHEX would ignore it unless expressed as $ABC). Likewise, the
binary version can distinguish the decimal number 10 from the binary number %10. A
prefix occurring in non-numeric text is ignored, and any character (including a space)
between a prefix and a number causes the prefix to be ignored. Indicated, signed
formatters require that the minus sign come before the prefix, as in -$1B45.

 Table 5.46: OWIN Conversion
Formatters.

5: BASIC Stamp Command Reference – OWIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 201

The 1-wire protocol has a well-defined standard for transaction sequences.
Every transaction sequence consists of four parts: 1) Initialization, 2) ROM
Function Command, 3) Memory Function Command, and 4)
Transaction/Data. Additionally, the ROM Function Command and
Memory Function Command are always 8 bits wide (1 byte in size) and is
sent least-significant-bit (LSB) first.

The Initialization part consists of a reset pulse (generated by the master)
and will be followed by a presence pulse (generated by all slave devices).
Figure 5.18 details the reset pulse generated by the BASIC Stamp and a
typical presence pulse generated by a 1-wire slave, in response.

This reset pulse is controlled by the lowest two bits of the Mode argument
in the OWIN command. It can be made to appear before the ROM
Function Command (ex: Mode = 1), after the Transaction/Data portion (ex:
Mode = 2), before and after the entire transaction (ex: Mode = 3) or not at all
(ex: Mode = 0). See the section on Mode, above, for more information.

Following the Initialization part is the ROM Function Command. The
ROM Function Command is used to address the desired 1-wire device.
Table 5.47 shows common ROM Function Commands. If only a single
1-wire device is connected, the Match ROM command can be used to
address it. If more than one 1-wire device is attached, the BASIC Stamp
will ultimately have to address them individually using the Match ROM
command.

THE 1-WIRE PROTOCOL FORMAT.

BASIC Stamp’s
Reset Pulse
Apx. 564 sµ

Device’s
Presence

 Pulse
60 - 240 sµ

Resting State
15 - 60 sµ

driven by BASIC Stamp

driven by 1-wire device

+5 (vdd)

0 (vss)

Figure 5.18: OWIN Reset and
Presence Pulse.

OWIN - BASIC Stamp Command Reference

Page 202 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Command Value (in Hex) Action

Read ROM $33
Reads the 64-bit ID of the 1-wire device. This command
can only be used if there is a single 1-wire device on the
line.

Match ROM $55 This command, followed by a 64-bit ID, allows the BASIC
Stamp to address a specific 1-wire device.

Skip ROM $CC
Address a 1-wire device without its 64-bit ID. This
command can only be used if there is a single 1-wire
device on the line.

Search ROM $F0
Reads the 64-bit IDs of all the 1-wire devices on the line. A
process of elimination is used to distinguish each unique
device.

The third part, the Memory Function Command, allows the BASIC Stamp
to address specific memory locations, or features, of the 1-wire device.
Refer to the 1-wire device's data sheet for a list of the available Memory
Function Commands.

Finally, the Transaction/Data section is used to read or write data to the
1-wire device. The OWIN command will read data at this point in the
transaction. A read is accomplished by generating a brief low-pulse and
sampling the line within 15 µs of the falling edge of the pulse. This is
called a "Read Slot." Figure 5.19 shows typical Read Slots performed by
the BASIC Stamp. See the OWOUT command for information on Write
Slots.

BASIC Stamp’s
Read “0” Slot

Apx. 72 sµ

Recovery Period
Apx 8 sµ

+5 (vdd)

0 (vss)

BASIC Stamp’s
Read “1” Slot

Apx. 72 sµ

driven by BASIC Stamp

time when BASIC Stamp samples line (apx 1 - 10 s)µ

Apx 4 sµ Apx 4 sµ

driven by 1-wire device or pulled-up by 5 k resisterΩ

Table 5.47: 1-wire ROM Function
Commands.

Figure 5.19: Example Read Slot.

5: BASIC Stamp Command Reference – OWIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 203

The Demo Program uses a Dallas Semiconductor DS1820 Digital
Thermometer device connected as follows. Note that the 4.7 kΩ pull-up
resister is required for proper operation.

Demo Program (I2C.bsp)
' This program demonstrates interfacing to a Dallas Semiconductor DS1820 1-wire Digital
' Thermometer chip using the BS2p's 1-wire commands. Connect the BS2p to the DS1820
' as shown in the diagram in the OWIN or OWOUT command description.
' This code reads the Counts Remaing and Counts per Degree C registers in the DS1820
' chip in order to provide a more accurate temperature reading (down to 1/100th of a
' degree). It also calculates degrees Fahrenheit. NOTE: The algebraic equations used
' will not work properly with negative temperatures.

'{$STAMP BS2p} 'STAMP directive (specifies a BS2p)

Temp VAR WORD 'Holds the temperature value
CRem VAR BYTE 'Holds the counts remaining value
CPerC VAR BYTE 'Holds the Counts per degree C value

Start:
 OWOUT 0, 1, [$CC, $44] 'Send Calculate Temperature command

CheckForDone: 'Wait until conversion is done
 PAUSE 25
 OWIN 0, 4, [Temp] 'Here we just keep reading low pulses until
IF Temp = 0 THEN CheckForDone 'the DS1820 is done, then it returns high.

 OWOUT 0, 1, [$CC, $BE] 'Send Read ScratchPad command
 OWIN 0, 2, [Temp.LOWBYTE,Temp.HIGHBYTE,CRem,CRem,CRem,CRem,CRem,CPerC]

 'Calculate temperature in degrees C
 Temp = Temp>>1*100-25+((CPerC*100-(CRem*100))/CPerC)
 DEBUG HOME, DEC3 Temp/100, ".", DEC2 Temp-(Temp/100*100), " C", CR

 'Calculate temperature in degrees F
 Temp = Temp*/461+3200
 DEBUG DEC3 Temp/100, ".", DEC2 Temp-(Temp/100*100), " F"
GOTO Start

p
2

Figure 5.20: DS1820 Circuit.
NOTE: The 4.7 kΩ resister is
required for proper operation.

Vss

Vdd

P0

DS1820
(PR35)

4.7 kΩ
DQ

1 2 3

OWIN - BASIC Stamp Command Reference

Page 204 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

5: BASIC Stamp Command Reference – OWOUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 205

OWOUT BS1 BS2 BS2e BS2sx BS2p

OWOUT Pin, Mode, [OutputData]
Function
Send data to a device using the 1-wire protocol.

• Pin is a variable/constant/expression (0 – 15) that specifies which
I/O pin to use. 1-wire devices require only one I/O pin (called DQ)
to communicate. This I/O pin will be toggled between output and
input mode during the OWOUT command and will be set to input
mode by the end of the OWOUT command.

• Mode is a variable/constant/expression (0 – 15) indicating the mode
of data transfer. The Mode argument controls placement of reset
pulses (and detection of presence pulses) as well as byte vs. bit input
and normal vs. high speed. See explanation below.

• OutputData is a list of variables and modifiers that tells OWOUT
how to format outgoing data. OWOUT can transmit individual or
repeating bytes, convert values into decimal, hexadecimal or binary
text representations, or transmit strings of bytes from variable
arrays. These actions can be combined in any order in the
OutputData list.

Quick Facts

 BS2p
Transmission

Rate
Approximately 20 kbits/sec (low speed, not including reset pulse)

Special notes The DQ pin (specified by Pin) must have a 4.7 KΩ pull-up resister.

Explanation
The 1-wire protocol is a form of asynchronous serial communication
developed by Dallas Semiconductor. It only requires one I/O pin and that
pin can be shared between multiple 1-wire devices. The OWOUT
command allows the BASIC Stamp to send data to a 1-wire device.

The following is an example of the OWOUT command:

OWOUT 0, 1, [$4E]

This code will transmit a "reset" pulse to a 1-wire device (connected to I/O
pin 0) and then will detect the device's "presence" pulse and then transmit
one byte (the value $4E).

Table 5.48: OWOUT Quick Facts.

p
2

A SIMPLE OWOUT EXAMPLE.

OWOUT - BASIC Stamp Command Reference

Page 206 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

The Mode argument is used to control placement of reset pulses (and
detection of presence pulses) and to designate byte vs. bit input and
normal vs. high speed. Figure 5.21 shows the meaning of each of the 4
bits of Mode. Table 5.49 shows just some of the 16 possible values and
their effect.

The proper value for Mode depends on the 1-wire device and the portion
of the communication you're working on. Please consult the data sheet for
the device in question to determine the correct value for Mode. In many
cases, however, when using the OWOUT command, Mode should be set
for a Front-End Reset (to initialize the transaction). This may vary due to
device and application requirements, however.

When using the Bit (rather than Byte) mode of data transfer, all variables
in the OutputData argument will only transmit one bit. For example, the
following code could be used to send two bits using this mode:

Mode Effect
0 No Reset, Byte mode, Low speed
1 Reset before data, Byte mode, Low speed
2 Reset after data, Byte mode, Low speed
3 Reset before and after data, Byte mode, Low speed
4 No Reset, Bit mode, Low speed
5 Reset before data, Bit mode, Low speed
8 No Reset, Byte mode, High speed
9 Reset before data, Byte mode, High speed

Low/Hi Byte/Bit BERes

0

FERes

123

Front-End Reset
0=no reset
1=generate reset before data

Back-End Reset
0=no reset
1=generate reset after data

Low/High Speed
0=low
1=high

Byte/Bit Transfer
0=byte
1=bit

Table 5.49: OWOUT Common
Mode Values.

Figure 5.21: Mode Format.

5: BASIC Stamp Command Reference – OWOUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 207

FirstBit VAR BIT
SecondBit VAR BIT
FirstBit = 0
SecondBit = 1
OWOUT 0, 5, [FirstBit, SecondBit]

In the code above, we chose the value "6" for Mode. This sets Bit transfer
and Front-End Reset modes. Also, we could have chosen to make the
FirstBit and SecondBit variables each a byte in size, but the BASIC Stamp
would still only use the their lowest bit (BIT0) as the value to transmit in
the OWOUT command (due to the Mode we chose).

The OWOUT command's OutputData argument is similar to the DEBUG
and SEROUT command's OutputData argument. This means data can be
sent as literal text, ASCII character values, repetitive values, decimal,
hexadecimal and binary translations and string data as in the examples
below. (Assume a 1-wire device is used and that it transmits the string,
"Value: 3A:101" every time it receives a Front-End Reset pulse).

Value VAR BYTE
Value = 65
OWOUT 0, 1, [Value] 'send the ASCII value for "A"
OWOUT 0, 1, [REP Value\5] 'send the ASCII value for "A" five times, ie: "AAAAA"
OWOUT 0, 1, [DEC Value] 'send two characters, "6" and "5"
OWOUT 0, 1, [HEX Value] 'send two characters, "4" and "1"
OWOUT 0, 1, [BIN Value] 'send seven characters, "1000001"

Tables 5.50 and 5.51 list all the available special formatters and conversion
formatters available to the OWOUT command. See the DEBUG and
SEROUT commands for additional information and examples of their use.

Special Formatter Action

?
Displays "symbol = x' + carriage return; where x is a number.
Default format is decimal, but may be combined with conversion
formatters (ex: BIN ? x to display "x = binary_number").

ASC ? Displays "symbol = 'x'" + carriage return; where x is an ASCII
character.

STR ByteArray {\L}

Send character string from an array. The optional \L argument
can be used to limit the output to L characters, otherwise,
characters will be sent up to the first byte equal to 0 or the end of
RAM space is reached.

REP Byte \L Send a string consisting of Byte repeated L times
(ex: REP "X"\10 sends "XXXXXXXXXX").

SENDING AND FORMATTING DATA.

Table 5.50: OWOUT Special
Formatters.

OWOUT - BASIC Stamp Command Reference

Page 208 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Conversion
Formatter

Type of Number Notes

DEC{1..5} Decimal, optionally fixed to 1 – 5 digits 1
SDEC{1..5} Signed decimal, optionally fixed to 1 – 5 digits 1,2
HEX{1..4} Hexadecimal, optionally fixed to 1 – 4 digits 1

SHEX{1..4} Signed hexadecimal, optionally fixed to 1 – 4 digits 1,2
IHEX{1..4} Indicated hexadecimal, optionally fixed to 1 – 4 digits ($ prefix) 1

ISHEX{1..4} Signed, indicated hexadecimal, optionally fixed to 1 – 4 digits
($ prefix)

1,2

BIN{1..16} Binary, optionally fixed to 1 – 16 digits 1
SBIN{1..16} Signed binary, optionally fixed to 1 – 16 digits 1,2
IBIN{1..16} Indicated binary, optionally fixed to 1 – 16 digits (% prefix) 1

ISBIN{1..16} Signed, indicated binary, optionally fixed to 1 – 16 digits (% prefix) 1,2
1 Fixed-digit formatters like DEC4 will pad the number with leading 0s if necessary; ex:

DEC4 65 sends 0065. If a number is larger than the specified number of digits, the
leading digits will be dropped; ex: DEC4 56422 sends 6422.

2 Signed modifiers work under two's complement rules.

The 1-wire protocol has a well-defined standard for transaction sequences.
Every transaction sequence consists of four parts: 1) Initialization, 2) ROM
Function Command, 3) Memory Function Command, and 4)
Transaction/Data. Additionally, the ROM Function Command and
Memory Function Command are always 8 bits wide (1 byte in size) and is
sent least-significant-bit (LSB) first.

The Initialization part consists of a reset pulse (generated by the master)
and will be followed by a presence pulse (generated by all slave devices).
Figure 5.22 details the reset pulse generated by the BASIC Stamp and a
typical presence pulse generated by a 1-wire slave, in response.

THE 1-WIRE PROTOCOL FORMAT.

Table 5.51: OWOUT Conversion
Formatters.

5: BASIC Stamp Command Reference – OWOUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 209

This reset pulse is controlled by the lowest two bits of the Mode argument
in the OWOUT command. It can be made to appear before the ROM
Function Command (ex: Mode = 1), after the Transaction/Data portion (ex:
Mode = 2), before and after the entire transaction (ex: Mode = 3) or not at all
(ex: Mode = 0). See the section on Mode, above, for more information.

Following the Initialization part is the ROM Function Command. The
ROM Function Command is used to address the desired 1-wire device.
Table 5.52 shows common ROM Function Commands. If only a single
1-wire device is connected, the Match ROM command can be used to
address it. If more than one 1-wire device is attached, the BASIC Stamp
will ultimately have to address them individually using the Match ROM
command.

Command Value (in Hex) Action

Read ROM $33
Reads the 64-bit ID of the 1-wire device. This command
can only be used if there is a single 1-wire device on the
line.

Match ROM $55 This command, followed by a 64-bit ID, allows the BASIC
Stamp to address a specific 1-wire device.

Skip ROM $CC
Address a 1-wire device without its 64-bit ID. This
command can only be used if there is a single 1-wire
device on the line.

Search ROM $F0
Reads the 64-bit IDs of all the 1-wire devices on the line. A
process of elimination is used to distinguish each unique
device.

BASIC Stamp’s
Reset Pulse
Apx. 564 sµ

Device’s
Presence

 Pulse
60 - 240 sµ

Resting State
15 - 60 sµ

driven by BASIC Stamp

driven by 1-wire device

+5 (vdd)

0 (vss)

Figure 5.22: OWOUT Reset and
Presence Pulse.

Table 5.52: OWOUT ROM Function
Commands.

OWOUT - BASIC Stamp Command Reference

Page 210 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

The third part, the Memory Function Command, allows the BASIC Stamp
to address specific memory locations, or features, of the 1-wire device.
Refer to the 1-wire device's data sheet for a list of the available Memory
Function Commands.

Finally, the Transaction/Data section is used to read or write data to the
1-wire device. The OWOUT command will write data at this point in the
transaction. A write is accomplished by generating a low-pulse of a
varying width to indicate a 0 or a 1. This is called a "Write Slot" and must
be at least 60 µs wide. Figure 5.23 shows typical Write Slots performed by
the BASIC Stamp. See the OWIN command for information on Read Slots.

The Demo Program uses a Dallas Semiconductor DS1820 Digital
Thermometer device connected as follows. Note that the 4.7 kΩ pull-up
resister is required for proper operation.

Figure 5.24: DS1820 Circuit.
NOTE: The 4.7 kΩ resister is
required for proper operation.

Vss

Vdd

P0

DS1820
(PR35)

4.7 kΩ
DQ

1 2 3

Figure 5.23: Example Write Slots.

BASIC Stamp’s
Write “0” Slot
Apx. 72 sµ

Recovery Period
Apx 8 sµ

+5 (vdd)

0 (vss)

BASIC Stamp’s
Write “1” Slot
Apx. 72 sµ

Apx 8 sµ

driven by BASIC Stamp

time when 1-wire device samples line (apx 15 - 45 s)µ

5: BASIC Stamp Command Reference – OWOUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 211

Demo Program (I2C.bsp)
' This program demonstrates interfacing to a Dallas Semiconductor DS1820 1-wire Digital
' Thermometer chip using the BS2p's 1-wire commands. Connect the BS2p to the DS1820
' as shown in the diagram in the OWIN or OWOUT command description.
' This code reads the Counts Remaing and Counts per Degree C registers in the DS1820
' chip in order to provide a more accurate temperature reading (down to 1/100th of a
' degree). It also calculates degrees Fahrenheit. NOTE: The algebraic equations used
' will not work properly with negative temperatures.

'{$STAMP BS2p} 'STAMP directive (specifies a BS2p)

Temp VAR WORD 'Holds the temperature value
CRem VAR BYTE 'Holds the counts remaining value
CPerC VAR BYTE 'Holds the Counts per degree C value

Start:
 OWOUT 0, 1, [$CC, $44] 'Send Calculate Temperature command

CheckForDone: 'Wait until conversion is done
 PAUSE 25
 OWIN 0, 4, [Temp] 'Here we just keep reading low pulses until
IF Temp = 0 THEN CheckForDone 'the DS1820 is done, then it returns high.

 OWOUT 0, 1, [$CC, $BE] 'Send Read ScratchPad command
 OWIN 0, 2, [Temp.LOWBYTE,Temp.HIGHBYTE,CRem,CRem,CRem,CRem,CRem,CPerC]

 'Calculate temperature in degrees C
 Temp = Temp>>1*100-25+((CPerC*100-(CRem*100))/CPerC)
 DEBUG HOME, DEC3 Temp/100, ".", DEC2 Temp-(Temp/100*100), " C", CR

 'Calculate temperature in degrees F
 Temp = Temp*/461+3200
 DEBUG DEC3 Temp/100, ".", DEC2 Temp-(Temp/100*100), " F"
GOTO Start

p
2

OWOUT - BASIC Stamp Command Reference

Page 212 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

5: BASIC Stamp Command Reference – PAUSE

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 213

PAUSE BS1 BS2 BS2e BS2sx BS2p

PAUSE Period

Function
Pause the program (do nothing) for the specified Period.

• Period is a variable/constant/expression (0 – 65535) that specifies
the duration of the pause. The unit of time for Period is 1
millisecond.

Explanation
PAUSE delays the execution of the next program instruction for the
specified number of milliseconds. For example:

Flash:
 LOW 0
 PAUSE 100
 HIGH 0
 PAUSE 100
GOTO Flash

This code causes pin 0 to go low for 100 ms, then high for 100 ms. The
delays produced by PAUSE are as accurate as the ceramic-resonator time
base (on the BASIC Stamp modules), ±1 percent. When you use PAUSE in
timing-critical applications, keep in mind the relatively low speed of the
PBASIC interpreter. This is the time required for the BASIC Stamp to read
and interpret an instruction stored in the EEPROM.

Demo Program (PAUSE.bs2)
' This program demonstrates the PAUSE command's time delays. Once a second, the
' program will put the message, "paused" on the screen.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

Again:
 DEBUG "paused", cr
 PAUSE 1000
GOTO Again

1 2 e
2

sx
2

p
2

1

1
NOTE: Expressions are not
allowed as arguments on the BS1.

2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS1, BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS1, BS2e,
BS2sx or BS2p.

PAUSE - BASIC Stamp Command Reference

Page 214 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

5: BASIC Stamp Command Reference – POLLIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 215

POLLIN BS1 BS2 BS2e BS2sx BS2p

POLLIN Pin, State
Function
Specify a polled-input pin and active state.

• Pin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to use. This I/O pin will be set to input mode.

• State is a variable/constant/expression (0 – 1) that specifies
whether to poll the I/O pin for a low (0) or a high (1) level.

Quick Facts

 BS2p
Available
actions in

response to
reaching the
desired State

1) Nothing,
2) Set polled-output pins to a specified state,
3) Run another program (in a specified program-slot),
4) Wait (pause program execution) until desired State is reached,
5) Any combination of 2, 3 and 4, above.

Special notes

• The polled-input pins are monitored (polled) in-between each command
within the PBASIC code.

• On the BS2p40, polled-input pins can be defined on both Main I/O and
Aux I/O pins. These are all active regardless of which group the
program happens to be using at the time of a polling event.

Explanation
The POLLIN command is one of a family of unique "polling" commands
on the BS2p module. The other commands in this family include
POLLMODE, POLLOUT, POLLRUN and POLLWAIT. The POLLIN
command is used to specify an input pin to monitor, or "poll", in-between
instructions during the rest of the PBASIC program. The BASIC Stamp
will then perform some activity (in-between instructions) when the
specified State is detected. The activity performed depends on the
POLLMODE, POLLOUT and POLLRUN commands.

The "polling" commands allow the BASIC Stamp to respond to certain I/O
pin events at a faster rate than what is normally possible through manual
PBASIC programming. The term "poll" comes from the fact that the
BASIC Stamp's interpreter periodically checks the state of the designated
polled-input pins. It "polls" these pins after the end of each PBASIC
command and before it reads the next PBASIC command from the user
program; giving the appearance that it is polling "in the background".

Table 5.53: POLLIN Quick Facts.

p
2

POLLIN - BASIC Stamp Command Reference

Page 216 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

This feature should not be confused with the concept of interrupts, as the
BASIC Stamp does not support true interrupts.

The following is an example of the POLLIN command:

POLLIN 0, 1
POLLMODE 2

The POLLIN command in the above code will cause the BASIC Stamp to
set I/O pin 0 to an input mode and get ready to poll it for a high (1) state.
The BASIC Stamp will not actually start polling until it is set to the
appropriate mode, however. The second line, POLLMODE, initiates the
polling process (see the POLLMODE description for more information).
From then on, as the BASIC Stamp executes the rest of the program, it will
check for a high level (logic 1) on I/O pin 0, in-between instructions.

In the code above, no obvious action will be noticed since we didn't tell the
BASIC Stamp what to do when it detects a change on the I/O pin. One
possible action the BASIC Stamp can be instructed to take is to change the
state of an output, called a polled-output. Take a look at the next example:

POLLIN 0, 1
POLLOUT 1, 0
POLLMODE 2

Loop:
 DEBUG "Looping…", CR
GOTO Loop

In this example, in addition to an endless loop, we've added another
polling command called POLLOUT (see the POLLOUT description for
more information). Our POLLOUT command tells the BASIC Stamp to set
I/O pin 1 to an output mode and set it low (0) when it detects the desired
poll state. The poll state is the high (1) level on I/O pin 0 that POLLIN
told it to look for. If the polled-input pin is not high, it will set
polled-output pin 1 to high (1), instead.

Once the program reaches the endless loop, called Loop, it will
continuously print "Looping…" on the PC screen. In between reading the
DEBUG command and the GOTO command (and vice versa) it will check
polled-input pin 0 and set polled-output pin 1 accordingly. In this case,
when I/O pin 0 is set high, the BASIC Stamp will set I/O pin 1 low. When
I/O pin 0 is set low, the BASIC Stamp will set I/O pin 1 high. It will

A SIMPLE POLLIN EXAMPLE.

SETTING ONE OF THE POSSIBLE

ACTIONS: POLLED-OUTPUTS

5: BASIC Stamp Command Reference – POLLIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 217

continue to perform this operation, in-between each command in the loop,
endlessly.

It's important to note that, in this example, only the DEBUG and GOTO
commands are being executed over and over again. The first three lines of
code are only run once, yet their effects are "remembered" by the BASIC
Stamp throughout the rest of the program.

If the polling commands were not used, the program would have to look
like the one below in order to achieve the same effect.

INPUT 0
OUTPUT 1

Loop:
 OUT1 = ~IN0
 DEBUG "Looping…", CR
 OUT1 = ~IN0
GOTO Loop

In this example, we create the inverse relationship of input pin 0 and
output pin 1 manually, in-between the DEBUG and GOTO lines. Though
the effects are the same as when using the polling commands, this
program actually takes a little longer to run and consumes 7 additional
bytes of program (EEPROM) space. Clearly, using the polling commands
is more efficient.

You can have as many polled-input and polled-output pins as you have
available. If multiple polled-input pins are defined, any one of them can
trigger changes on the polled-output pins that are also defined. For
example:

POLLIN 0, 1
POLLIN 1, 1
POLLOUT 2, 0
POLLOUT 3, 0
POLLMODE 2

Loop:
 DEBUG "Looping…", CR
GOTO Loop

This code sets I/O pins 0 and 1 to polled-input pins (looking for a high (1)
state) and sets I/O pins 2 and 3 to polled-output pins (with a low-active
state). If either I/O pin 0 or 1 goes high, the BASIC Stamp will set I/O

FOR COMPARISON: ACHIEVING THE
SAME EFFECTS WITHOUT THE POLLING

COMMANDS.

USING MULTIPLE POLLED-INPUT AND

POLLED-OUTPUT PINS.

THE BASIC STAMP "REMEMBERS"
THE POLLING CONFIGURATION FOR
THE DURATION OF THE PBASIC
PROGRAM.

POLLIN - BASIC Stamp Command Reference

Page 218 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

pins 2 and 3 low. This works similar to a logical OR operation. The truth
table below shows all the possible states of these two polled-input pins
and the corresponding states the BASIC Stamp will set the polled-output
pins to.

Normally, any polled-output pins reflect the state changes continuously,
as described above. The POLLMODE command supports another feature,
however, where the polled-output pins will latch the active state; they will
change only once (when the poll state is reached) and stay in the new state
until the PBASIC program tells it to change again. See the POLLMODE
description for more information.

Other possible actions in response to polled-input states are: 1) Running
another program (in a specified program slot), 2) Waiting (pausing
program execution with or without low-power mode) until the poll state is
reached, or 3) Any combination of the above-mentioned actions.

Demo Program (POLINOUT.bsp)
' This program demonstrates the POLLIN, POLLOUT and POLLMODE commands. It
' will watch for a high signal on I/O pin 0 and then will output the opposite signal on I/O pin 1
' all while printing a message on the PC screen.

'{$STAMP BS2p} 'STAMP directive (specifies a BS2p)

Init:
 POLLIN 0, 1 'Set I/O pin 0 to polled-input looking for a high
 POLLOUT 1, 0 'Set I/O pin 1 to polled-output; opposite level a 0
 POLLMODE 2 'Set mode to enable polled-outputs

Main:
 DEBUG "Working...", BIN1 OUT2, CR 'Waste time writing to PC screen
 PAUSE 100
GOTO Main

Polled-Inputs Polled-Outputs
0 1 2 3
0 0 1 1
0 1 0 0
1 0 0 0
1 1 0 0

POLLED-OUTPUTS CAN BE "LATCHED"
ALSO.

Table 5.54: Polled-Inputs /
Polled-Outputs Truth Table.

p
2

5: BASIC Stamp Command Reference – POLLMODE

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 219

POLLMODE BS1 BS2 BS2e BS2sx BS2p

POLLMODE Mode
Function
Specify a polled command mode.

• Mode is a variable/constant/expression (0 – 15) that indicates the
mode in which to process the polled command configuration.

Quick Facts

 BS2p

Special notes

• Polled-output pins will either change states continuously, just once or
not at all, depending on the POLLMODE command.

• A poll-mode of 2 or 4 is required for a POLLWAIT command to work.
• If both polled-outputs and polled-run are active, the polled-output event
will occur before the polled-run event.

Explanation
The POLLMODE command is one of a family of unique "polling"
commands on the BS2p module. The other commands in this family
include POLLIN, POLLOUT, POLLRUN and POLLWAIT. The
POLLMODE command is used to specify the mode in which polling
events and activities are processed. This activity will occur in-between
instructions during the rest of the PBASIC program.

The "polling" commands allow the BASIC Stamp to respond to certain I/O
pin events at a faster rate than what is normally possible through manual
PBASIC programming. The term "poll" comes from the fact that the
BASIC Stamp's interpreter periodically checks the state of the designated
polled-input pins. It "polls" these pins after the end of each PBASIC
command and before it reads the next PBASIC command from the user
program; giving the appearance that it is polling "in the background".
This feature should not be confused with the concept of interrupts, as the
BASIC Stamp does not support true interrupts.

The POLLMODE command sets one of 15 possible modes for the polling
commands. It is used mainly before and/or after any POLLIN, POLLOUT
and POLLRUN commands to disable and enable the polling features as
desired. Table 5.56 shows the mode values and their effect.

Table 5.55: POLLMODE Quick
Facts.

p
2

POLLMODE - BASIC Stamp Command Reference

Page 220 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

1 After the polled-run action occurs, the mode switches to 1 (deactivated, saved)
2 After the polled-run action occurs, the mode switches to 2 (activated, outputs)
3 These modes do not override the previous mode. Also, the output state of

polled-outputs does not change as a result of these modes.

The polled-run modes, 3 and 4, are unique. As soon as the polled-run
action occurs, the mode switches to 1 (deactivated, saved) or 2 (activated,
outputs), respectively. This is so that the BASIC Stamp doesn't
continuously go to the start of the designated program slot while the
polled-inputs are in the desired poll state. Without this "one shot" feature,
your program would appear to lock-up as long as the polled-inputs are in
the designated state.

The clear configuration modes, 5, 6 and 7, are also unique. These modes
do not override the previous mode. For example, if polled-inputs,
polled-outputs and a polled-run configuration was set and the mode was
set to 4 (activated, outputs and run) and later the program issued a
POLLMODE 6 command, the polled-output configuration would be
cleared but the mode would switch back to 4… still allowing the run
action. This also means if, later still, the program issues a POLLOUT
command, this polled-output would take effect immediately (since the
mode is still 4). Also note that these modes do not change the output state
of previously defined polled-output pins.

The POLLMODE command determines what action, if any, will occur in
response to a polled-input event. This command works in conjunction
with the POLLIN, POLLOUT and POLLRUN commands. The following is
an example of the POLLMODE command:

Mode Effect
0 Deactivate polling, clear polled-input and output configuration.
1 Deactivate polling, save polled-input and output configuration.
2 Activate polling with polled-output action (and polled-wait) only.
31 Activate polling with polled-run action only.
42 Activate polling with polled-output/polled-wait and polled-run actions.
53 Clear polled-input configuration.
63 Clear polled-output configuration.
73 Clear polled-input and output configuration.

8 – 15 Same at 0 – 7 except polled-output states are latched.

A SIMPLE POLLMODE EXAMPLE.

Table 5.56: POLLMODE Mode
Values.

5: BASIC Stamp Command Reference – POLLMODE

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 221

POLLIN 0, 1
POLLOUT 1, 0
POLLMODE 2

Loop:
 DEBUG "Looping…", CR
GOTO Loop

In this example, the first two lines configure I/O pin 0 as a polled-input
(looking for a high state) and I/O pin 1 as a polled-output (going low if
I/O pin 0 goes high, and vice versa). The third line, POLLMODE, initiates
the polling process and configures polled-outputs to be active. From then
on, as the BASIC Stamp executes the rest of the program, it will check for a
high level (logic 1) on I/O pin 0, in-between instructions and will set I/O
pin 1 accordingly.

If, in the above example, the poll mode was set to 1 (which means
deactivate polling but save configuration) I/O pins 0 and 1 would still be
defined the same way, and I/O pin 1 would still be set to output mode,
but no polling would take place during the rest of the program.

Here's another example that demonstrates mode 1 (deactivate but save
configuration).

POLLIN 0, 1
POLLOUT 1, 0
POLLMODE 2

DEBUG "Polling configured", CR

Main:
 POLLMODE 1
 DEBUG "No polling allowed here…", CR
 PAUSE 1000
 POLLMODE 2

Loop:
 DEBUG "Polling now…", CR
GOTO Loop

In this case, polling is configured and activated before "Polling configured"
is printed on the screen. Once we reach the Main routine, however,
polling is disabled (via the POLLMODE 1 command) and no polling
occurs during the printing of "No polling allowed here…" or during the 1
second pause afterward. Finally, polling is activated again, and since the
configuration was saved (because of mode 1, before) the polling activity

POLLMODE - BASIC Stamp Command Reference

Page 222 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

acts just like it did initially for the remainder of the program. The ability
to temporarily disable polling, without changing the configuration, can be
a powerful feature for certain "critical" parts of a program.

The following example contains two programs. The first should be
downloaded into program slot 0 and the second into program slot 1. We'll
assume they are called POLL0.bsp and POLL1.bsp, respectively (as
defined in the STAMP directive lines).

' ----- program #1 (slot 0) -----
' {$STAMP BS2p, POLL1.bsp}

POLLIN 0, 1
POLLOUT 1, 1
POLLRUN 1
POLLMODE 4

Loop:
 DEBUG "Program 1", CR
GOTO Loop

' ----- program #2 (slot 1) -----
' {$STAMP BS2p}

DEBUG "Switching…", CR

Loop:
 DEBUG "Program 2", CR
GOTO Loop

In this example (containing two programs; one is slot 0 and the other in
slot 1) program 1 (slot 0) will configure polled-input pin 0 to detect a high
state and polled-output 1 to go high in response. Program 1 also
configures a polled-run activity (see the POLLRUN description for more
information) to run the program in slot 1. The POLLMODE setting
activates the polled-output and the polled-run. Then, program 1
continuously prints "Program 1" on the PC screen.

Once I/O pin 0 goes high, however, the BASIC Stamp will set I/O pin 1
high, then execution will be switched to the program in slot 1 (program 2).
Program 2 will first print "Switching…" on the PC screen and then will
continuously print "Program 2". From this point forward, I/O pin 1 will
continue to be set low and high in response to changes occurring on I/O

5: BASIC Stamp Command Reference – POLLMODE

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 223

pin 0, but the polled-run activity is disabled and the BASIC Stamp
endlessly runs the code in program 2's Loop routine.

Demo Program (POLINOUT.bsp)
' This program demonstrates the POLLIN, POLLOUT and POLLMODE commands. It
' will watch for a high signal on I/O pin 0 and then will output the opposite signal on I/O pin 1
' all while printing a message on the PC screen.

'{$STAMP BS2p} 'STAMP directive (specifies a BS2p)

Init:
 POLLIN 0, 1 'Set I/O pin 0 to polled-input looking for a high
 POLLOUT 1, 0 'Set I/O pin 1 to polled-output; opposite level a 0
 POLLMODE 2 'Set mode to enable polled-outputs

Main:
 DEBUG "Working...", BIN1 OUT2, CR 'Waste time writing to PC screen
 PAUSE 100
GOTO Main

p
2

POLLMODE - BASIC Stamp Command Reference

Page 224 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

5: BASIC Stamp Command Reference – POLLOUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 225

POLLOUT BS1 BS2 BS2e BS2sx BS2p

POLLOUT Pin, State
Function
Specify a polled-output pin and active state.

• Pin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to use. This I/O pin will be set to output mode.

• State is a variable/constant/expression (0 – 1) that specifies
whether to set the I/O pin low (0) or high (1) when a polled-input
pin changes to its poll state.

Quick Facts

 BS2p

Special notes

• The POLLOUT command will immediately change the I/O pin to an
output mode and set its level opposite to that of State, regardless of the
polled-input states or the polled mode.

• Polled-output pins will either change states continuously, just once or
not at all, depending on the POLLMODE command.

• On the BS2p40, polled-output pins can be defined on both Main I/O and
Aux I/O pins. These are all active regardless of which group the
program happens to be using at the time of a polling event.

• If both polled-outputs and polled-run are active, the polled-output event
will occur before the polled-run event.

Explanation
The POLLOUT command is one of a family of unique "polling" commands
on the BS2p module. The other commands in this family include POLLIN,
POLLMODE, POLLRUN and POLLWAIT. The POLLOUT command is
used to specify an output pin that changes states in response to changes on
any of the defined polled-input pins. This activity will occur in-between
instructions during the rest of the PBASIC program.

The "polling" commands allow the BASIC Stamp to respond to certain I/O
pin events at a faster rate than what is normally possible through manual
PBASIC programming. The term "poll" comes from the fact that the
BASIC Stamp's interpreter periodically checks the state of the designated
polled-input pins. It "polls" these pins after the end of each PBASIC
command and before it reads the next PBASIC command from the user
program; giving the appearance that it is polling "in the background".
This feature should not be confused with the concept of interrupts, as the
BASIC Stamp does not support true interrupts.

Table 5.57: POLLOUT Quick Facts.

p
2

POLLOUT - BASIC Stamp Command Reference

Page 226 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

The POLLOUT command achieves one of three possible actions in
response to a polled-input event. This command works in conjunction
with the POLLIN and POLLMODE commands. The following is an
example of the POLLOUT command:

POLLIN 0, 1
POLLOUT 1, 0
POLLMODE 2

Loop:
 DEBUG "Looping…", CR
GOTO Loop

In this example, the POLLOUT command tells the BASIC Stamp to set I/O
pin 1 to an output mode and set it low (0) when it detects the desired poll
state. The poll state is the high (1) level on I/O pin 0 that POLLIN told it
to look for. If the polled-input pin is not high, the BASIC Stamp will set
polled-output pin 1 to high (1), instead. The BASIC Stamp will not
actually start polling until it is set to the appropriate mode, however. The
third line, POLLMODE, initiates the polling process (see the POLLMODE
description for more information). From then on, as the BASIC Stamp
executes the rest of the program, it will check for a high level (logic 1) on
I/O pin 0, in-between instructions.

Once the program reaches the endless loop, called Loop, it will
continuously print "Looping…" on the PC screen. In between reading the
DEBUG command and the GOTO command (and vice versa) it will check
polled-input pin 0 and set polled-output pin 1 accordingly. In this case,
when I/O pin 0 is set high, the BASIC Stamp will set I/O pin 1 low. When
I/O pin 0 is set low, the BASIC Stamp will set I/O pin 1 high. It will
continue to perform this operation, in-between each command in the loop,
endlessly.

It's important to note that in this example only the DEBUG and GOTO
commands are being executed over and over again. The first three lines of
code are only run once, yet their effects are "remembered" by the BASIC
Stamp throughout the rest of the program.

If the polling commands were not used, the program would have to look
like the one below in order to achieve the same effect.

A SIMPLE POLLOUT EXAMPLE.

FOR COMPARISON: ACHIEVING THE
SAME EFFECTS WITHOUT THE POLLING

COMMANDS.

THE BASIC STAMP "REMEMBERS"
THE POLLING CONFIGURATION FOR
THE DURATION OF THE PBASIC
PROGRAM.

5: BASIC Stamp Command Reference – POLLOUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 227

INPUT 0
OUTPUT 1

Loop:
 OUT1 = ~IN0
 DEBUG "Looping…", CR
 OUT1 = ~IN0
GOTO Loop

In this example, we create the inverse relationship of input pin 0 and
output pin 1 manually, in-between the DEBUG and GOTO lines. Though
the effects are the same as when using the polling commands, this
program actually takes a little longer to run and consumes 7 additional
bytes of program (EEPROM) space. Clearly, using the polling commands
is more efficient.

You can have as many polled-input and polled-output pins as you have
available. If multiple polled-output pins are defined, all of them change in
response to changes on the polled-input pins. For example:

POLLIN 0, 1
POLLOUT 1, 0
POLLOUT 2, 1
POLLOUT 3, 1
POLLMODE 2

Loop:
 DEBUG "Looping…", CR
GOTO Loop

This code sets up I/O pin 0 as a polled-input pin (looking for a high (1)
state) and sets I/O pins 1, 2 and 3 to polled-output pins. Polled-output pin
1 is set to a low-active state and pins 2 and 3 are set to a high-active state.
If I/O pin 0 goes high, the BASIC Stamp will set I/O pin 1 low and I/O
pins 2 and 3 high. The table below shows the two possible states of the
polled-input pin and the corresponding states the BASIC Stamp will set
the polled-output pins to.

Normally, any polled-output pins reflect the state changes continuously,
as described above. The POLLMODE command supports another feature,

Polled-Input Polled-Outputs
0 1 2 3
0 1 0 0
1 0 1 1

USING MULTIPLE POLLED-INPUT AND

POLLED-OUTPUT PINS.

POLLED-OUTPUTS CAN BE "LATCHED"
ALSO.

Table 5.58: POLLOUT Truth Table.

POLLOUT - BASIC Stamp Command Reference

Page 228 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

however, where the polled-output pins will latch the active state; they will
change only once (when the poll state is reached) and stay in the new state
until the PBASIC program tells it to change again. See the POLLMODE
description for more information.

A clever use of the "latched" feature is to set a polled-output to be the same
as the polled-input. For example, suppose an application needed to
respond in some way if a polled-input pin goes high, but it doesn't need to
respond immediately, and the other tasks should not be interrupted. In
essence, we need a way to know if the pin has gone high since the last time
we checked it. Look at this example:

POLLOUT 0, 1 'Set I/O 0 to polled-output, high
POLLIN 0, 1 'Set I/O 0 back to polled-input, high
POLLMODE 10 'Set mode to latch the polled-output

Idx VAR BYTE

Work: 'Do nonsense work, but check once in a
 FOR Idx = 1 TO 20 'while to see if the polled event ever occured
 DEBUG "Working…", CR
 NEXT
 IF OUT0 = 0 THEN Work

Respond: 'Send a different message if it did occur
 DEBUG CR, "Hey! You set my pin high!", CR
 POLLMODE 10 'Reset polled-output's latch function
GOTO Work

Here, we set I/O pin 0 to a polled-output, then immediately set it to a
polled-input. Then we set the polled-mode to latch the polled-outputs.
Since the POLLIN command occurred after the POLLOUT, I/O pin 0 will
be an input, but the polling feature will still affect the OUT0 bit (output
latch for I/O pin 0). Then, the program performs some work, and once in
a while, checks the state of OUT0. If OUT0 is 0, I/O pin 0 was never seen
to go high. If, however, OUT0 is 1, I/O pin 0 must have gone high while
the program was doing other work, and now it can respond in the proper
manner. This even works if the pin had gone high and then low again
before we check it (as long as it was high at some point in between the
instructions in our Work routine.

It is important to note that during the time between the POLLOUT and
POLLIN commands, I/O pin 0 will be set to an output direction. This can
cause a temporary short with the circuitry connected to I/O pin 0, so it is

A CLEVER TRICK WITH POLLOUT
AND THE "LATCHED" FEATURE.

5: BASIC Stamp Command Reference – POLLOUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 229

vital that a large enough series resister (perhaps 100 ohms or greater) be
inserted on that pin to protect the external device and the BASIC Stamp.

Demo Program (POLINOUT.bsp)
' This program demonstrates the POLLIN, POLLOUT and POLLMODE commands. It
' will watch for a high signal on I/O pin 0 and then will output the opposite signal on I/O pin 1
' all while printing a message on the PC screen.

'{$STAMP BS2p} 'STAMP directive (specifies a BS2p)

Init:
 POLLIN 0, 1 'Set I/O pin 0 to polled-input looking for a high
 POLLOUT 1, 0 'Set I/O pin 1 to polled-output; opposite level a 0
 POLLMODE 2 'Set mode to enable polled-outputs

Main:
 DEBUG "Working...", BIN1 OUT2, CR 'Waste time writing to PC screen
 PAUSE 100
GOTO Main

p
2

POLLOUT - BASIC Stamp Command Reference

Page 230 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

5: BASIC Stamp Command Reference – POLLRUN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 231

POLLRUN BS1 BS2 BS2e BS2sx BS2p

POLLRUN Slot
Function
Specify a program to run upon a polled-input event.

• Slot is a variable/constant/expression (0 – 7) that specifies the
program slot to run when a polled-input event occurs.

Quick Facts

 BS2p

Default Slot
The default polled-run slot is 0. If no POLLRUN command is given and a
poll mode of 3 or 4 is set, the program in slot 0 will run in response to a
polled-input event.

Special notes • If both polled-outputs and polled-run are active, the polled-output event
will occur before the polled-run event.

Explanation
The POLLRUN command is one of a family of unique "polling" commands
on the BS2p module. The other commands in this family include POLLIN,
POLLMODE, POLLOUT and POLLWAIT. The POLLRUN command is
used to specify a program slot to run in response to a polled event. This
activity can occur in-between any two instructions within the rest of the
PBASIC program.

The "polling" commands allow the BASIC Stamp to respond to certain I/O
pin events at a faster rate than what is normally possible through manual
PBASIC programming. The term "poll" comes from the fact that the
BASIC Stamp's interpreter periodically checks the state of the designated
polled-input pins. It "polls" these pins after the end of each PBASIC
command and before it reads the next PBASIC command from the user
program; giving the appearance that it is polling "in the background".
This feature should not be confused with the concept of interrupts, as the
BASIC Stamp does not support true interrupts.

The following is a simple example of the POLLRUN command.

Table 5.59: POLLRUN Quick Facts.

p
2

A SIMPLE POLLRUN EXAMPLE.

POLLRUN - BASIC Stamp Command Reference

Page 232 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

POLLIN 0, 1
POLLRUN 1
POLLMODE 3

Loop:
 DEBUG "Waiting in Program Slot 0…", CR
GOTO Loop

The first line of the above code will set up I/O pin 0 as a polled-input pin
looking for a high (1) state. The second line, POLLRUN, tells the BASIC
Stamp that when I/O pin 0 goes high, it should switch execution over to
the program residing in program slot 1. The third line, POLLMODE,
activates the polled-run configuration.

Once the BASIC Stamp reaches the Loop routine, it will continuously print
"Waiting in Program Slot 0…" on the PC screen. In between reading the
DEBUG and GOTO commands, however, the BASIC Stamp will poll I/O
pin 0 and check for a high or low state. If the state of pin 0 is low, it will
do nothing and continue as normal. If the state of pin 1 is high, it will
switch execution over to the program in slot 1 (the second program is not
shown in this example). The switch to another program slot works exactly
like with the RUN command; the designated program is run and the
BASIC Stamp does not "return" to the previous program (similar to a
GOTO command).

Note that in order for the polled-run activity to occur, the poll mode must
be set to either 3 or 4 (the two modes that activate polled-run). Also note,
that the polled-run modes, 3 and 4, are unique. As soon as the polled-run
action occurs, the mode switches to 1 (deactivated, saved) or 2 (activated,
outputs), respectively. This is so that the BASIC Stamp doesn't
continuously go to the start of the designated program slot while the
polled-inputs are in the desired poll state. Without this "one shot" feature,
your program would appear to lock-up as long as the polled-inputs are in
the designated state.

After the program switch takes place, the Slot value is maintained. Any
future change to poll mode 3 or 4, without another POLLRUN command,
will result in the previously defined program slot being used.

5: BASIC Stamp Command Reference – POLLRUN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 233

Demo Program (POLLRUN0.bsp)
' This program demonstrates the POLLRUN command. It is intended to be downloaded
' to program slot 0, and the program called PROGRUN1.BSP should be downloaded to
' program slot 1. I/O pin 0 is set to watch for a high signal. Once the Loop routine
' starts running, the program constant prints it's program slot number to the screen. If I/O
' pin 0 goes high, the program in program slot 1 (which should be POLLRUN1.BSP) is run.

'{$STAMP BS2p, PollRun1.bsp} 'STAMP directive (specifies a BS2p)

ProgSlot VAR BYTE

Init:
 POLLIN 0, 1 'Set I/O 0 to polled-input looking for a high
 POLLRUN 1 'Set polled-run to program slot 1
 POLLMODE 3 'Set mode to enable polled-outputs and polled wait

Loop:
 GET 127, ProgSlot
 DEBUG "Running Program #", DEC ProgSlot.LOWNIB, CR
GOTO Loop

Demo Program (POLLRUN1.bsp)
' This program demonstrates the POLLRUN command. It is intended to be downloaded
' to program slot 1, and the program called PROGRUN0.BSP should be downloaded to
' program slot 0. This program is run when program 0 detects a high on I/O pin 0
' via the polled commands.

ProgSlot VAR BYTE

Loop:
 GET 127, ProgSlot
 DEBUG "Running Program #", DEC ProgSlot.LOWNIB, CR
GOTO Loop

p
2

p
2

POLLRUN - BASIC Stamp Command Reference

Page 234 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

5: BASIC Stamp Command Reference – POLLWAIT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 235

POLLWAIT BS1 BS2 BS2e BS2sx BS2p

POLLWAIT Period
Function
Pause program execution, in a low-power mode, in units of Period until
any polled-input pin reaches the desired poll state.

• Period is a variable/constant/expression (0 – 8) that specifies the
duration of the low-power state. The duration is (2^Period) * 18 ms.
Table 5.61 indicates the low-power length for any give Period. Using
8 as the Period is a special case; the BS2p will not go into low-power
mode and will respond quicker to polled-inputs.

Quick Facts

 BS2p
Current draw

during
POLLWAIT

60 µA

Response time
with Period

set to 8
Less than 160 µS

Special notes

• Poll mode must be 2 or 4 and at least one polled-input must be set to
activate POLLWAIT (POLLWAIT will be ignored otherwise).

• If both polled-wait and polled-run are active, the polled-run event will
occur immediately after the polled-wait detects an event.

Explanation
The POLLWAIT command is one of a family of unique "polling"
commands on the BS2p module. The other commands in this family
include POLLIN, POLLMODE, POLLOUT and POLLRUN. The
POLLWAIT command is used to pause program execution and go into a
low-power state until any polled-input pin reaches the desired poll state.

The "polling" commands allow the BASIC Stamp to respond to certain I/O
pin events at a faster rate than what is normally possible through manual
PBASIC programming. The term "poll" comes from the fact that the
BASIC Stamp's interpreter periodically checks the state of the designated
polled-input pins. It "polls" these pins after the end of each PBASIC
command and before it reads the next PBASIC command from the user
program; giving the appearance that it is polling "in the background".
This feature should not be confused with the concept of interrupts, as the
BASIC Stamp does not support true interrupts.

Table 5.60: POLLWAIT Quick
Facts.

p
2

POLLWAIT - BASIC Stamp Command Reference

Page 236 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

The POLLWAIT command is unique among the polling commands in that
it actually causes execution to halt, until a polled-input pin event occurs.
The Period argument is similar to that of the NAP command; using the
values 0 to 7 specifies the duration of the low-power period. After the
low-power period is over, the BASIC Stamp polls the polled-input pins
and determines if any meet the desired poll state. If no polled-input is in
the desired state (as set by POLLIN command) the BASIC Stamp goes
back into low-power mode, again, for the same duration as before. If any
polled-input is in the desired state, however, the BASIC Stamp will
continue execution with the next line of code.

A Period of 8, makes the BASIC Stamp pause execution in normal running
mode (not low-power mode) until a polled-input event occurs. The
response time is indicated in Table 5.60. Since the response time is so fast,
this feature can be used to synchronize a portion of PBASIC code to an
incoming pulse.

Period Length of Low-Power Mode
0 18 ms
1 36 ms
2 72 ms
3 144 ms
4 288 ms
5 576 ms
6 1152 ms (1.152 seconds)
7 2304 ms (2.304 seconds)
8 No power-down

The following is a simple example of the POLLWAIT command.

POLLIN 0, 1

Loop:
 POLLWAIT 0
 TOGGLE 1
GOTO Loop

In this example, the POLLIN command sets I/O pin 0 to be a polled-input
pin looking for a high (1) state. The Loop routine immediately runs a
POLLWAIT command and specifies a Period of 0 (with results in a low-
power state of 18 ms). This means that every 18 ms, the BASIC Stamp
wakes-up and checks I/O pin 0 for a high. If I/O pin 0 is low, it goes back

A SIMPLE POLLWAIT EXAMPLE.

Table 5.61: Period values and
associated low-power modes.

5: BASIC Stamp Command Reference – POLLWAIT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 237

to sleep for another 18 ms. If I/O pin 0 is high, it runs the next line of
code, which toggles the state of I/O pin 1. Then the loop starts all over
again. Note: Due to the nature of low-power mode, I/O pin 1 may toggle
between high and low (at 18 ms intervals in this case) even if I/O pin 0
stays low. This is an artifact of the "reset" condition in the interpreter chip
that occurs when the chip wakes up from a low-power state. Upon this
"reset" condition, all the I/O pins are switched to inputs for apx. 18 ms. It
is the switching to inputs that will cause I/O pin 1 to appear to toggle. See
the NAP or SLEEP commands for more information.

If low-power mode is not required, change the POLLWAIT command in
the example above to "POLLWAIT 8" instead. This will have the effect of
keeping the BASIC Stamp in normal running mode (ie: no low-power
glitches) and will also cause the TOGGLE command to execute in a much
shorter amount of time after a polled-input event occurs.

Demo Program (POLLWAIT.bsp)
' This program demonstrates the POLLWAIT command. I/O pin 0 is set to watch for a
' high signal. Once the Loop routine starts running, the POLLWAIT command causes the
' program to halt until the polled event happens (I/O pin is high) then it prints
' a message on the PC screen. It will do nothing until I/O pin is high.

'{$STAMP BS2p} 'STAMP directive (specifies a BS2p)

POLLIN 0, 1 'Set I/O 0 to polled-input looking for a high
POLLMODE 2 'Set mode to enable polled-outputs and polled wait

Loop:
 POLLWAIT 8 'Wait for polled event (in normal power mode)
 DEBUG "I/O 0 is HIGH!", CR 'Print to the screen when polled event occurs
GOTO Loop

p
2

POLLWAIT - BASIC Stamp Command Reference

Page 238 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

5: BASIC Stamp Command Reference – POT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 239

POT BS1 BS2 BS2e BS2sx BS2p

POT Pin, Scale, Variable
(See RCTIME)

Function
Read a 5 kΩ to 50 kΩ potentiometer, thermistor, photocell, or other
variable resistance.

• Pin is a variable/constant (0 – 7) that specifies the I/O pin to use.
This pin will be set to output mode initially, then to input mode.

• Scale is a variable/constant (0 – 255) used to scale the command's
internal 16-bit result. See Explanation below for steps to finding the
scale value to use for your circuit.

• Variable is a variable (usually a byte) where the final result of the
reading will be stored. Internally, the POT command calculates a
16-bit value, which is scaled down to an 8-bit value.

Explanation
POT reads a variable resistance and returns a value (0 – 255) representing
the amount of time it took to discharge the capacitor through the
resistance. Pin must be connected to one side of the variable resistance,
whose other side is connected through a capacitor to ground, as shown in
Figure 5.25.

POT works by first setting the specified I/O pin to an output and setting
its state high. This step places +5 volts on one side of the capacitor (see
Figure 5.25) and ground (0 volts) on the other side, which charges the
capacitor. POT waits for 10 ms and then sets the I/O pin to an input mode
and starts its timer. Initially the I/O pin will see a high (1) that will
eventually drop to a low (0) when the capacitor discharges past the 1.4-
volt threshold. The timer stops once the low is seen. The value of the

1
2 e

2
sx
2

p
2

P0

5 kΩ to 50 kΩ
variable resistance

Vss

0.1 uF

Figure 5.25: Example Variable
Resistance Circuit.

HOW POT REALLY WORKS.

POT - BASIC Stamp Command Reference

Page 240 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

variable resistor affects the time it takes to discharge the capacitor from 5
volts to approximately 1.4 volts.

The 16-bit reading is multiplied by (Scale/256), so a scale value of 128
would reduce the range by approximately 50%, a scale of 64 would reduce
to 25%, and so on. The amount by which the internal value must be scaled
varies with the size of the resistor being used.

Finding the best Scale value:

1. Build the circuit shown in Figure 5.25 and plug the BS1 into the
PC.

2. In the DOS editor (stamp.exe) press ALT-P. A special calibration
window appears, allowing you to find the best value.

3. The window asks for the number of the I/O pin to which the
variable resistor is connected. Select the appropriate pin (0-7).

4. The editor downloads a short program to the BS1 (this overwrites
any program already stored in the BS1).

5. Another window appears, showing two numbers: scale and value.
Adjust the resistor until the smallest number is shown for scale
(assuming you can adjust the resistor, as with a potentiometer).

6. Once you’ve found the smallest number for scale, you’re done.
This number should be used for the Scale in the POT command.

7. Optionally, you can verify the scale number found above by
pressing the spacebar. This locks the scale and causes the BS1 to
read the resistor continuously. The window displays the value. If
the scale is good, you should be able to adjust the resistor,
achieving a 0–255 reading for the value (or as close as possible). To
change the scale value and repeat this step, just press the spacebar.
Continue this process until you find the best scale.

Demo Program (POT.bas)
' This program demonstrates the PAUSE command's time delays. Once a second, the
' program will put the message, "paused" on the screen.

'{$STAMP BS1} 'STAMP directive (specifies a BS1)

Loop:
 POT 0, 100, B2 ' Read potentiometer on pin 0.
 SEROUT 1, N300, (B2) ' Send potentiometer reading
 ' over serial output.
GOTO Loop

1

STEPS TO FIND THE BEST SCALE

VALUE.

5: BASIC Stamp Command Reference – PULSIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 241

PULSIN BS1 BS2 BS2e BS2sx BS2p

PULSIN Pin, State, Variable

Function
Measure the width of a pulse on Pin described by State and store the result
in Variable.

• Pin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to use. This pin will be set to input mode.

• State is a variable/constant/expression (0 – 1) that specifies whether
the pulse to be measured is low (0) or high (1). A low pulse begins
with a 1-to-0 transition and a high pulse begins with a 0-to-1
transition.

• Variable is a variable (usually a word) in which the measured pulse
duration will be stored. The unit of time for Variable is described in
Table 5.62.

Quick Facts

 BS1 BS2 BS2e BS2sx BS2p
Units in Variable 10 µs 2 µs 2 µs 0.8 µs 0.75 µs
Maximum pulse

width
655.35 ms 131.07 ms 131.07 ms 52.428 ms 49.125 ms

Explanation
PULSIN is like a fast stopwatch that is triggered by a change in state (0 or
1) on the specified pin. The entire width of the specified pulse (high or
low) is measured, in units shown in Table 5.62, and stored in Variable.

Many analog properties (voltage, resistance, capacitance, frequency, duty
cycle) can be measured in terms of pulse durations. This makes PULSIN a
valuable form of analog-to-digital conversion.

PULSIN will wait, for the desired pulse, for up to the maximum pulse
width it can measure, shown in Table 5.62. If it sees the desired pulse, it
measures the time until the end of the pulse and stores the result in
Variable. If it never sees the start of the pulse, or the pulse is too long
(greater than the Maximum Pulse Width shown in Table 5.62) PULSIN

1 2 e
2

sx
2

p
2

1
NOTE: Expressions are not
allowed as arguments on the BS1.
The range of the Pin argument on
the BS1 is 0 – 7.

Table 5.62: PULSIN Quick Facts.

SPECIFICS OF PULSIN'S OPERATION.

PULSIN - BASIC Stamp Command Reference

Page 242 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

"times out" and store 0 in Variable. This operation keeps your program
from locking-up should the desired pulse never occur.

Regardless of the size of Variable, PULSIN internally uses a 16-bit timer.
Unless the pulse widths are known to be short enough to fit in an 8-bit
result, it is recommended using a word-sized variable. Not doing so may
result in strange and misleading results as the BASIC Stamp will only
store the lower 8-bits into a byte variable.

Demo Program (PULSIN.bas)
' This program uses PULSIN to measure a pulse generated by discharging a 0.1 uF capacitor
' through a 1k resistor (see the figure in the description of PULSIN in the manual).
' Pressing the switch generates the pulse, which should ideally be approximately 120 us
' (12 PULSIN units of 10 us) long. Variations in component values may produce results that
' are up to 10 units off from this value. For more information on calculating
' resistor-capacitor timing, see the RCTIME command.

'{$STAMP BS1} 'STAMP directive (specifies a BS1)

SYMBOL Time = W0

Again:
 PULSIN 7, 1, Time ' Measure positive pulse.
 IF Time = 0 THEN Again ' If 0, try again.
 DEBUG CLS, Time ' Otherwise, display result.
GOTO Again

Demo Program (PULSIN.bs2)
' This program uses PULSIN to measure a pulse generated by discharging a 0.1 µF capacitor
' through a 1k resistor (see the figure in the description of PULSIN in the manual).
' Pressing the switch generates the pulse, which should ideally be approximately 120 µs
' (60 PULSIN units of 2 µs) long. Variations in component values may produce results that
' are up to 10 units off from this value. For more information on calculating
' resistor-capacitor timing, see the RCTIME command.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

Time VAR WORD

Again:
 PULSIN 7, 1, Time ' Measure positive pulse.
 IF Time = 0 THEN Again ' If 0, try again.
 DEBUG CLS, DEC ? Time ' Otherwise, display result.
GOTO Again

2 e
2

sx
2

p
2

1

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS2e, BS2sx or
BS2p. Keep in mind that the unit of
time may be different than what
appears in the comments here.

HOW THE RESULT IS REPORTED.

5: BASIC Stamp Command Reference – PULSOUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 243

PULSOUT BS1 BS2 BS2e BS2sx BS2p

PULSOUT Pin, Period

Function
Generate a pulse on Pin with a width of Period.

• Pin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to use. This pin will be set to output mode.

• Period is a variable/constant/expression (0 – 65535) that specifies
the duration of the pulse. The unit of time for Period is described in
Table 5.63.

Quick Facts
 BS1 BS2 BS2e BS2sx BS2p

Units in Period 10 µs 2 µs 2 µs 0.8 µs 1.18 µs
Maximum pulse

width
655.35 ms 131.07 ms 131.07 ms 52.428 ms 55.479 ms

Explanation
PULSOUT sets Pin to output mode, inverts the state of that pin; waits for
the specified Period; then inverts the state of the pin again; returning the bit
to its original state. The unit of Period is described in Table 5.63. The
following example will generate a 100 us pulse on I/O pin 5 (of the BS2):

PULSOUT 5, 50 ' Generate a pulse on pin 5.

The polarity of the pulse depends on the state of the pin before the
command executes. In the example above, if pin 5 was low, PULSOUT
would produce a positive pulse. If the pin was high, PULSOUT would
produce a negative pulse.

If the pin is an input, the output state bit, OUT5 (PIN5 on the BS1) won’t
necessarily match the state of the pin. What happens then? For example:
pin 7 is an input (DIR7 = 0) and pulled high by a resistor as shown in
Figure 5.26a. Suppose that pin 7 is low when we execute the instruction:

PULSOUT 7, 5 ' Generate a pulse on pin 7.

Figure 5.26b shows the sequence of events on that pin. Initially, pin 7 is
high. Its output driver is turned off (because it is in input mode), so the

1 2 e
2

sx
2

p
2

1
NOTE: Expressions are not
allowed as arguments on the BS1.
The range of the Pin argument on
the BS1 is 0 – 7.

Table 5.63: PULSOUT Quick Facts.

CONTROLLING THE POLARITY OF THE

PULSE.

WATCH OUT FOR UNDESIRABLE PULSE

GLITCHES.

PULSOUT - BASIC Stamp Command Reference

Page 244 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

10k resistor sets the state on the pin. When PULSOUT executes, it turns on
the output driver, allowing OUT7 (PIN7 on the BS1) to control the pin.

Since OUT7 (PIN7 on the BS1) is low, the pin goes low. After a few
microseconds of preparation, PULSOUT inverts the state of the pin; from
low to high. It leaves the pin in that state for the specified time (10µs if
using a BS2) and then inverts it again, leaving the pin in its original state.

Demo Program (PULSOUT.bas)
' This program blinks an LED on for 10ms at 1-second intervals. Connect the LED to I/O
' pin 0 as shown in the figure within the NAP command description of the manual.

'{$STAMP BS1} 'STAMP directive (specifies a BS1)

HIGH 0 ' Set the pin high (LED off).
Again:
 PULSOUT 0, 1000 ' Flash the LED for 10 ms.
 PAUSE 1000 ' Wait one second.
GOTO Again ' Repeat endlessly.

Demo Program (PULSOUT.bs2)
' This program blinks an LED on for 10ms at 1-second intervals. Connect the LED to I/O
' pin 0 as shown in the figure within the NAP command description of the manual.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

HIGH 0 ' Set the pin high (LED off).
Again:
 PULSOUT 0, 5000 ' Flash the LED for 10 ms.
 PAUSE 1000 ' Wait one second.
GOTO Again ' Repeat endlessly.

2 e
2

sx
2

p
2

1

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS2e, BS2sx or
BS2p. Keep in mind that the unit of
time may be different than what
appears in the comments here.

a b

Vdd

10 kΩ

P7

(instruction
executes)

PULSOUT 7,5 positive pulse

O-scope

pin 7 can be connected to an
oscilloscope as shown to
view the results shown on

the right

pin 7 in input mode
(DIR7 = 0,
OUT7 = 0)

but held high by
resistor to Vdd pin changes to

output
pin left as

output - low
(DIR7 = 1,
OUT7 = 0)

Figure 5.26: Example Pulse
Diagram.

5: BASIC Stamp Command Reference – PUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 245

PUT BS1 BS2 BS2e BS2sx BS2p

PUT Location, Value

Function
Put Value into Scratch Pad RAM Location.

• Location is a variable/constant/expression (0 – 63: BS2e/BS2sx, 0 -
127: BS2p) that specifies the Scratch Pad RAM location to write to.

• Value is a variable/constant/expression (0 - 255) to store in RAM.

Quick Facts
 BS2e, BS2sx BS2p

Scratch Pad RAM
size and

organization

64 bytes (0 – 63). Organized
 as bytes only.

128 bytes (0 – 127). Organized as
bytes only.

General-purpose
locations

0 – 62 0 – 126

Special use
location

Current program slot number in
read-only location 63.

Current program slot number in
lowest nibble of read-only location

127. Current read/write slot number
 in highest nibble of location 127.

Explanation
The PUT command writes a byte-sized value into the specified Scratch
Pad RAM location. All values in the general-purpose locations can be
written to from within any of the 8 program slots.

Scratch Pad RAM is useful for passing data to programs in other program
slots and for additional workspace. It is different than regular RAM in
that symbol names cannot be assigned directly to locations and each
location is always configured as a byte only. The following code will write
the value 100 to location 25, read it back out with GET, and display it:

Temp VAR BYTE
PUT 25, 100
GET 25, Temp
DEBUG DEC Temp

Most Scratch Pad RAM locations are available for general use. The highest
location (63 for BS2e/BS2sx and 127 for BS2p) is a special, read-only,
location that always contains the number of the currently running
program slot. On the BS2p, the upper nibble of location 127 also contains

e
2

sx
2

p
2

Table 5.64: PUT Quick Facts.

USES FOR SCRATCH PAD RAM.

SCRATCH PAD RAM LOCATIONS AND

THEIR PURPOSE.

PUT - BASIC Stamp Command Reference

Page 246 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

the current program slot that will be used for the READ and WRITE
commands. Any values written to this location will be ignored.

Demo Program (GETPUT1.bsx)
' This example demonstrates the use of the GET and PUT commands. First, location 63
' is read using GET to display the currently running program number. Then a set of
' values are written (PUT) into locations 0 to 9. Afterwards, program number 1 is run.
' This program is a BS2sx project consisting of GETPUT1.bsx and GETPUT2.bsx. See the
' BASIC Stamp Project section in the manual for more information.

'{$STAMP BS2sx, GETPUT2.BSX} 'STAMP directive (specifies a BS2sx and
 'a second program, GETPUT2.BSX)

Value VAR BYTE
Index VAR BYTE

GET 63, Value
DEBUG "Program #",DEC Value, CR

FOR Index = 0 TO 9
 Value = (Index + 3) * 8
 PUT Index, Value
 DEBUG " Writing: ", DEC2 Value, " to location: ", DEC2 Index, CR
NEXT

RUN 1

 Demo Program (GETPUT2.bsx)
' This example demonstrates the use of the GET and PUT commands. First, location 63
' is read using GET to display the currently running program number. Then a set of
' values are read (GET) from locations 0 to 9 and displayed on the screen for verification.
' This program is a BS2sx project consisting of GETPUT1.bsx and GETPUT2.bsx. See the
' BASIC Stamp Project section in the manual for more information.

'{$STAMP BS2sx} 'STAMP directive (specifies a BS2sx)

Value VAR BYTE
Index VAR BYTE

GET 63, Value
DEBUG CR, "Program #",DEC Value, CR

FOR Index = 0 TO 9
 GET Index, Value
 DEBUG " Reading: ", DEC2 Value, " from location: ", DEC2 Index, CR
NEXT

STOP

e
2

sx
2

p
2

e
2

sx
2

p
2

NOTE: This is written for the BS2sx
but can be used for the BS2e, and
BS2p also. Locate the proper
source code file or modify the
STAMP directive before
downloading to the BS2e, or BS2p.

NOTE: This is written for the BS2sx
but can be used for the BS2e, and
BS2p also. Locate the proper
source code file or modify the
STAMP directive before
downloading to the BS2e, or BS2p.

5: BASIC Stamp Command Reference – PWM

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 247

PWM BS1 BS2 BS2e BS2sx BS2p

PWM Pin, Duty, Cycles

Function
Convert a digital value to analog output via pulse-width modulation.

• Pin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to use. This pin will be set to output mode initially then set to
input mode when the command finishes.

• Duty is a variable/constant/expression (0 - 255) that specifies the
analog output level (0 to 5V).

• Cycles is a variable/constant/expression (0 - 255) that specifies the
duration of the PWM signal.

Quick Facts
 BS2 BS2e BS2sx BS2p

Units in Cycles 1 ms 1 ms 400 µs 652 µs
Average voltage

equation
Average Voltage = (Duty / 255) * 5 volts

Require charge
time (Cycles)

equation
Charge time = 4 * R * C

Special notes Pin is set to output initially, and set to input at end

Explanation
Pulse-width modulation (PWM) allows the BASIC Stamp (a purely digital
device) to generate an analog voltage. The basic idea is this: If you make a
pin output high, the voltage at that pin will be close to 5V. Output low is
close to 0V. What if you switched the pin rapidly between high and low
so that it was high half the time and low half the time? The average
voltage over time would be halfway between 0 and 5V (2.5V). PWM emits
a burst of 1s and 0s whose ratio is proportional to the duty value you
specify.

The proportion of 1s to 0s in PWM is called the duty cycle. The duty cycle
controls the analog voltage in a very direct way; the higher the duty cycle
the higher the voltage. In the case of the BASIC Stamp, the duty cycle can
range from 0 to 255. Duty is literally the proportion of 1s to 0s output by
the PWM command. To determine the proportional PWM output voltage,

e
2

sx
2

p
2

Table 5.65: PWM Quick Facts.

1 2

DETERMINING AVERAGE VOLTAGE FOR

A PARTICULAR DUTY CYCLE.

1
NOTE: Expressions are not
allowed as arguments on the BS1.
The range of the Pin argument on
the BS1 is 0 – 7.

PWM - BASIC Stamp Command Reference

Page 248 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

use this formula: (Duty/255) * 5V. For example, if Duty is 100, (100/255) *
5V = 1.96V; PWM outputs a train of pulses whose average voltage is 1.96V.

In order to convert PWM into an analog voltage we have to filter out the
pulses and store the average voltage. The resistor/capacitor combination
in Figure 5.27 will do the job. The capacitor will hold the voltage set by
PWM even after the instruction has finished. How long it will hold the
voltage depends on how much current is drawn from it by external
circuitry, and the internal leakage of the capacitor. In order to hold the
voltage relatively steady, a program must periodically repeat the PWM
instruction to give the capacitor a fresh charge.

Just as it takes time to discharge a capacitor, it also takes time to charge it
in the first place. The PWM command lets you specify the charging time
in terms of PWM cycles. The period of each cycle is shown in Table 5.65.
So, on the BS2, to charge a capacitor for 5ms, you would specify 5 cycles in
the PWM instruction.

How do you determine how long to charge a capacitor? Use this rule-of-
thumb formula: Charge time = 4 * R * C. For instance, Figure 5.27 uses a
10k (10 x 103 ohm) resistor and a 1 µF (1 x 10-6 F) capacitor:

Charge time = 4 * 10 x 103 * 1 x 10-6 = 40 x 10-3 seconds, or 40 ms.

Since, on the BS2, each cycle is approximately a millisecond, it would take
at least 40 cycles to charge the capacitor. Assuming the circuit is
connected to pin 0, here’s the complete PWM instruction:

PWM 0, 100, 40 ' Put a 1.96V charge on capacitor.

After outputting the PWM pulses, the BASIC Stamp leaves the pin in
input mode (0 in the corresponding bit of DIRS). In input mode, the pin’s
output driver is effectively disconnected. If it were not, the steady output
state of the pin would change the voltage on the capacitor and undo the

P0 Analog Voltage

Vss

0.1 uF
+

Figure 5.27: Example PWM Filter
Circuit.

DETERMINING THE APPROPRIATE

CYCLE TIME FOR YOUR CIRCUIT.

FILTERING THE PWM SIGNAL.

5: BASIC Stamp Command Reference – PWM

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 249

voltage setting established by PWM. Keep in mind that leakage currents
of up to 1 µA can flow into or out of this “disconnected” pin. Over time,
these small currents will cause the voltage on the capacitor to drift. The
same applies for leakage current from an op-amp’s input, as well as the
capacitor’s own internal leakage. Executing PWM occasionally will reset
the capacitor voltage to the intended value.

PWM charges the capacitor; the load presented by your circuit discharges
it. How long the charge lasts (and therefore how often your program
should repeat the PWM command to refresh the charge) depends on how
much current the circuit draws, and how stable the voltage must be. You
may need to buffer PWM output with a simple op-amp follower if your
load or stability requirements are more than the passive circuit of Figure
5.27 can handle.

The term “PWM” applies only loosely to the action of the BASIC Stamp's
PWM command. Most systems that output PWM do so by splitting a
fixed period of time into an on time (1) and an off time (0). Suppose the
interval is 1 ms and the duty cycle is 100 / 255. Conventional PWM would
turn the output on for 0.39 ms and off for 0.61 ms, repeating this process
each millisecond. The main advantage of this kind of PWM is its
predictability; you know the exact frequency of the pulses (in this case,
1 kHz), and their widths are controlled by the duty cycle.

BASIC Stamp's PWM does not work this way. It outputs a rapid sequence
of on/off pulses, as short as 1.6 µs in duration, whose overall proportion
over the course of a full PWM cycle of approximately a millisecond is
equal to the duty cycle. This has the advantage of very quickly zeroing in
on the desired output voltage, but it does not produce the neat, orderly
pulses that you might expect. The BS2, BS2e, BS2sx and BS2p also uses
this high-speed PWM to generate pseudo-sine wave tones with the
DTMFOUT and FREQOUT instructions.

HOW PULSE-WIDTH-MODULATION IS

GENERATED.

PWM - BASIC Stamp Command Reference

Page 250 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

 Demo Program (PWM.bs2)
' Connect a voltmeter (such as a digital multimeter set to its voltage range) to the output of
' the circuit shown in the figure for the PWM command (in the manual). Run the program
' and observe the readings on the meter. They should come very close to 1.96V, then
' decrease slightly as the capacitor discharges. Try varying the interval between PWM
' bursts (by changing the PAUSE value) and the number of PWM cycles to see their effect.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

Again:
 PWM 0, 100, 40 ' 40 cycles of PWM at 100/255 duty
 PAUSE 1000 ' Wait a second.
GOTO Again ' Repeat

e
2

sx
2

p
21 2

NOTE: This is written for the BS2
but can be used for the BS1, BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive and the Cycles
value of PWM before downloading
to the BS1, BS2e, BS2sx or BS2p.

5: BASIC Stamp Command Reference – RANDOM

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 251

RANDOM BS1 BS2 BS2e BS2sx BS2p

RANDOM Variable

Function
Generate a pseudo-random number.

• Variable is a variable (usually a word) whose bits will be scrambled
to produce a random number. Variable acts as RANDOM's input
and its result output. Each pass through RANDOM stores the next
number, in the pseudorandom sequence, in Variable.

Explanation
RANDOM generates pseudo-random numbers ranging from 0 to 65535.
They’re called “pseudo-random” because they appear random, but are
generated by a logic operation that uses the initial value in Variable to "tap"
into a sequence of 65535 essentially random numbers. If the same initial
value, called the "seed", is always used, then the same sequence of
numbers is generated. The following example demonstrates this:

SYMBOL Result = W0

Loop:
 Result = 11000 ' Set initial "seed" value
 RANDOM Result ' Generate random number.
 DEBUG Result ' Show the result on screen.
GOTO Loop

-- or --

Result VAR WORD

Loop:
 Result = 11000 ' Set initial "seed" value
 RANDOM Result ' Generate random number
 DEBUG DEC ? Result ' Show the result on screen.
GOTO Loop

In this example, the same number would appear on the screen over and
over again. This is because the same seed value was used each time;
specifically, the first line of the loop sets Result to 11,000. The RANDOM
command really needs a different seed value each time. Moving the
"Result =" line out of the loop will solve this problem, as in:

1 2 e
2

sx
2

p
2

1

2 e
2

sx
2

p
2

RANDOM - BASIC Stamp Command Reference

Page 252 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

SYMBOL Result = W0
Result = 11000 ' Set initial "seed" value

Loop:
 RANDOM Result ' Generate random number.
 DEBUG Result ' Show the result on screen.
GOTO Loop

-- or --

Result VAR WORD
Result = 11000 ' Set initial "seed" value

Loop:
 RANDOM Result ' Generate random number
 DEBUG DEC ? Result ' Show the result on screen.
GOTO Loop

Here, Result is only initialized once, before the loop. Each time through
the loop, the previous value of Result, generated by RANDOM, is used as
the next seed value. This generates a more desirable set of pseudorandom
numbers.

In applications requiring more apparent randomness, it's necessary to
"seed" RANDOM with a more random value every time. For instance, in
the demo program below, RANDOM is executed continuously (using the
previous resulting number as the next seed value) while the program
waits for the user to press a button. Since the user can’t control the timing
of button presses very accurately, the results approach true randomness.
Another possibility is to take advantage of the "floating" effect of unused
input pins. Because any I/O pin that is an input, and is not electrically
connected to anything, tends to "float" randomly between 0 and 1, this is a
good source of a potential seed value. For example, if the upper 8 pins on
a BS2 are not being used, leave them as inputs and don't electrically
connect them (leave them "floating"). Then, use something like the
following code to initialize the seed value:

Result = INH * 256 + INH ' Fill high and low byte with current, floating,
 ' value of I/O pins 8 - 15

1

1
NOTE: BS1's only have 8 I/O pins.
There may not be enough unused
pins to do something similar, but if
so, use the PINS variable, rather
than INH.

2 e
2

sx
2

p
2

5: BASIC Stamp Command Reference – RANDOM

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 253

Demo Program (RANDOM.bas)
' Connect a button to I/O pin 7 as shown in the figure in the RANDOM command description
' (in the manual) and run this program. This program uses RANDOM to simulate a coin toss.
' After 100 trials, it reports the total number of heads and tails thrown.

'{$STAMP BS1} 'STAMP directive (specifies a BS1)

SYMBOL Flip = W0 ' The random number.
SYMBOL Coin = BIT0 ' A single bit of the random number.
SYMBOL Trials = B2 ' Number of flips.
SYMBOL Heads = B3 ' Number of throws that came up heads.
SYMBOL Tails = B4 ' Number of throws that came up tails.
SYMBOL Btn = B5 ' Workspace for Button instruction.

Start:
 DEBUG CLS, "Press button to start"

FOR Trials = 1 TO 100 ' 100 tosses of the coin.
Hold:
 RANDOM Flip ' While waiting for button, randomize.
 BUTTON 7, 0, 250, 100, Btn, 0, Hold ' Wait for button.
 BRANCH Coin,(Head,Tail) ' If 0 then head; if 1 then tail.
Head:
 DEBUG CR, "HEADS" ' Show heads.
 Heads = Heads + 1 ' Increment heads counter.
 GOTO TheNext ' Next flip.
Tail:
 DEBUG CR, "TAILS" ' Show tails.
 Tails = Tails + 1 ' Increment tails counter.
TheNext: ' Next flip.
NEXT
' When done, show the total number of heads and tails.
DEBUG CR, CR, "Heads: ", # Heads, " Tails: ", #Tails

1

PB Switch

10 kΩ

P7

Vdd

Vss

Figure 5.28: RANDOM Button
Circuit.

RANDOM - BASIC Stamp Command Reference

Page 254 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Demo Program (RANDOM.bs2)
' Connect a button to I/O pin 7 as shown in the figure in the RANDOM command description
' (in the manual) and run this program. This program uses RANDOM to simulate a coin toss.
' After 100 trials, it reports the total number of heads and tails thrown.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

Flip VAR WORD ' The random number.
Coin VAR Flip.BIT0 ' A single bit of the random number.
Trials VAR BYTE ' Number of flips.
Heads VAR BYTE ' Number of throws that came up heads.
Tails VAR BYTE ' Number of throws that came up tails.
Btn VAR BYTE ' Workspace for Button instruction.

Start:
 DEBUG CLS, "Press button to start"

FOR Trials = 1 TO 100 ' 100 tosses of the coin.
Hold:
 RANDOM Flip ' While waiting for button, randomize.
 BUTTON 7, 0, 250, 100, Btn, 0, Hold ' Wait for button.
 branch coin,[head,tail] ' If 0 then head; if 1 then tail.
Head:
 DEBUG CR, "HEADS" ' Show heads.
 Heads = Heads + 1 ' Increment heads counter.
 GOTO TheNext ' Next flip.

Tail:
 DEBUG CR, "TAILS" ' Show tails.
 Tails = Tails + 1 ' Increment tails counter.
TheNext: ' Next flip.
NEXT
' When done, show the total number of heads and tails.
DEBUG CR, CR, "Heads: ", DEC Heads, " Tails: ", DEC Tails

2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS2e, BS2sx or
BS2p.

5: BASIC Stamp Command Reference – RCTIME

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 255

RCTIME BS1 BS2 BS2e BS2sx BS2p

(See POT)

RCTIME Pin, State, Variable

Function
Measure time while Pin remains in State; usually to measure the
charge/discharge time of resistor/capacitor (RC) circuit.

• Pin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to use. This pin will be placed into input mode.

• State is a variable/constant/expression (0 - 1) that specifies the
desired state to measure. Once Pin is not in State, the command
ends and stores the result in Variable.

• Variable is a variable (usually a word) in which the time
measurement will be stored. The unit of time for Variable is
described in Table 5.66.

Quick Facts
 BS2 BS2e BS2sx BS2p

Units in Variable 2 µs 2 µs 0.8 µs 0.9 µs
Maximum pulse

width
131.07 ms 131.07 ms 52.428 ms 58.982 ms

Explanation
RCTIME can be used to measure the charge or discharge time of a
resistor/capacitor circuit. This allows you to measure resistance or
capacitance; use R or C sensors such as thermistors or capacitive humidity
sensors or respond to user input through a potentiometer. In a broader
sense, RCTIME can also serve as a fast, precise stopwatch for events of
very short duration.

When RCTIME executes, it starts a counter (who's unit of time is shown in
Table 5.66). It stops this counter as soon as the specified pin is no longer in
State (0 or 1). If pin is not in State when the instruction executes, RCTIME
will return 1 in Variable, since the instruction requires one timing cycle to
discover this fact. If pin remains in State longer than 65535 timing cycles
RCTIME returns 0.

1
2 e

2
sx
2

p
2

Table 5.66: RCTIME Quick Facts.

HOW RCTIME'S TIMER WORKS.

RCTIME - BASIC Stamp Command Reference

Page 256 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Figure 5.29 shows suitable RC circuits for use with RCTIME. The circuit in
5.29a is preferred, because the BASIC Stamp's logic threshold is
approximately 1.5 volts. This means that the voltage seen by the pin will
start at 5V then fall to 1.5V (a span of 3.5V) before RCTIME stops. With
the circuit of 5.29b, the voltage will start at 0V and rise to 1.5V (spanning
only 1.5V) before RCTIME stops. For the same combination of R and C,
the circuit shown in 5.29a will yield a higher count, and therefore more
resolution than 5.29b.

Before RCTIME executes, the capacitor must be put into the state specified
in the RCTIME instruction. For example, with figure 5.29a, the capacitor
must be discharged until both plates (sides of the capacitor) are at 5V. It
may seem counterintuitive that discharging the capacitor makes the input
high, but remember that a capacitor is charged when there is a voltage
difference between its plates. When both sides are at +5V, the cap is
considered discharged.

Here’s a typical sequence of instructions for 5.29a (assuming I/O pin 7 is
used):

Result VAR WORD ' Word variable to hold result.
HIGH 7 ' Discharge the cap
PAUSE 1 ' for 1 ms.
RCTIME 7,1,Result ' Measure RC charge time.
DEBUG ? Result ' Show value on screen.

Using RCTIME is very straightforward, except for one detail: For a given R
and C, what value will RCTIME return? It’s easy to figure, based on a

a b

R

C

use with state = 0 use with state = 1 (preferred - see text)

Vdd

Vss

to I/O pin
220 Ω

R

C

Vdd

Vss

to I/O pin
220 Ω

Figure 5.29: Example RC Circuits.
Use A (left) with State = 1. Use B
(right) with State = 0.

SUITABLE RCTIME CIRCUITS.

PREDICTING THE RETURNED VALUE.

DON'T FORGET TO DISCHARGE THE
CAPACITOR BEFORE EXECUTING

RCTIME.

5: BASIC Stamp Command Reference – RCTIME

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 257

value called the RC time constant, or tau (τ) for short. Tau represents the
time required for a given RC combination to charge or discharge by 63
percent of the total change in voltage that they will undergo. More
importantly, the value τ is used in the generalized RC timing calculation.
Tau’s formula is just R multiplied by C:

τ = R x C

The general RC timing formula uses τ to tell us the time required for an
RC circuit to change from one voltage to another:

time = -τ * (ln (Vfinal / Vinitial))

In this formula ln is the natural logarithm; it’s a key on most scientific
calculators. Let’s do some math. Assume we’re interested in a 10 k
resistor and 0.1 µF cap. Calculate τ:

τ = (10 x 103) x (0.1 x 10-6) = 1 x 10-3

The RC time constant is 1 x 10-3 or 1 millisecond. Now calculate the time
required for this RC circuit to go from 5V to 1.5V (as in Figure 5.29a):

Time = -1 x 10-3 * (ln(5.0v / 1.5v)) = 1.204 x 10-3

On the BS2, the unit of time is 2µs (See Table 5.66), that time (1.204 x 10-3)
works out to 602 units. With a 10 k resistor and 0.1 µF cap, RCTIME would
return a value of approximately 600. Since Vinitial and Vfinal doesn't change,
we can use a simplified rule of thumb to estimate RCTIME results for
circuits like 5.29a:

RCTIME units = 600 x R (in kΩ) x C (in µF)

Another handy rule of thumb can help you calculate how long to
charge/discharge the capacitor before RCTIME. In the example above
that’s the purpose of the HIGH and PAUSE commands. A given RC
charges or discharges 98 percent of the way in 4 time constants (4 x R x C).
In Figure 5.29, the charge/discharge current passes through the 220 Ω
series resistor and the capacitor. So if the capacitor were 0.1 µF, the
minimum charge/discharge time should be:

CALCULATING CHARGE AND

DISCHARGE TIME.

THE RC TIME EQUATION.

DETERMINING HOW LONG TO CHARGE
OR DISCHARGE THE CAPACITOR

BEFORE EXECUTING RCTIME.

RCTIME - BASIC Stamp Command Reference

Page 258 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Charge time = 4 x 220 x (0.1 x 10-6) = 88 x 10-6

So it takes only 88 µs for the cap to charge/discharge, meaning that the 1
ms charge/discharge time of the example is plenty.

A final note about Figure 5.29: You may be wondering why the 220 Ω
resistor is necessary at all. Consider what would happen if resistor R in
Figure 5.29a were a pot, and were adjusted to 0 Ω. When the I/O pin went
high to discharge the cap, it would see a short direct to ground. The 220 Ω
series resistor would limit the short circuit current to 5V/220 Ω = 23 mA
and protect the BASIC Stamp from damage. (Actual current would be
quite a bit less due to internal resistance of the pin’s output driver, but you
get the idea.)

Demo Program (RCTIME1.bs2)
' This program shows the standard use of the RCTIME instruction measuring an RC
' charge/discharge time. Use the circuit in the RCTIME description (in the manual)
' with R = 10 k pot and C = 0.1 µf. Connect the circuit to pin 7 and run the program.
' Adjust the pot and watch the value shown on the Debug screen change.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

Result VAR WORD 'Word variable to hold result.

Again:
 HIGH 7 'Discharge the cap
 PAUSE 1 'for 1 ms.
 RCTIME 7, 1, Result 'Measure RC charge time.
 DEBUG CLS, DEC Result 'Show value on screen.
GOTO Again

2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS2e, BS2sx or
BS2p.

NOTES ABOUT 220 Ω RESISTER IN

THE RC CIRCUITS.

5: BASIC Stamp Command Reference – RCTIME

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 259

Demo Program (RCTIME2.bs2)
' This program illustrates the use of RCTIME as a fast stopwatch. The program energizes
' a relay coil, then measures how long it takes for the relay contacts to close. Figure 5.30
' shows the circuit. Note that RCTIME doesn't start timing instantly.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

Result VAR WORD

Again:
 Low 6 'Energize relay coil.
 RCTIME 7, 1, Result 'Measure time to contact closure.
 DEBUG "Time to close: ", DEC Result, CR
 HIGH 6 'Release the relay.
 PAUSE 1000 'Wait a second.
GOTO Again 'Do it again.

relay
contacts

relay coil

10 kΩ

Relay: 5Vdc reed
relay with 20mA
coil, eg., Radio
Shack 275-232

P6

P7

Vss

Vdd

Vdd

Figure 5.30: Relay circuit for Demo
Program 2.

RCTIME - BASIC Stamp Command Reference

Page 260 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

5: BASIC Stamp Command Reference – READ

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 261

READ BS1 BS2 BS2e BS2sx BS2p

READ Location, Variable

Function
Read value at Location in EEPROM and store the result in result in Variable.

• Location is a variable/constant/expression (0 – 255 on BS1, 0 – 2047
on all other BASIC Stamps) that specifies the EEPROM address to
read from.

• Variable is a variable (usually a byte) where the value is stored.

Quick Facts
 BS1 BS2, BS2e, BS2sx BS2p

Range of
EEPROM
locations

0 to 255 0 to 2047 0 to 2047
(see notes below)

Special
notes

n/a
READ only works with
current program slot on

BS2e and BS2sx.

READ works with any
program slot as set by
the STORE command.

Explanation
The EEPROM is used for both program storage (which builds downward
from address 255 on BS1, 2047 on all other BASIC Stamps) and data
storage (which builds upward from address 0). The READ instruction
retrieves a byte of data from any EEPROM address and stores that byte in
Variable. Any location within the EEPROM can be read (including your
PBASIC program's tokens) at run-time. This feature is mainly used to
retrieve long-term data from EEPROM; data stored in EEPROM is not lost
when the power is removed.

The following READ command retrieves the value at location 100 and
stores it into the variable called Result:

SYMBOL Result = B0

READ 100, Result

--or--

Result VAR BYTE

READ 100, Result

1 2 e
2

sx
2

p
2

1
NOTE: Expressions are not
allowed as arguments on the BS1.

A SIMPLE READ COMMAND.

1

2 e
2

sx
2

p
2

Table 5.67: READ Quick Facts.

READ - BASIC Stamp Command Reference

Page 262 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

The EEPROM is organized as a sequential set of byte-sized memory
locations. The READ command only retrieves byte-sized values from
EEPROM. This does not mean that you can't read word-sized values,
however. A word consists of two bytes, called a low-byte and a high-byte.
If you wanted to read a word-sized value, you'll need to use two READ
commands and a word-size variable (along with some handy modifiers).
For example,

SYMBOL Result = W0 'The full word-sized variable
SYMBOL Result_Low = B0 'B0 happens to be the low-byte of W0
SYMBOL Result_High = B1 'B1 happens to be the high-byte of W0
EEPROM (101, 4) 'Store word-sized value in locations 0 and 1

READ 0, Result_Low
READ 1, Result_High
DEBUG #Result

--or--

Result VAR WORD
DATA word 1125 'Store word-sized value in locations 0 and 1

READ 0, Result.LOWBYTE
READ 1, Result.HIGHBYTE
DEBUG DEC Result

This code uses the EEPROM or DATA directive to write the low-byte and
high-byte of the number 1125 into locations 0 and 1 during download.
When the program runs, the two READ commands will read the low-byte
and high-byte out of EEPROM (reconstructing it in a word-size variable)
and then display the value on the screen.

Note that the EEPROM and DATA directives store data in the EEPROM
before the program runs, however, the WRITE command can be used to
store data while the program is running. Additionally, the EEPROM
locations can be read an unlimited number of times, but EEPROM
locations can be worn out by excessive writes. See the WRITE command
for more information.

When using the READ and WRITE commands, take care to ensure that
your program doesn’t overwrite itself. On the BS1, location 255 holds the
address of the last instruction in your program. Therefore, your program
can use any space below the address given in location 255. For example, if

READING WORD VALUES VS. BYTE
VALUES.

1

2 e
2

sx
2

p
2

SPECIAL NOTES FOR EEPROM
USAGE.

1

5: BASIC Stamp Command Reference – READ

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 263

location 255 holds the value 100, then your program can use locations 0–99
for data.

On other BASIC Stamps, you'll need to view the Memory Map of the
program before you download it, to determine the last EEPROM location
used. See the "Memory Map Function" section in Chapter 3.

On the BS2p, the READ and WRITE commands can affect locations in any
program slot as set by the STORE command. See the STORE command for
more information.

Demo Program (READ.bas)
' This program reads a string of data stored in EEPROM. The EEPROM data is downloaded
' to the BS1 at compile-time and remains there (even with the power off) until
' overwritten. Put ASCII characters into EEPROM, followed by 0, which will serve as the
' end-of-message marker.

'{$STAMP BS1} 'STAMP directive (specifies a BS1)

EEPROM ("BS1 EEPROM Storage!",0)

SYMBOL StrAddr = W0
SYMBOL Char = B2

StrAddr = 0 'Set address to start of Message.

StringOut:
 READ StrAddr,Char 'Get a byte from EEPROM.
 IF Char <> 0 THEN Cont 'Not end? Continue.
END 'Stop here when done.

Cont:
 DEBUG @Char 'Show character on screen.
 StrAddr = StrAddr + 1 'Point to next character.
GOTO StringOut 'Get next character.

Demo Program (READ.bs2)
' This program reads a string of data stored in EEPROM. The EEPROM data is downloaded
' to the BS2 at compile-time and remains there (even with the power off) until
' overwritten. Put ASCII characters into EEPROM, followed by 0, which will serve as the
' end-of-message marker.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

Message DATA "BS2 EEPROM Storage!",0
StrAddr VAR WORD
Char VAR BYTE

1

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS2e, BS2sx or
BS2p.

p
2

READ - BASIC Stamp Command Reference

Page 264 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

StrAddr = Message 'Set address to start of Message.

StringOut:
 READ StrAddr,Char 'Get a byte from EEPROM.
 IF Char <> 0 THEN Cont 'Not end? Continue.
Stop 'Stop here when done.

Cont:
 DEBUG Char 'Show character on screen.
 StrAddr = StrAddr + 1 'Point to next character.
GOTO StringOut 'Get next character.

5: BASIC Stamp Command Reference – RETURN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 265

RETURN BS1 BS2 BS2e BS2sx BS2p

RETURN

Function
Return from a subroutine, assuming there was a previous GOSUB
executed.

Quick Facts

 BS1, BS2, BS2e, BS2sx and BS2p
Maximum
number of

RETURNS per
program

Unlimited. However, the number of GOSUBs are limited. See GOSUB
for more information.

Explanation
RETURN sends the program back to the address (instruction) immediately
following the most recent GOSUB. If RETURN is executed without a prior
GOSUB, the BASIC Stamp will return to the first executable line of the
program; usually resulting in a logical bug in the code. See the GOSUB
command for more information.

The example below will start out by GOSUB'ing to the section of code
beginning with the label Hello. It will print "Hello my friend." on the
screen then RETURN to the line after the GOSUB… which prints "How are
you?" and ENDs.

GOSUB Hello
DEBUG "How are you?"
END

Hello:
 DEBUG "Hello my friend.", CR
RETURN

There's another interesting lesson here; what would happen if we removed
the END command from this example? Since the BASIC Stamp reads the
code from left to right / top to bottom (like the English language) once it
had returned to and run the "How are you?" line, it would naturally "fall
into" the Hello routine again. Additionally, at the end of the Hello routine,
it would see the RETURN again (although it didn't GOSUB to that routine

1 2 e
2

sx
2

p
2

WATCH OUT FOR SUBROUTINES THAT

YOUR PROGRAM CAN "FALL INTO."

Table 5.68: RETURN Quick Facts.

1
NOTE: On the BS1, a RETURN
without a GOSUB will return the
program to the last GOSUB (or will
end the program if no GOSUB was
executed).

RETURN - BASIC Stamp Command Reference

Page 266 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

this time) and because there wasn't a previous place to return to, the
BASIC Stamp will start the entire program over again. This would cause
an endless loop. The important thing to remember here is to always make
sure your program doesn't allow itself to "fall into" a subroutine.

Demo Program (RETURN.bs2)
' This program demonstrates a potential bug caused by allowing a program to 'fall into' a
' subroutine. The program was intented to indicate that it is "Starting...", then
' 'Executing Subroutine', then 'Returned...' from the subroutine and stop. Since we
' left out the END command (indicated in the comments), the program then falls into the
' subroutine, displays 'Executing..." again and then RETURNs to the start of the program
' and runs continuously in an endless loop.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

DEBUG "Starting Program",CR 'Indicate the start of the program

Main:
 PAUSE 1000
 GOSUB DemoSub 'Call the subroutine
 PAUSE 1000
 DEBUG "Returned from Subroutine", CR 'Indicate the return from the subroutine
 PAUSE 1000
 '<-- Forgot to put an 'END' command here

DemoSub:
 DEBUG " Executing Subroutine", CR 'Indicate the execution of the subroutine
RETURN

1 2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS1, BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS1, BS2e,
BS2sx or BS2p.

5: BASIC Stamp Command Reference – REVERSE

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 267

REVERSE BS1 BS2 BS2e BS2sx BS2p

REVERSE Pin

Function
Reverse the data direction of the specified pin.

• Pin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to use. This pin will be placed into the mode opposite of its
current input/output mode.

Explanation
REVERSE is convenient way to switch the I/O direction of a pin. If the pin
is an input, REVERSE makes it an output; if it’s an output, REVERSE
makes it an input.

Remember that “input” really has two meanings: (1) Setting a pin to input
makes it possible to check the state (1 or 0) of external circuitry connected
to that pin. The current state is in the corresponding bit of the INS register
(PINS on the BS1). (2) Setting a pin to input also disconnects the output
driver, the corresponding bit of OUTS (PINS on the BS1).

The demo program below illustrates this second fact with a two-tone LED
blinker.

1 2 e
2

sx
2

p
2

1
NOTE: Expressions are not
allowed as arguments on the BS1.
The range of the Pin argument on
the BS1 is 0 – 7.

P0

220 Ω

LED

Vss

220 Ω

VddFigure 5.31: LED circuit for Demo
Programs.

REVERSE - BASIC Stamp Command Reference

Page 268 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Demo Program (REVERSE.bas)
' Connect the circuit shown in the REVERSE command description to I/O pin 0 and run this
' program. The LED will alternate between two states, dim and bright. The BASIC Stamp is
' using the REVERSE command to toggling I/O pin 0 between input and output states. When
' pin 0 is an input, current flows through R1, through the LED, through R2 to ground. Pin 0 is
' effectively disconnected and doesn't play a part in the circuit. The total resistance
' encountered by current flowing through the LED is R1 + R2 = 440 Ohms. When pin 0 is
' reversed to an output, current flows through R1, through the LED, and into pin 0 to ground
' (because of the 0 written to PIN0). The total resistance encountered by current flowing
' through the LED is R1, 220 Ohms. With only half the resistance, the LED glows brighter.

'{$STAMP BS1} 'STAMP directive (specifies a BS1)

PIN0 = 0 ' Put a low in the pin 0 output driver.

Again:
 PAUSE 200 ' Brief (1/5th second) pause.
 REVERSE 0 ' Invert pin 0 I/O direction.
GOTO Again ' Repeat forever.

Demo Program (REVERSE.bs2)
' Connect the circuit shown in the REVERSE command description to I/O pin 0 and run this
' program. The LED will alternate between two states, dim and bright. The BASIC Stamp is
' using the REVERSE command to toggling I/O pin 0 between input and output states. When
' pin 0 is an input, current flows through R1, through the LED, through R2 to ground. Pin 0 is
' effectively disconnected and doesn't play a part in the circuit. The total resistance
' encountered by current flowing through the LED is R1 + R2 = 440 Ohms. When pin 0 is
' reversed to an output, current flows through R1, through the LED, and into pin 0 to ground
' (because of the 0 written to OUT0). The total resistance encountered by current flowing
' through the LED is R1, 220 Ohms. With only half the resistance, the LED glows brighter.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

OUT0 = 0 ' Put a low in the pin 0 output driver.

Again:
 PAUSE 200 ' Brief (1/5th second) pause.
 REVERSE 0 ' Invert pin 0 I/O direction.
GOTO Again ' Repeat forever.

1

2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS2e, BS2sx or
BS2p.

5: BASIC Stamp Command Reference – RUN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 269

RUN BS1 BS2 BS2e BS2sx BS2p

RUN Program

Function
Switches execution to another BASIC Stamp program (in a different
program slot).

• Program is a variable/constant/expression (0 – 7) that specifies the
program slot to run.

Quick Facts
 BS2e BS2sx BS2p

Number of
program slots

8 (numbered 0 to 7)

Time delay to
switch between
program slots

770 µs 300 µs 250 µs

Special notes RUN is similar to a GOTO… you can not "return" from a RUN

Explanation
The BS2e, BS2sx and BS2p have a total of 16k bytes of code space. This
code space is organized into eight slots of 2 kbytes each. Up to eight
different programs can be downloaded to the BASIC Stamp (one program
per slot). When the BASIC Stamp powers up, or is reset, the program in
slot 0 is executed.

The RUN command allows you to activate another program and causes
the BASIC Stamp to stay in the newly activated program until it receives
another RUN command, or until a power-down or reset condition occurs.
The RUN command is similar to a GOTO command in that it allows you
to "goto" another program. Normally a master-type program will be used
in program slot 0 (since slot 0 runs first) and will control initial execution
of the other programs.

Look at the following example (there are two programs here, make sure to
download them into program slots 0 and 1, respectively):

e
2

sx
2

p
2

Table 5.69: RUN Quick Facts.

A SIMPLE EXAMPLE OF RUN.

RUN - BASIC Stamp Command Reference

Page 270 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

' Download the following two lines into program slot 0
DEBUG "Hello "
RUN 1

' Download the following three lines into program slot 1
DEBUG "World!", CR
PAUSE 0
RUN 0

The above two programs (assuming they have been downloaded into
program slots 0 and 1, respectively) will display "Hello World!" on the
screen. Program 0 is the first to run and it displays "Hello ", then issues a
RUN 1 command. The BASIC Stamp then starts execution of program 1,
from its first line of code, which causes "World!" to be displayed. Program
1 then pauses for 1 second and the runs program 0 again.

The I/O pins retain their current state (directions and output latches) and
all Variable and Scratch Pad RAM locations retain their current data
during a transition between programs with the RUN command. If sharing
data between programs within Variable RAM, make sure to keep similar
variable declarations (defined in the same order) in all programs so that
the variables align themselves on the proper word, byte, nibble and bit
boundaries across programs.

Any program number specified above 7 will wrap around and result in
running one of the 8 programs (RUN 8 will run program 0, RUN 9 will run
program 1, etc).

Review the BASIC Stamp Project section for more information on
downloading multiple programs to a BS2e, BS2sx or BS2p.

Demo Program (RUN1.bsx)
' This example demonstrates the use of the RUN command. First, location 63 is read
' using the GET command to display the currently running program number. Then a set
' of values (based on the program number) are displayed on the screen. Afterwards,
' program number 1 is run. This program is a BS2sx project consisting of RUN1.bsx and
' RUN2.bsx. See the BASIC Stamp Project section in the manual for more information.

'{$STAMP BS2sx, RUN2.BSX} 'STAMP directive (specifies a BS2sx and
 'a second program, RUN2.BSX)

DATA 100, 40, 80, 35, 91

e
2

sx
2

p
2

NOTE: This is written for the BS2sx
but can be used for the BS2e, and
BS2p also. Locate the proper
source code file or modify the
STAMP directive before
downloading to the BS2e, or BS2p.

WHAT HAPPENS TO I/O PINS AND

RAM WHEN USING RUN?

5: BASIC Stamp Command Reference – RUN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 271

DATA 200, 65, 23, 70, 90

ProgNum VAR BYTE
Value VAR BYTE
Index VAR BYTE

GET 63, ProgNum
DEBUG "Program #", DEC ProgNum, CR

FOR Index = 0 TO 4
 READ ProgNum*5+Index, Value
 DEBUG DEC3 Value, " "
NEXT
DEBUG CR
PAUSE 1000

RUN 1

 Demo Program (RUN2.bsx)
' This example demonstrates the use of the RUN command. First, location 63 is read
' using the GET command to display the currently running program number. Then a set
' of values (based on the program number) are displayed on the screen. Afterwards,
' program number 0 is run. This program is a BS2sx project consisting of RUN1.bsx and
' RUN2.bsx. See the BASIC Stamp Project section in the manual for more information.

'{$STAMP BS2sx} 'STAMP directive (specifies a BS2sx and
 'a second program, RUN2.BSX)
DATA 100, 40, 80, 35, 91
DATA 200, 65, 23, 70, 90

ProgNum VAR BYTE
Value VAR BYTE
Index VAR BYTE

GET 63, ProgNum
DEBUG "Program #", DEC ProgNum, CR

FOR Index = 0 TO 4
 READ ProgNum*5+Index, Value
 DEBUG DEC3 Value, " "
NEXT
DEBUG CR
PAUSE 1000

RUN 0

e
2

sx
2

p
2

NOTE: This is written for the BS2sx
but can be used for the BS2e, and
BS2p also. Locate the proper
source code file or modify the
STAMP directive before
downloading to the BS2e, or BS2p.

RUN - BASIC Stamp Command Reference

Page 272 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 273

SERIN BS1 BS2 BS2e BS2sx BS2p

SERIN Rpin, Baudmode, { (Qualifier),} {#} InputData
SERIN Rpin {\Fpin}, Baudmode, {Plabel,} {Timeout, Tlabel,} [InputData]

Function
Receive asynchronous serial data (e.g., RS-232 data).

• Rpin is a variable/constant/expression (0 – 16) that specifies the I/O
pin through which the serial data will be received. This pin will be
set to input mode. On the BS2, BS2e, BS2sx and BS2p, if Rpin is set to
16, the BASIC Stamp uses the dedicated serial-input pin (SIN,
physical pin 2), which is normally used by the Stamp Editor during
the download process.

• Fpin is an optional variable/constant/expression (0 – 15) that
specifies the I/O pin to indicate flow control status on. This pin will
be set to output mode.

• Baudmode is variable/constant/expression (0 – 7 on the BS1, 0 –
65535 on all other BASIC Stamps) that specifies serial timing and
configuration.

• Qualifier is an optional variable/constant (0 – 255) indicating data
that must be received before execution can continue. Multiple
qualifiers can be indicated with commas separating them.

• Plabel is an optional label indicating where the program should go
in the event of a parity error. This argument should only be
provided if Baudmode indicates 7 bits, and even parity.

• Timeout is an optional variable/constant/expression (0 – 65535) that
tells SERIN how long to wait for incoming data. If data does not
arrive in time, the program will jump to the address specified by
Tlable.

• Tlabel is an optional label that must be provided along with Timeout,
indicating where the program should go in the event that data does
not arrive within the period specified by Timeout.

• InputData is list of variables and formatters that tells SERIN what to
do with incoming data. SERIN can store data in a variable or array,
interpret numeric text (decimal, binary, or hex) and store the

1
2 e

2
sx
2

p
2

1
NOTE: Expressions are not
allowed as arguments on the BS1.
The range of the Rpin argument on
the BS1 is 0 – 7.

NOTE: The BS1's InputData
argument can only be a list of
variables and the optional decimal
modifier (#).

1

SERIN - BASIC Stamp Command Reference

Page 274 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

corresponding value in a variable, wait for a fixed or variable
sequence of bytes, or ignore a specified number of bytes. These
actions can be combined in any order in the InputData list.

Quick Facts

 BS1 BS2 BS2e BS2sx BS2p
Units in Timeout n/a 1 ms 1 ms 400 µs 400 µs

Baud Range
300, 600,
1200, and
2400 only

243 to 50K 243 to 50K 608 to 115K 608 to 115K

Baud Limit with
Flow Control

n/a 19.2K 19.2K 19.2K 19.2K

Limit to
Qualifiers

Unlimited 6 (in WAIT formatter)

I/O Pins
Available

0 - 7 0 - 15 0 - 15 0 - 15
0 – 15 (in

current I/O
block)

Other Serial
Port Pins

n/a SIN pin (physical pin 2) when Rpin = 16

Explanation
One of the most popular forms of communication between electronic
devices is serial communication. There are two major types of serial
communication; asynchronous and synchronous. The SERIN and
SEROUT commands are used to receive and send asynchronous serial
data. See the SHIFTIN and SHIFTOUT command for information on the
synchronous method.

SERIN can wait for, filter and convert incoming data in powerful ways.
SERIN deserves some lengthy discussion, below, since all this power
brings some complexity.

The term asynchronous means “no clock.” More specifically,
"asynchronous serial communication" means data is transmitted and
received without the use of a separate "clock" wire. Data can be sent using
as little as two wires; one for data and one for ground. The PC's serial
ports (also called COM ports or RS-232 ports) use asynchronous serial
communication. Note: the other kind of serial communication,
synchronous, uses at least three wires; one for clock, one for data and one
for ground.

SERIAL COMMUNICATION

BACKGROUND.

PHYSICAL AND ELECTRICAL DETAILS.

Table 5.70: SERIN Quick Facts.

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 275

RS-232 is the electrical specification for the signals that PC serial ports use.
Unlike normal logic, where a 5 volts is a logic 1 and 0 volts is logic 0, RS-
232 uses -12 volts for logic 1 and +12 volts for logic 0. This specification
allows communication over longer wire lengths without amplification.

Most circuits that work with RS-232 use a line driver/receiver. This
component does two things: (1) it converts the ±12 volts of RS-232 to
TTL-compatible 0 to 5-volt levels and (2) it inverts the relationship of the
voltage levels, so that 5 volts = logic 1 and 0 volts = logic 0.

All BASIC Stamps (except the BS1) have a line receiver on its SIN pin (Rpin
= 16). See the "Hardware" section of the "Introduction to the BASIC
Stamps" chapter. The SIN pin goes to a PC’s serial data-out pin on the DB9
connector built into BASIC Stamp development boards. The connector is
wired to allow both programming and run-time serial communication
(unless you are using the Stamp 2 Carrier Board which is only designed
for programming). For the built-in serial port set the Rpin argument to 16
in the SERIN command.

All BASIC Stamps (including the BS1) can also receive RS-232 data
through any of their I/O pins (Rpin = 0 – 7 for BS1, Rpin = 0 – 15 on all
other BASIC Stamps). The I/O pins don’t need a line receiver, just a 22 kΩ
resistor. The resistor limits current into the I/O pins’ built-in clamping
diodes, which keep input voltages within a safe range. See Figure 5.32

2 e
2

sx
2

p
2

DB-9 Male
(Connector Side)

to I/O pin
22 kΩ

2

3

4

Transmit Data (TD)

Receive Data (RD)

Request to Send (RTS)

6

7

20

Data Set Ready (DSR)

Signal Ground (SG)

Data Terminal Ready (DTR)

3

2

7

6

5

4

DB25Function DB9

NOTE: The connections shown with double-lines are
normally not necessary. They indicate optional connections
to disable hardware handshaking (DTR-DSR-DCD and
RTS-CTS). This is only necessary if you are using software
or hardware that expects hardware handshaking.

DB-25 Male
(Connector Side)

252423222120191817161514

13121110987654321

9876

54321

Vss

to I/O pin
22 kΩ

Vss

8Data Carrier Detect (DCD) 1

5Clear to Send (CTS) 8

Figure 5.32: Serial Port Diagram
Showing Correct Connections to a
BASIC Stamp's I/O pin. NOTE:
The 22 kΩ resister is not required if
connecting to the SIN pin.

USING THE BUILT-IN SERIAL PORT ON

THE BS2, BS2E, BS2SX AND BS2P.

SERIN - BASIC Stamp Command Reference

Page 276 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Figure 5.32 shows the pinouts of the two styles of PC serial ports and how
to connect them to the BASIC Stamp's I/O pin (the 22K resister is not
needed if connecting to the SIN pin). Though not normally needed, the
figure also shows loop back connections that defeat hardware
handshaking used by some PC software. Note that PC serial ports are
always male connectors. The 25-pin style of serial port (called a DB25)
looks similar to a printer (parallel) port except that it is male, whereas a
parallel port is female.

Asynchronous serial communication relies on precise timing. Both the
sender and receiver must be set for identical timing, usually expressed in
bits per second (bps) called baud.

On all BASIC Stamps, SERIN requires a value called Baudmode that tells it
the important characteristics of the incoming serial data; the bit period,
number of data and parity bits, and polarity.

On the BS1, serial communication is limited to: no-parity, 8-data bits and
1-stop bit at one of four different speeds: 300, 600, 1200 or 2400 baud.
Table 5.71 indicates the Baudmode value or symbols to use when selecting
the desired mode.

Baudmode
Value

Symbol Baud Rate Polarity

0 T2400 2400 TRUE
1 T1200 1200 TRUE
2 T600 600 TRUE
3 T300 300 TRUE
4 N2400 2400 INVERTED
5 N1200 1200 INVERTED
6 N600 600 INVERTED
7 N300 300 INVERTED

On the BS2, BS2e, BS2sx and BS2p, serial communication is very flexible.
The Baudmode argument for SERIN accepts a 16-bit value that determines
its characteristics: 1-stop bit, 8-data bits/no-parity or 7-data
bits/even-parity and virtually any speed from as low as 300 baud to
greater than 100K baud (depending on the BASIC Stamp). Table 5.72

SERIAL TIMING AND MODE

(BAUDMODE).

Table 5.71: BS1 Baudmode values.

1

2 e
2

sx
2

p
2

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 277

shows how Baudmode is calculated and Tables 5.73, 5.74 and 5.75 show
common baud modes for standard serial baud rates.

Step 1: Determine the
bit period

(bits 0 – 11)

BS2 and BS2e: = INT(1,000,000 / baud rate) – 20
BS2sx: = INT(2,500,000 / baud rate) – 20
BS2p: = INT(2,500,000 / baud rate) – 20
Note: INT means 'convert to integer;' drop the numbers to the right of the
decimal point.

Step 2: Set data bits
and parity (bit 13)

8-bit/no-parity = 0
7-bit/even-parity = 8192

Step 3: Select
polarity (bit 14)

True (noninverted) = 0
Inverted = 16384

Baud
Rate

8-bit
no-parity
inverted

8-bit
no-parity

true

7-bit
even-parity

inverted

7-bit
even-parity

true
300 19697 3313 27889 11505
600 18030 1646 26222 9838
1200 17197 813 25389 9005
2400 16780 396 24972 8588
4800* 16572 188 24764 8380
9600* 16468 84 24660 8276

*The BASIC Stamp 2 and BASIC Stamp 2e may have trouble synchronizing with the
incoming serial stream at this rate and higher due to the lack of a hardware input buffer. Use
only simple variables and no formatters to try to solve this problem.

Baud
Rate

8-bit
no-parity
inverted

8-bit
no-parity

true

7-bit
even-parity

inverted

7-bit
even-parity

true
1200 18447 2063 26639 10255
2400 17405 1021 25597 9213
4800 16884 500 25076 8692
9600* 16624 240 24816 8432

*The BASIC Stamp 2sx may have trouble synchronizing with the incoming serial stream at
this rate and higher due to the lack of a hardware input buffer. Use only simple variables and
no formatters to try to solve this problem.

Baud
Rate

8-bit
no-parity
inverted

8-bit
no-parity

true

7-bit
even-parity

inverted

7-bit
even-parity

true
1200 18447 2063 26639 10255
2400 17405 1021 25597 9213
4800 16884 500 25076 8692
9600* 16624 240 24816 8432

*The BASIC Stamp 2p may have trouble synchronizing with the incoming serial stream at this
rate and higher due to the lack of a hardware input buffer. Use only simple variables and no
formatters to try to solve this problem.

Table 5.72: BS2, BS2e, BS2sx and
BS2p Baudmode calculation. Add
the results of steps 1, 2 and 3 to
determine the proper value for the
Baudmode argument.

Table 5.73: BS2 and BS2e
common baud rates and
corresponding Baudmodes.

Table 5.74: BS2sx common baud
rates and corresponding
Baudmodes.

Table 5.75: BS2p common baud
rates and corresponding
Baudmodes.

SERIN - BASIC Stamp Command Reference

Page 278 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

If you’re communicating with existing software or hardware, its speed(s)
and mode(s) will determine your choice of baud rate and mode. In
general, 7-bit/even-parity (7E) mode is used for text, and 8-bit/no-parity
(8N) for byte-oriented data. Note: the most common mode is
8-bit/no-parity, even when the data transmitted is just text. Most devices
that use a 7-bit data mode do so in order to take advantage of the parity
feature. Parity can detect some communication errors, but to use it you
lose one data bit. This means that incoming data bytes transferred in 7E
(even-parity) mode can only represent values from 0 to 127, rather than
the 0 to 255 of 8N (no-parity) mode.

Usually a device requires only 1 stop bit per byte. Occasionally, however,
you may find a device that requires 2 or more stop bits. Since a stop bit is
really just a delay between transmitted bytes (leaving the line in a resting
state) the BASIC Stamp can receive transmissions with multiple stop bits
per byte without any trouble. In fact, sometimes it is desirable to have
multiple stop bits (see the “SERIN Troubleshooting” section, below, for
more information).

The example below will receive a single byte through I/O pin 1 at 2400
baud, 8N1, inverted:

Symbol SerData = B0
SERIN 1, N2400, SerData

--or--

SerData VAR BYTE
SERIN 1, 16780, [SerData]

Here, SERIN will wait for and receive a single byte of data through pin 1
and store it in the variable SerData. If the BASIC Stamp were connected to
a PC running a terminal program (set to the same baud rate) and the user
pressed the "A" key on the keyboard, after the SERIN command executed,
the variable SerData would contain 65, the ASCII code for the letter "A"
(see the ASCII character chart in the appendix).

What would happen if, using the example above, the user pressed the "1"
key? The result would be that SerData would contain the value 49 (the
ASCII code for the character "1"). This is a critical point to remember:
every time you press a character on the keyboard, the computer receives
the ASCII value of that character. It is up to the receiving side (in serial

CHOOSING THE PROPER BAUD MODE.

A SIMPLE FORM OF SERIN.

A SIMPLE NUMERIC CONVERSION;
ASCII TEXT TO DECIMAL.

1

2 e
2

sx
2

p
2

This is written with the BS2's
BaudMode value. Be sure to adjust
the value for your BASIC Stamp.

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 279

communication) to interpret the values as necessary. In this case, perhaps
we actually wanted SerData to end up with the value 1, rather than the
ASCII code 49.

The SERIN command provides a formatter, called the decimal formatter,
which will interpret this for us. Look at the following code:

Symbol SerData = B0
SERIN 1, N2400, #SerData

--or--

SerData VAR BYTE
SERIN 1, 16780, [DEC SerData]

Notice the decimal formatter in the SERIN command. It is the “#” (for the
BS1) or “DEC” (for the other BASIC Stamps) that appears just to the left of
the SerData variable. This tells SERIN to convert incoming text
representing decimal numbers into true-decimal form and store the result
in SerData. If the user running the terminal software pressed the "1", "2"
and then "3" keys followed by a space or other non-numeric text, the value
123 will be stored in SerData. Afterwards, the program can perform any
numeric operation on the number just like with any other number.
Without the decimal formatter, however, you would have been forced to
receive each character (“1”, “2” and “3”) separately, and then would still
have to do some manual conversion to arrive at the number 123 (one
hundred twenty three) before you can do the desired calculations on it.

The decimal formatter is designed to seek out text that represents decimal
numbers. The characters that represent decimal numbers are the
characters “0” through “9”. Once the SERIN command is asked to use the
decimal formatter for a particular variable, it monitors the incoming serial
data, looking for the first decimal character. Once it finds the first decimal
character, it will continue looking for more (accumulating the entire multi-
digit number) until is finds a non-decimal numeric character. Keep in
mind that it will not finish until it finds at least one decimal character
followed by at least one non-decimal character.

DECIMAL FORMATTER SPECIFICS.

1

2 e
2

sx
2

p
2

THIS IS WRITTEN WITH THE BS2'S
BAUDMODE VALUE. BE SURE TO
ADJUST THE VALUE FOR YOUR BASIC
STAMP.

SERIN - BASIC Stamp Command Reference

Page 280 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

To further illustrate this, consider the following examples (assuming we’re
using the same code example as above):

1) Serial input: ABC
Result: The BASIC Stamp halts at the SERIN command,
continuously waiting for decimal text.

2) Serial input: 123 (with no characters following it)
Result: The BASIC Stamp halts at the SERIN command. It
recognizes the characters “1”, “2” and “3” as the number one
hundred twenty three, but since no characters follow the “3”, it
waits continuously, since there’s no way to tell whether 123 is the
entire number or not.

3) Serial input: 123 (followed by a space character)
Result: Similar to example 2, above, except once the space
character is received, the BASIC Stamp knows the entire number
is 123, and stores this value in SerData. The SERIN command then
ends, allowing the next line of code, if any, to run.

4) Serial input: 123A
Result: Same as example 3, above. The “A” character, just like the
space character, is the first non-decimal text after the number 123,
indicating to the BASIC Stamp that it has received the entire
number.

5) Serial input: ABCD123EFGH
Result: Similar to examples 3 and 4 above. The characters
“ABCD” are ignored (since they’re not decimal text), the
characters “123” are evaluated to be the number 123 and the
following character, “E”, indicates to the BASIC Stamp that it has
received the entire number.

Of course, as with all numbers in the BASIC Stamp, the final result is
limited to 16 bits (up to the number 65535). If a number larger than this is
received by the decimal formatter, the end result will look strange because
the result rolled-over the maximum 16-bit value.

The BS1 is limited to the decimal formatter shown above, however the
BS2, BS2e, BS2sx and BS2p have many more conversion formatters

WATCH OUT FOR ROLLOVER ERRORS.

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 281

available for the SERIN command. If not using a BS1, see the “Additional
Conversion Formatters” section below for more information.

The SERIN command can also be configured to wait for specified data
before it retrieves any additional input. For example, suppose a device
that is attached to the BASIC Stamp is known to send many different
sequences of data, but the only data you desire happens to appear right
after the unique characters, “XYZ”. The BS1 has optional Qualifier
arguments for this purpose. On the BS2, BS2e, BS2sx and BS2p a special
formatter called WAIT can be used for this.

Symbol SerData = B0
SERIN 1, N2400, ("XYZ"), #SerData

--or--

SerData VAR BYTE
SERIN 1, 16780, [WAIT("XYZ"), DEC SerData]

The above code waits for the characters “X”, “Y” and “Z” to be received,
in that order, and then it looks for a decimal number to follow. If the
device in this example were to send the characters “XYZ100” followed by
a carriage return or some other non-decimal numeric character, the
SerData variable would end up with the number 100 after the SERIN line
finishes. If the device sent some data other than “XYZ” followed by a
number, the BASIC Stamp would continue to wait at the SERIN
command.

The BS1 will accept an unlimited number of Qualifiers. The BS2, BS2e,
BS2sx and BS2p will only accept up to six bytes (characters) in the WAIT
formatter.

Keep in mind that when we type “XYZ” into the SERIN command, the
BASIC Stamp actually uses the ASCII codes for each of those characters for
its tasks. We could also have typed: 88, 89, 90 in place of “XYZ” and the
code would run the same way since 88 is the ASCII code for the “X”
character, 89 is the ASCII code for the “Y” character, and so on. Also note,
serial communication with the BASIC Stamp is case sensitive. If the device
mentioned above sent, “xYZ” or “xyZ”, or some other combination of
lower and upper-case characters, the BASIC Stamp would have ignored it
because we told it to look for “XYZ” (all capital letters).

USING SERIN TO WAIT FOR SPECIFIC

DATA BEFORE PROCESSING.

USING ASCII CODES AND CASE

SENSITIVITY.

1

2 e
2

sx
2

p
2

THIS IS WRITTEN WITH THE BS2'S
BAUDMODE VALUE. BE SURE TO
ADJUST THE VALUE FOR YOUR BASIC

STAMP.

SERIN - BASIC Stamp Command Reference

Page 282 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

The BS1’s SERIN command is limited to above-mentioned features. If you
are not using a BS1, please continue reading about the additional features
below.

The decimal formatter is only one of a whole family of conversion
formatters available with SERIN on the BS2, BS2e, BS2sx and BS2p. See
Table 5.76 for a list of available conversion formatters. All of the
conversion formatters work similar to the decimal formatter (as described
in the “Decimal Formatter Specifics” section, above). The formatters
receive bytes of data, waiting for the first byte that falls within the range of
characters they accept (e.g., “0” or “1” for binary, “0” to “9” for decimal,
“0” to “9” and “A” to “F” for hex, and “+” or “-” for signed variations of
any type). Once they receive a numeric character, they keep accepting
input until a non-numeric character arrives or (in the case of the fixed
length formatters) the maximum specified number of digits arrives.

While very effective at filtering and converting input text, the formatters
aren’t completely foolproof. As mentioned before, many conversion
formatters will keep accepting text until the first non-numeric text arrives,
even if the resulting value exceeds the size of the variable. After SERIN, a
byte variable will contain the lowest 8 bits of the value entered and a word
would contain the lowest 16 bits. You can control this to some degree by
using a formatter that specifies the number of digits, such as DEC2, which
would accept values only in the range of 0 to 99.

The BS2, BS2e, BS2sx and BS2p also have special formatters for handling a
string of characters, a sequence of characters and undesirable characters.
See Table 5.77 for a list of these special formatters. Also, see Appendix C
for example serial inputs and the result of using these formatters.

1

2 e
2

sx
2

p
2

ADDITIONAL CONVERSION

FORMATTERS.

ONCE AGAIN, PAY ATTENTION TO

POTENTIAL ROLLOVER ERRORS.

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 283

Conversion
Formatter

Type of Number Numeric Characters Accepted Notes

DEC{1..5} Decimal, optionally limited to
 1 – 5 digits

0 through 9 1

SDEC{1..5} Signed decimal, optionally
limited to 1 – 5 digits

-, 0 through 9 1,2

HEX{1..4} Hexadecimal, optionally limited
to 1 – 4 digits

0 through 9, A through F 1,3

SHEX{1..4} Signed hexadecimal, optionally
limited to 1 – 4 digits

-, 0 through 9, A through F 1,2,3

IHEX{1..4} Indicated hexadecimal,
optionally limited to 1 – 4 digits

$, 0 through 9, A through F 1,3,4

ISHEX{1..4} Signed, indicated hexadecimal,
optionally limited to 1 – 4 digits

-, $, 0 through 9, A through F 1,2,3,4

BIN{1..16} Binary, optionally limited to
1 – 16 digits

0, 1 1

SBIN{1..16} Signed binary, optionally limited
to 1 – 16 digits

-, 0, 1 1,2

IBIN{1..16} Indicated binary, optionally
limited to 1 – 16 digits

%, 0, 1 1,4

ISBIN{1..16} Signed, indicated binary,
optionally limited to 1 – 16 digits

-, %, 0, 1 1,2,4

1 All numeric conversions will continue to accept new data until receiving either the specified
number of digits (ex: three digits for DEC3) or a non-numeric character.

2 To be recognized as part of a number, the minus sign (-) must immediately precede a
numeric character. The minus sign character occurring in non-numeric text is ignored and
any character (including a space) between a minus and a number causes the minus to be
ignored.

3 The hexadecimal formatters are not case-sensitive; “a” through “f” means the same as “A”
through “F”.

4 Indicated hexadecimal and binary formatters ignore all characters, even valid numerics,
until they receive the appropriate prefix ($ for hexadecimal, % for binary). The indicated
formatters can differentiate between text and hexadecimal (ex: ABC would be interpreted
by HEX as a number but IHEX would ignore it unless expressed as $ABC). Likewise, the
binary version can distinguish the decimal number 10 from the binary number %10. A
prefix occurring in non-numeric text is ignored, and any character (including a space)
between a prefix and a number causes the prefix to be ignored. Indicated, signed
formatters require that the minus sign come before the prefix, as in -$1B45.

Table 5.76: BS2, BS2e, BS2sx and
BS2p Conversion Formatters.

SERIN - BASIC Stamp Command Reference

Page 284 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Special Formatter Action

STR ByteArray \L {\E}
Input a character string of length L into an array. If specified, an
end character E causes the string input to end before reaching
length L. Remaining bytes are filled with 0s (zeros).

WAIT (Value)

Wait for a sequence of bytes specified by value. Value can be
numbers separated by commas or quoted text (ex: 65, 66, 67 or
“ABC”). The WAIT formatter is limited to a maximum of six
characters.

WAITSTR ByteArray {\L}

Wait for a sequence of bytes matching a string stored in an array
variable, optionally limited to L characters. If the optional L
argument is left off, the end of the array-string must be marked
by a byte containing a zero (0).

SKIP Length Ignore Length bytes of characters.

The string formatter is useful for receiving a string of characters into a byte
array variable. A string of characters is a set of characters that are
arranged or accessed in a certain order. The characters "ABC" could be
stored in a string with the "A" first, followed by the "B" and then followed
by the "C." A byte array is a similar concept to a string; it contains data
that is arranged in a certain order. Each of the elements in an array is the
same size. The string "ABC" could be stored in a byte array containing
three bytes (elements). See the "Defining Arrays" section in Chapter 4 for
more information on arrays.

Here is an example that receives nine bytes through I/O pin 1 at 9600 bps,
N81/inverted and stores them in a 10-byte array:

SerString VAR BYTE(10) ' Make a 10-byte array.
SerString(9) = 0 ' Put 0 in last byte.
SERIN 1, 16468, [STR SerString\9] ' Get 9-byte string.
DEBUG STR SerString ' Display the string.

Why store only 9 bytes in a 10-byte array? We want to reserve space for
the 0 byte that many BASIC Stamp string-handling routines regard as an
end-of-string marker. This becomes important when dealing with
variable-length arrays. For example, the STR formatter (see Table 5.77) can
accept an additional parameter telling it to end the string when a
particular byte is received, or when the specified length is reached,
whichever comes first. An example:

SerString VAR BYTE(10) ' Make a 10-byte array.
SerString(9) = 0 ' Put 0 in last byte.
SERIN 1, 16468, [STR SerString\9\"*"] ' Stop at "*" or 9 bytes.
DEBUG STR SerString ' Display the string.

Table 5.77: BS2, BS2e, BS2sx and
BS2p Special Formatters.

THE STR (STRING) FORMATTER.

2 e
2

sx
2

p
2

NOTE: The rest of the code
examples for this section are written
for the BS2, using the BS2's
BaudMode and Timeout values. Be
sure to adjust the value for your
BASIC Stamp.

2 e
2

sx
2

p
2

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 285

If the serial input were "hello*" DEBUG would display "hello" since it
collects bytes up to (but not including) the end character. It fills the unused
bytes up to the specified length with 0s. DEBUG’s normal STR formatter
understands a 0 to mean end-of-string. However, if you use DEBUG’s
fixed-length string modifier, STR ByteArray\L, you will inadvertently clear
the DEBUG screen. The fixed-length specification forces DEBUG to read
and process the 0s at the end of the string, and 0 is equivalent to DEBUG’s
CLS (clear-screen) instruction! Be alert for the consequences of mixing
fixed- and variable-length string operations.

As shown before, SERIN can compare incoming data with a predefined
sequence of bytes using the WAIT formatter. The simplest form waits for a
sequence of up to six bytes specified as part of the InputData list, like so:

SERIN 1, 16468, [WAIT ("SESAME")] 'Wait for word SESAME.
DEBUG "Password accepted"

SERIN will wait for that word, and the program will not continue until it
is received. Since WAIT is looking for an exact match for a sequence of
bytes, it is case-sensitive—“sesame” or “SESAmE” or any other variation
from “SESAME” would be ignored.

SERIN can also wait for a sequence that matches a string stored in an array
variable with the WAITSTR formatter. In the example below, we’ll capture
a string with STR then have WAITSTR look for an exact match:

SerString VAR BYTE(10) ' Make a 10-byte array.
SerString(9) = 0 ' Put 0 in last byte.
SERIN 1, 16468, [STR SerString\9\"!"] ' Get the string
DEBUG "Waiting for: ", STR SerString, CR
SERIN 1, 16468, [WAITSTR SerString] 'Wait for a match
DEBUG "Password accepted!", CR

You can also use WAITSTR with fixed-length strings as in the following
example:

MATCHING A SEQUENCE OF

CHARACTERS WITH WAIT.

MATCHING A SEQUENCE OF

CHARACTERS WITH WAITSTR.

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

SERIN - BASIC Stamp Command Reference

Page 286 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

SerString VAR BYTE(4) ' Make a 4-byte array.
DEBUG "Enter a 4 character password", CR
SERIN 1, 16468, [STR SerString\4] ' Get the string
DEBUG "Waiting for: ", STR SerString\4, CR
SERIN 1, 16468, [WAITSTR SerString\4] 'Wait for a match
DEBUG "Password accepted!", CR

SERIN’s InputData can be structured as a sophisticated list of actions to
perform on the incoming data. This allows you to process incoming data
in powerful ways. For example, suppose you have a serial stream that
contains “pos: xxxx yyyy” (where xxxx and yyyy are 4-digit numbers) and
you want to capture just the decimal y value. The following code would
do the trick:

YOffset VAR WORD
SERIN 1, 16468, [WAIT ("pos: "), SKIP 4, DEC yOffset]
DEBUG ? yOffset

The items of the InputData list work together to locate the label “pos: ”,
skip over the four-byte x data, then convert and capture the decimal y
data. This sequence assumes that the x data is always four digits long; if its
length varies, the following code would be more appropriate:

YOffset VAR WORD
SERIN 1, 16468, [WAIT ("pos: "), DEC yOffset, DEC yOffset]
DEBUG ? yOffset

The unwanted x data is stored in yOffset then replaced by the desired y
data. This is a sneaky way to filter out a number of any size without using
an extra variable. With a little creativity, you can combine the InputData
modifiers to filter and extract almost any data.

Parity is a simple error-checking feature. When a serial sender is set for
even parity (the mode the BASIC Stamps support) it counts the number of
1s in an outgoing byte and uses the parity bit to make that number even.
For instance, if it is sending the 7-bit value: %0011010, it sets the parity bit
to 1 in order to make an even number of 1s (four).

The receiver also counts the data bits to calculate what the parity bit
should be. If it matches the parity bit received, the serial receiver assumes
that the data was received correctly. Of course, this is not necessarily true,
since two incorrectly received bits could make parity seem correct when

BUILDING COMPOUND INPUTDATA

STATEMENTS.

USING PARITY AND HANDLING PARITY

ERRORS.

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 287

the data was wrong, or the parity bit itself could be bad when the rest of
the data was OK.

Many systems that work exclusively with text use (or can be set for) 7-
bit/even-parity mode. Tables 5.73, 5.74 and 5.75 show appropriate
BaudMode settings for different BASIC Stamps. For example, with the BS2,
to receive one data byte through pin 1 at 9600 baud, 7E, inverted:

SerData VAR BYTE
SERIN 1, 24660, [SerData]

That instruction will work, but it doesn’t tell the BS2 what to do in the
event of a parity error. Here’s an improved version that uses the optional
Plabel argument:

SerData VAR BYTE
 SERIN 1, 24660, BadData, [SerData]
 DEBUG ? SerData
STOP

BadData:
 DEBUG "parity error"

If the parity matches, the program continues at the DEBUG instruction
after SERIN. If the parity doesn’t match, the program goes to the label
BadData. Note that a parity error takes precedence over other InputData
specifications (as soon as an error is detected, SERIN aborts and goes to
the Plabel routine).

In all the examples above, the only way to end the SERIN instruction
(other than RESET or power-off) is to give SERIN the serial data it wants.
If no serial data arrives, the program is stuck. However, you can tell the
BASIC Stamp to abort SERIN if it doesn’t receive data within a specified
number of milliseconds. For instance, to receive a decimal number
through pin 1 at 9600 baud, 8N, inverted and abort SERIN after 2 seconds
(2000 ms) if no data arrives:

Result VAR BYTE
SERIN 1, 16468, 2000, NoData, [DEC Result]
Debug CLS, ? Result
STOP

NoData:
 DEBUG CLS, "timed out"

USING THE SERIAL TIME-OUT

FEATURE.

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

SERIN - BASIC Stamp Command Reference

Page 288 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

If no data arrives within 2 seconds, the program aborts SERIN and
continues at the label NoData.

Here's a very important concept: this timeout feature is not picky about
the kind of data SERIN receives; if any serial data is received, it prevents
the timeout. In the example above, SERIN wants a decimal number. But
even if SERIN received letters “ABCD...” at intervals of less than two
seconds, it would never abort.

You can combine parity and serial timeouts. Here is an example for the
BS2 designed to receive a decimal number through pin 1 at 2400 baud, 7E,
inverted with a 10-second timeout:

Result VAR BYTE

Again:
 SERIN 1, 24660, BadData, 10000, NoData, [DEC Result]
 DEBUG CLS, ? Result
GOTO Again

NoData:
 DEBUG CLS, "timed out"
GOTO Again

BadData:
 DEBUG CLS, "parity error"
GOTO Again

When you design an application that requires serial communication
between BASIC Stamps, you have to work within these limitations:

• When the BASIC Stamp is sending or receiving data, it can’t
execute other instructions.

• When the BASIC Stamp is executing other instructions, it can’t
send or receive data. The BASIC Stamp does not have a serial
buffer as there is in PCs. At most serial rates, the BASIC Stamp
cannot receive data via SERIN, process it, and execute another
SERIN in time to catch the next chunk of data, unless there are
significant pauses between data transmissions.

These limitations can sometimes be addressed by using flow control; the
Fpin option for SERIN and SEROUT (at baud rates of up to the limitation
shown in Table 5.70). Through Fpin, SERIN can tell a BASIC Stamp sender
when it is ready to receive data. (For that matter, Fpin flow control follows

REMEMBER: TIMEOUT DOES NOT
CARE WHAT KIND OF DATA IS
RECEIVED, ONLY THAT DATA IS

RECEIVED OR NOT!

COMBINING PARITY AND TIME-OUT.

2 e
2

sx
2

p
2

CONTROLLING DATA FLOW.

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 289

the rules of other serial handshaking schemes, but most computers other
than the BASIC Stamp cannot start and stop serial transmission on a byte-
by-byte basis. That’s why this discussion is limited to communication
between BASIC Stamps.)

Here’s an example using flow control on the BS2 (data through I/O pin 1,
flow control through I/O pin 0, 9600 baud, N8, noninverted):

SerData VAR BYTE
SERIN 1\0, 84, [SerData]

When SERIN executes, I/O pin 1 (Rpin) is made an input in preparation
for incoming data, and I/O pin 0 (Fpin) is made output low, to signal “go”
to the sender. After SERIN finishes receiving, I/O pin 0 goes high to tell
the sender to stop. If an inverted BaudMode had been specified, the Fpin’s
responses would have been reversed. Here’s the relationship of serial
polarity to Fpin states.

 Ready to Receive
("Go")

Not Ready to Receive
("Stop")

Inverted Fpin is High (1) Fpin is Low (0)
Non-inverted Fpin is Low (0) Fpin is High (1)

See the Demo Program, below, for a flow control example using two BS2s.
In the demo program example, without flow control, the sender would
transmit the whole word “HELLO!” in about 6 ms. The receiver would
catch the first byte at most; by the time it got back from the first 1-second
PAUSE, the rest of the data would be long gone. With flow control,
communication is flawless since the sender waits for the receiver to catch
up.

In Figure 5.33, I/O pin 0, Fpin, is pulled to ground through a 10k resistor.
This is to ensure that the sender sees a stop signal (0 for inverted
communications) when the receiver is being programmed.

Table 5.78: BS2, BS2e, BS2sx and
BS2p flow control pin states in
relation to polarity (inverted or non-
inverted).

2 e
2

sx
2

p
2

SERIN - BASIC Stamp Command Reference

Page 290 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Serial communication, because of its complexity, can be very difficult to
work with at times. Please follow these guidelines when developing a
project using the SERIN and SEROUT commands:

1. Always build your project in steps.
a. Start with small, manageable pieces of code, that deals

with serial communication) and test them, one at a time.
b. Add more and more small pieces, testing them each time,

as you go.
c. Never write a large portion of code that works with serial

communication without testing its smallest workable
pieces first.

2. Pay attention to timing.
a. Be very careful to calculate and overestimate the amount

of time operations should take within the BASIC Stamp.
Misunderstanding the timing constraints is the source of
most problems with code that communicate serially.

b. If the serial communication in your project is bi-
directional, the above statement is even more critical.

3. Pay attention to wiring.
a. Take extra time to study and verify serial communication

wiring diagrams. A mistake in wiring can cause strange
problems in communication, or no communication at all.
Make sure to connect the ground pins (Vss) between the
devices that are communicating serially.

4. Verify port setting on the PC and in the SERIN/SEROUT
commands.

a. Unmatched settings on the sender and receiver side will
cause garbled data transfers or no data transfers. If the

Figure 5.33: Flow-Control Example
Circuit.

P0

P1

VSS

BS2
sender

P0

P1

BS2
receiver

Host PC (for Debug)

programming
cable

VSS
10k

SERIN TROUBLESHOOTING.

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 291

data you receive is unreadable, it is most likely a baud
rate setting error.

5. If receiving data from another device that is not a BASIC Stamp,
try to use baud rates of 4800 and below.

a. Because of additional overhead in the BASIC Stamp, and
the fact that the BASIC Stamp has no hardware receive
buffer for serial communication, received data may
sometimes be missed or garbled. If this occurs, try
lowering the baud rate (if possible), adding extra stop bits,
and not using formatters in the SERIN command. Using
simple variables (not arrays) and no formatters will
increase the chance that the BASIC Stamp can receive the
data properly.

6. Be sure to study the effects of SERIN formatters.
a. Some formatters have specific requirements that may

cause problems in received data. For example, the DEC
formatter requires a non-decimal-numeric character to
follow the received number before it will allow the BASIC
Stamp to continue. See Appendix C for example input
data and the effects on formatters.

Demo Program (SERIN.bas)
' This program waits for the characters "A", "B", "C" and "D" to arrive serially
' (Inverted 2400 baud, N81) on I/O pin 0, followed by a number and a carriage return
' (or some other non-number). It then displays the received number on the DEBUG screen.

'{$STAMP BS1} 'STAMP directive (specifies a BS1)

SYMBOL Result = W0

Loop:
 SERIN 0, N2400, ("ABCD"), #Result
 DEBUG #Result, CR
GOTO Loop

1

SERIN - BASIC Stamp Command Reference

Page 292 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Demo Program (SERIN-OUT_SENDER.bs2 & SERIN-OUT_RECEIVER.bs2)
' Using two BS2-IC's, connect the circuit shown in the SERIN command description and run
' this program on the BASIC Stamp designated as the Sender. This program demonstrates
' the use of Flow Control (FPin). Without flow control, the sender would transmit the
' whole word "HELLO!" in about 6 ms. The receiver would catch the first byte at most; by
' the time it got back from the first 1-second PAUSE, the rest of the data would be long
' gone. With flow control, communication is flawless since the sender waits for the
' receiver to catch up.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

Loop:
 SEROUT 1\0, 16468, ["HELLO!"] ' Send the greeting.
 PAUSE 2500
GOTO Loop

' Using two BS2-IC's, connect the circuit shown in the SERIN command description and run
' this program on the BASIC Stamp designated as the Receiver. This program demonstrates
' the use of Flow Control (FPin). Without flow control, the sender would transmit the
' whole word "HELLO!" in about 6 ms. The receiver would catch the first byte at most; by
' the time it got back from the first 1-second PAUSE, the rest of the data would be long
' gone. With flow control, communication is flawless since the sender waits for the
' receiver to catch up.

Letter VAR BYTE
Again:
 SERIN 1\0, 16468, [Letter] ' Get 1 byte.
 DEBUG Letter ' Display on screen.
 PAUSE 1000 ' Wait a second.
GOTO Again

Case2:
 DEBUG "Branched to Case2",cr
GOTO Start

2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also (with
modifications). Locate the proper
source code file or modify the
STAMP directive and the
Baudmode before downloading to
the BS2e, BS2sx or BS2p.

5: BASIC Stamp Command Reference – SEROUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 293

SEROUT BS1 BS2 BS2e BS2sx BS2p

SEROUT Tpin, Baudmode, ({#} OutputData)
SEROUT Tpin {\Fpin}, Baudmode, {Pace,} {Timeout, Tlabel,} [InputData]

Function
Transmit asynchronous serial data (e.g., RS-232 data).

• Tpin is a variable/constant/expression (0 – 16) that specifies the I/O
pin through which the serial data will be transmitted. This pin will
be set to output mode. On the BS2, BS2e, BS2sx and BS2p, if Tpin is
set to 16, the BASIC Stamp uses the dedicated serial-output pin
(SOUT, physical pin 1), which is normally used by the Stamp Editor
during the download process.

• Fpin is an optional variable/constant/expression (0 – 15) that
specifies the I/O pin to monitor for flow control status. This pin will
be set to input mode. NOTE: Fpin must be specified to use the
optional Timeout and Tlabel arguments in the SEROUT command.

• Baudmode is variable/constant/expression (0 – 7 on the BS1, 0 –
65535 on all other BASIC Stamps) that specifies serial timing and
configuration.

• Pace is an optional variable/constant/expression (0 – 65535) that
determines the length of the pause between transmitted bytes.
NOTE: Pace cannot be used simultaneously with Timeout.

• Timeout is an optional variable/constant/expression (0 – 65535) that
tells SEROUT how long to wait for Fpin permission to send. If
permission does not arrive in time, the program will jump to the
address specified by Tlable. NOTE: Fpin must be specified to use
the optional Timeout and Tlabel arguments in the SEROUT
command.

• Tlabel is an optional label that must be provided along with Timeout.
Tlabel indicates where the program should go in the event that
permission to send data is not granted within the period specified
by Timeout.

• OutputData is list of variables, constants, expressions and formatters
that tells SEROUT how to format outgoing data. SEROUT can
transmit individual or repeating bytes, convert values into decimal,

1
2 e

2
sx
2

p
2

1
NOTE: Expressions are not
allowed as arguments on the BS1.
The range of the Rpin argument on
the BS1 is 0 – 7.

NOTE: The BS1's OutputData
argument can only be a list of
variables and the optional decimal
modifier (#).

1

SEROUT - BASIC Stamp Command Reference

Page 294 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

hex or binary text representations, or transmit strings of bytes from
variable arrays. These actions can be combined in any order in the
OutputData list.

Quick Facts

 BS1 BS2 BS2e BS2sx BS2p
Units in Pace
and Timeout

n/a 1 ms 1 ms 400 µs 400 µs

Baud range
300, 600,
1200, and
2400 only

243 to 50K 243 to 50K 608 to 115.2K 608 to 115.2K

Baud limit with
flow control

n/a 19.2K 19.2K 19.2K 19.2K

I/O pins
available

0 - 7 0 – 15 0 - 15 0 - 15
0 – 15 (in

current I/O
block)

Other serial port
pins

n/a SOUT pin (physical pin 1) when Rpin = 16

Special cases n/a Fpin must be specified to use Timeout and Tlabel.
Pace cannot be specified at the same time as Timeout.

Explanation
One of the most popular forms of communication between electronic
devices is serial communication. There are two major types of serial
communication; asynchronous and synchronous. The SERIN and
SEROUT commands are used to receive and send asynchronous serial
data. See the SHIFTIN and SHIFTOUT command for information on the
synchronous method.

The following information is supplemental to what is discussed in the
SERIN command section. Please read through the SERIN command
section for additional information.

All BASIC Stamps (except the BS1) have a line driver on its SOUT pin
(Tpin = 16). See the "Hardware" section of the "Introduction to the BASIC
Stamps" chapter. The SOUT pin goes to a PC’s serial data-in pin on the
DB9 connector built into BASIC Stamp development boards. The
connector is wired to allow both programming and run-time serial
communication (unless you are using the Stamp 2 Carrier Board which is
only designed for programming). For the built-in serial port set the Tpin
argument to 16 in the SEROUT command.

SERIAL COMMUNICATION

BACKGROUND.

Table 5.79: SEROUT Quick Facts.

2 e
2

sx
2

p
2

USING THE BUILT-IN SERIAL PORT ON

THE BS2, BS2E, BS2SX AND BS2P.

5: BASIC Stamp Command Reference – SEROUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 295

All BASIC Stamps (including the BS1) can also transmit RS-232 data
through any of their I/O pins (Tpin = 0 – 7 for BS1, Tpin = 0 – 15 on all
other BASIC Stamps). The I/O pins only provide a 0 to +5 volt swing
(outside of RS-232 specs) and may need to be connected through a line
driver for proper operation with all serial ports. Most serial ports are able
to recognize a 0 to +5 volt swing, however. See Figure 5.34 for sample
wiring.

Figure 5.34 shows the pinouts of the two styles of PC serial ports and how
to connect them to the BASIC Stamp's I/O pin. Though not normally
needed, the figure also shows loop back connections that defeat hardware
handshaking used by some PC software. Note that PC serial ports are
always male connectors. The 25-pin style of serial port (called a DB25)
looks similar to a printer (parallel) port except that it is male, whereas a
parallel port is female.

Asynchronous serial communication relies on precise timing. Both the
sender and receiver must be set for identical timing, usually expressed in
bits per second (bps) called baud.

On all BASIC Stamps, SEROUT requires a value called Baudmode that tells
it the important characteristics of the outgoing serial data; the bit period,
number of data and parity bits, and polarity.

SERIAL TIMING AND MODE

(BAUDMODE).

Figure 5.34: Serial port diagram
showing correct connections to a
BASIC Stamp's I/O pin. NOTE: A
line driver may have to be used
between the I/O pin and the
receiving serial port to ensure
proper communication.

DB-9 Male
(Connector Side)

from I/O pin

2

3

4

Transmit Data (TD)

Receive Data (RD)

Request to Send (RTS)

6

7

20

Data Set Ready (DSR)

Signal Ground (SG)

Data Terminal Ready (DTR)

3

2

7

6

5

4

DB25Function DB9

NOTE: The connections shown with double-lines are
normally not necessary. They indicate optional connections
to disable hardware handshaking (DTR-DSR-DCD and
RTS-CTS). This is only necessary if you are using software
or hardware that expects hardware handshaking.

DB-25 Male
(Connector Side)

252423222120191817161514

13121110987654321

9876

54321

Vss

from I/O pin Vss

8Data Carrier Detect (DCD) 1

5Clear to Send (CTS) 8

SEROUT - BASIC Stamp Command Reference

Page 296 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

On the BS1, serial communication is limited to: no-parity, 8-data bits and
1-stop bit at one of four different speeds: 300, 600, 1200 or 2400 baud.
Table 5.80 indicates the Baudmode value or symbols to use when selecting
the desired mode.

Baudmode
Value

Symbol Baud Rate Polarity and
 Output Mode

0 T2400 2400 TRUE (always driven)
1 T1200 1200 TRUE (always driven)
2 T600 600 TRUE (always driven)
3 T300 300 TRUE (always driven)
4 N2400 2400 INVERTED (always driven)
5 N1200 1200 INVERTED (always driven)
6 N600 600 INVERTED (always driven)
7 N300 300 INVERTED (always driven)
8 OT2400 2400 TRUE (open drain, driven high)
9 OT1200 1200 TRUE (open drain, driven high)
10 OT600 600 TRUE (open drain, driven high)
11 OT300 300 TRUE (open drain, driven high)
12 ON2400 2400 INVERTED (open source, driven low)
13 ON1200 1200 INVERTED (open source, driven low)
14 ON600 600 INVERTED (open source, driven low)
15 ON300 300 INVERTED (open source, driven low)

On the BS2, BS2e, BS2sx and BS2p, serial communication is very flexible.
The Baudmode argument for SEROUT accepts a 16-bit value that
determines its characteristics: 1-stop bit, 8-data bits/no-parity or 7-data
bits/even-parity and virtually any speed from as low as 300 baud to
greater than 100K baud (depending on the BASIC Stamp). Table 5.81
shows how Baudmode is calculated and Tables 5.82, 5.83 and 5.84 show
common baud modes for standard serial baud rates.

Step 1: Determine the
bit period (bits 0 – 11)

BS2 and BS2e: = INT(1,000,000 / baud rate) – 20
BS2sx: = INT(2,500,000 / baud rate) – 20
BS2p: = INT(2,500,000 / baud rate) – 20
Note: INT means 'convert to integer;' drop the numbers to the right of the
decimal point.

Step 2: Set data bits
and parity (bit 13)

8-bit/no-parity = 0
7-bit/even-parity = 8192

Step 3: Select
polarity (bit 14)

True (noninverted) = 0
Inverted = 16384

Step 4: Select driven or
open output (bit 15)

Driven = 0
Open = 32768

Table 5.80: BS1 Baudmode
Values.

Table 5.81: BS2, BS2e, BS2sx and
BS2p Baudmode calculation. Add
the results of steps 1, 2, 3 and 4 to
determine the proper value for the
Baudmode argument.

1

2 e
2

sx
2

p
2

5: BASIC Stamp Command Reference – SEROUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 297

Baud
Rate

8-bit
no-parity
inverted

8-bit
no-parity

true

7-bit
even-parity

inverted

7-bit
even-parity

true
300 19697 3313 27889 11505
600 18030 1646 26222 9838
1200 17197 813 25389 9005
2400 16780 396 24972 8588
4800 16572 188 24764 8380
9600 16468 84 24660 8276

NOTE: For "open" baudmodes used in networking, add 32768 to the values from the table
above. If the dedicated serial port (Tpin=16) is used, the data is inverted and driven
regardless of the baudmode setting.

Baud
Rate

8-bit
no-parity
inverted

8-bit
no-parity

true

7-bit
even-parity

inverted

7-bit
even-parity

true
1200 18447 2063 26639 10255
2400 17405 1021 25597 9213
4800 16884 500 25076 8692
9600 16624 240 24816 8432

NOTE: For "open" baudmodes used in networking, add 32768 to the values from the table
above. If the dedicated serial port (Tpin=16) is used, the data is inverted and driven
regardless of the baudmode setting.

Baud
Rate

8-bit
no-parity
inverted

8-bit
no-parity

true

7-bit
even-parity

inverted

7-bit
even-parity

true
1200 18447 2063 26639 10255
2400 17405 1021 25597 9213
4800 16884 500 25076 8692
9600 16624 240 24816 8432

NOTE: For "open" baudmodes used in networking, add 32768 to the values from the table
above. If the dedicated serial port (Tpin=16) is used, the data is inverted and driven
regardless of the baudmode setting.

If you’re communicating with existing software or hardware, its speed(s)
and mode(s) will determine your choice of baud rate and mode. See the
SERIN command description for more information.

The example below will transmit a single byte through I/O pin 1 at 2400
baud, 8N1, inverted:

CHOOSING THE PROPER BAUD MODE.

A SIMPLE FORM OF SEROUT.

Table 5.82: BS2 and BS2e
common baud rates and
corresponding Baudmodes.

Table 5.83: BS2sx common baud
rates and corresponding
Baudmodes.

Table 5.84: BS2p common baud
rates and corresponding
Baudmodes.

SEROUT - BASIC Stamp Command Reference

Page 298 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

SEROUT 1, N2400, (65)

--or--

SEROUT 1, 16780, [65]

Here, SEROUT will transmit a byte equal to 65 (the ASCII value of the
character "A") through pin 1. If the BASIC Stamp were connected to a PC
running a terminal program (set to the same baud rate) the character "A"
would appear on the screen (see the ASCII character chart in the
appendix).

What if you really wanted the value 65 to appear on the screen? If you
remember from the discussion in the SERIN command, "It is up to the
receiving side (in serial communication) to interpret the values…" In this
case, the PC is interpreting the byte-sized value to be the ASCII code for
the character "A". Unless you're also writing the software for the PC, you
can't change how the PC interprets the incoming serial data, so to solve
this problem, the data needs to be translated before it is sent.

The SEROUT command provides a formatter, called the decimal
formatter, which will translate the value 65 to two ASCII codes for the
characters "6" and "5" and then transmit them. Look at the following code:

SEROUT 1, N2400, (#65)

--or--

SEROUT 1, 16780, [DEC 65]

Notice the decimal formatter in the SEROUT command. It is the “#” (for
the BS1) or “DEC” (for the other BASIC Stamps) that appears just to the
left of the number 65. This tells SEROUT to convert the number into
separate ASCII characters which represent the value in decimal form. If
the value 65 in the code were changed to 123, the SEROUT command
would send three bytes (49, 50 and 51) corresponding to the characters "1",
"2" and "3".

The BS2, BS2e, BS2sx and BS2p have many more conversion formatters
available for the SEROUT command. See the “Additional Conversion
Formatters” section below for more information.

A SIMPLE NUMERIC CONVERSION;
DECIMAL TO ASCII NUMERIC TEXT.

1

1

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

This is written with the BS2's
BaudMode value. Be sure to adjust
the value for your BASIC Stamp.

This is written with the BS2's
BaudMode value. Be sure to adjust
the value for your BASIC Stamp.

2 e
2

sx
2

p
2

5: BASIC Stamp Command Reference – SEROUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 299

The SEROUT command sends quoted text exactly as it appears in the
OutputData list:

SEROUT 1, N2400, ("HELLO", CR)
SEROUT 1, N2400, ("Num = ", #100)

--or--

SEROUT 1, 16780, ["HELLO", CR]
SEROUT 1, 16780, ["Num = ", DEC 100]

The above code will display "HELLO" on one line and "Num = 100" on the
next line. Notice that you can combine data to output in one SEROUT
command, separated by commas. In the example above, we could have
written it as one line of code, with "HELLO", CR, "Num = ", DEC 100 in the
OutputData list.

The BS1’s SEROUT command is limited to above-mentioned features. If
you are not using a BS1, please continue reading about the additional
features below.

The SEROUT command can also be configured to pause between
transmitted bytes. This is the purpose of the optional Pace argument. For
example (9600 baud N8, inverted):

SEROUT 1, 16468, 1000, ["Slowly"]

Here, the BASIC Stamp transmits the word "Slowly" with a 1 second delay
between each character. See Table 5.79 for units of the Pace argument.
One good reason to use the Pace feature is to support devices that require
more than one stop bit. Normally, the BASIC Stamp sends data as fast as
it can (with a minimum of 1 stop bit between bytes). Since a stop bit is
really just a resting state in the line (no data transmitted), using the Pace
option will effectively add multiple stop bits. Since the requirement for 2
or more stop bits (on some devices) is really just a "minimum"
requirement, the receiving side should receive this data correctly.

Keep in mind that when we type something like “XYZ” into the SEROUT
command, the BASIC Stamp actually uses the ASCII codes for each of
those characters for its tasks. We could also typed: 88, 89, 90 in place of
“XYZ” and the program would run the same way since 88 is the ASCII

USING SEROUT'S PACE ARGUMENT
TO INSERT DELAYS BETWEEN
TRANSMITTED BYTES.

USING ASCII CODES.

NOTE: The rest of the code
examples for this section are written
for the BS2, using the BS2's
BaudMode and Timeout values. Be
sure to adjust the value for your
BASIC Stamp.

1

1

2 e
2

sx
2

p
2

This is written with the BS2's
BaudMode value. Be sure to adjust
the value for your BASIC Stamp.

2 e
2

sx
2

p
2

SEROUT - BASIC Stamp Command Reference

Page 300 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

code for the “X” character, 89 is the ASCII code for the “Y” character, and
so on.

The decimal formatter is only one of a whole family of conversion
formatters available with SERIN on the BS2, BS2e, BS2sx and BS2p. See
Table 5.85 for a list of available conversion formatters. All of the
conversion formatters work similar to the decimal formatter. The
formatters translate the value into separate bytes of data until the entire
number is translated or until the indicated number of digits (in the case of
the fixed length formatters) is translated.

The BS2, BS2e, BS2sx and BS2p also have special formatters for outputting
a string of characters, repeated characters and undesirable characters. See
Table 5.86 for a list of these special formatters.

Conversion
Formatter

Type of Number Notes

DEC{1..5} Decimal, optionally fixed to 1 – 5 digits 1
SDEC{1..5} Signed decimal, optionally fixed to 1 – 5 digits 1,2
HEX{1..4} Hexadecimal, optionally fixed to 1 – 4 digits 1

SHEX{1..4} Signed hexadecimal, optionally fixed to 1 – 4 digits 1,2
IHEX{1..4} Indicated hexadecimal, optionally fixed to 1 – 4 digits ($ prefix) 1

ISHEX{1..4} Signed, indicated hexadecimal, optionally fixed to 1 – 4 digits
($ prefix)

1,2

BIN{1..16} Binary, optionally fixed to 1 – 16 digits 1
SBIN{1..16} Signed binary, optionally fixed to 1 – 16 digits 1,2
IBIN{1..16} Indicated binary, optionally fixed to 1 – 16 digits (% prefix) 1

ISBIN{1..16} Signed, indicated binary, optionally fixed to 1 – 16 digits (% prefix) 1,2
1 Fixed-digit formatters like DEC4 will pad the number with leading 0s if necessary; ex:

DEC4 65 sends 0065. If a number is larger than the specified number of digits, the
leading digits will be dropped; ex: DEC4 56422 sends 6422.

2 Signed modifiers work under two's complement rules.

ADDITIONAL CONVERSION

FORMATTERS.

Table 5.85: BS2, BS2e, BS2sx and
BS2p Conversion Formatters.

5: BASIC Stamp Command Reference – SEROUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 301

Special Formatter Action

?

Displays "symbol = x' + carriage return; where x is a number.
Default format is decimal, but may be combined with
conversion formatters (ex: BIN ? x to display "x =
binary_number").

ASC ? Displays "symbol = 'x'" + carriage return; where x is an ASCII
character.

STR ByteArray {\L}

Send character string from an array. The optional \L
argument can be used to limit the output to L characters,
otherwise, characters will be sent up to the first byte equal to
0 or the end of RAM space is reached.

REP Byte \L Send a string consisting of Byte repeated L times
(ex: REP "X"\10 sends "XXXXXXXXXX").

The string formatter is useful for transmitting a string of characters from a
byte array variable. A string of characters is a set of characters that are
arranged or accessed in a certain order. The characters "ABC" could be
stored in a string with the "A" first, followed by the "B" and then followed
by the "C." A byte array is a similar concept to a string; it contains data
that is arranged in a certain order. Each of the elements in an array is the
same size. The string "ABC" could be stored in a byte array containing
three bytes (elements). See the “Defining Arrays” section in Chapter 4 for
more information on arrays.

Here is an example that transmits five bytes (from a byte array) through
I/O pin 1 at 9600 bps, N81/inverted:

SerString VAR BYTE(5) ' Make a 5-byte array.
SerString(0) = "H"
SerString(1) = "E"
SerString(2) = "L"
SerString(3) = "L"
SerString(4) = "O"
SEROUT 1, 16468, [STR SerString\5] ' Send 5-byte string.

Note that we use the optional \L argument of STR. If we didn't specify
this, the BASIC Stamp would try to keep sending characters until it found
a byte equal to 0. Since we didn't specify a last byte of 0 in the array, we
chose to tell it explicitly to only send 5 characters.

Parity is a simple error-checking feature. When the SEROUT command's
Baudmode is set for even parity it counts the number of 1s in the outgoing
byte and uses the parity bit to make that number even. For instance, if it is

Table 5.86: BS2, BS2e, BS2sx and
BS2p Special Formatters.

THE STR (STRING) FORMATTER.

USING PARITY AND HANDLING PARITY

ERRORS.

SEROUT - BASIC Stamp Command Reference

Page 302 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

sending the 7-bit value: %0011010, it sets the parity bit to 1 in order to
make an even number of 1s (four).

The receiver also counts the data bits to calculate what the parity bit
should be. If it matches the parity bit received, the serial receiver assumes
that the data was received correctly. Of course, this is not necessarily true,
since two incorrectly received bits could make parity seem correct when
the data was wrong, or the parity bit itself could be bad when the rest of
the data was OK. Parity errors are only detected on the receiver side.
Generally, the receiver determines how to handle the error. In a more
robust application, the receiver and transmitter might be set up such that
the receiver can request a re-send of data that was received with a parity
error.

When you design an application that requires serial communication
between BASIC Stamps, you have to work within these limitations:

• When the BASIC Stamp is sending or receiving data, it can’t
execute other instructions.

• When the BASIC Stamp is executing other instructions, it can’t
send or receive data. The BASIC Stamp does not have a serial
buffer as there is in PCs. At most serial rates, the BASIC Stamp
cannot receive data via SERIN, process it, and execute another
SERIN in time to catch the next chunk of data, unless there are
significant pauses between data transmissions.

These limitations can sometimes be addressed by using flow control; the
Fpin option for SERIN and SEROUT (at baud rates of up to the limitation
shown in Table 5.79). Through Fpin, SERIN can tell a BASIC Stamp sender
when it is ready to receive data and SEROUT (on the sender) will wait for
permission to send. (For that matter, Fpin flow control follows the rules of
other serial handshaking schemes, but most computers other than the
BASIC Stamp cannot start and stop serial transmission on a byte-by-byte
basis. That’s why this discussion is limited to communication between
BASIC Stamps.)

Here’s an example using flow control on the BS2 (data through I/O pin 1,
flow control through I/O pin 0, 9600 baud, N8, noninverted):

CONTROLLING DATA FLOW.

5: BASIC Stamp Command Reference – SEROUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 303

SerData VAR BYTE
SEROUT 1\0, 84, [SerData]

When SEROUT executes, I/O pin 1 (Tpin) is made an output, and I/O pin
0 (Fpin) is made an input, to wait for the “go” signal from the receiver.
Here’s the relationship of serial polarity to Fpin states.

 Ready to Receive
("Go")

Not Ready to Receive
("Stop")

Inverted Fpin is High (1) Fpin is Low (0)
Non-inverted Fpin is Low (0) Fpin is High (1)

See the Demo Program, below, for a flow control example using two BS2s.
In the demo program example, without flow control, the sender would
transmit the whole word “HELLO!” in about 6 ms. The receiver would
catch the first byte at most; by the time it got back from the first 1-second
PAUSE, the rest of the data would be long gone. With flow control,
communication is flawless since the sender waits for the receiver to catch
up.

In Figure 5.35, I/O pin 0, Fpin, is pulled to ground through a 10k resistor.
This is to ensure that the sender sees a stop signal (0 for inverted
communications) when the receiver is being programmed.

In the flow control examples above, the only way the SEROUT instruction
will end (other than RESET or power-off) is if the receiver allows it to send
the entire OutputData list. If Fpin permission never occurs, the program is
stuck. However, you can tell the BASIC Stamp to abort SEROUT if it
doesn’t receive Fpin permission within a specified time period. For
instance, to transmit a decimal number through pin 1 at 9600 baud, 8N,
inverted and abort SEROUT after 2 seconds (2000 ms) if no Fpin
permission arrives on I/O pin 0:

SEROUT 1\0, 16468, 2000, NoPermission, [DEC 150]
STOP

NoPermission:
 DEBUG CLS, "timed out"

If no Fpin permission arrives within 2 seconds, the program aborts
SEROUT and continues at the label NoPermission.

Table 5.87: BS2, BS2e, BS2sx and
BS2p flow control pin states in
relation to polarity (inverted or non-
inverted).

2 e
2

sx
2

p
2

USING THE SERIAL TIME-OUT

FEATURE.

2 e
2

sx
2

p
2

SEROUT - BASIC Stamp Command Reference

Page 304 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

The SEROUT command supports open-drain and open-source output,
which makes it possible to network multiple BASIC Stamps on a single
pair of wires. These "open baudmodes" only actively drive the Tpin in one
state (for the other state, they simply disconnect the pin; setting it to an
input mode). If two BASIC Stamps in a network had their SEROUT lines
connected together (while a third device listened on that line) and the
BASIC Stamps were using always-driven baudmodes, they could
simultaneously output two opposite states (ie: +5 volts and ground). This
would create a short circuit. The heavy current flow would likely damage
the I/O pins or the BASIC Stamps themselves. Since the open baudmodes
only drive in one state and float in the other, there's no chance of this kind
of short.

The polarity selected for SEROUT determines which state is driven and
which is open as in Table 5.88.

 State (0) State (1) Resister
Pulled to

Inverted Open Driven Gnd (Vss)
Non-inverted Driven Open +5V (Vdd)

Since open baudmodes only drive to one state, they need a resistor to pull
the networked line into the other state, as shown in Table 5.88 and in
Figures 5.36 and 5.37.

Open baudmodes allow the BASIC Stamp to share a line, but it is up to
your program to resolve other networking issues such as who talks when
and how to detect, prevent and fix data errors.

P0

P1

VSS

BS2
sender

P0

P1

BS2
receiver

Host PC (for Debug)

programming
cable

VSS
10k

Table 5.88: BS2, BS2e, BS2sx and
BS2p Open Baudmode States.

Figure 5.35: Flow-Control Example
Circuit.

USING OPEN BAUDMODES FOR

NETWORKING BASIC STAMPS.

5: BASIC Stamp Command Reference – SEROUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 305

Serial communication, because of its complexity, can be very difficult to
work with at times. Please follow these guidelines (and those in the
"SERIN Troubleshooting" section of the SERIN command description)
when developing a project using the SERIN and SEROUT commands:

1. Always build your project in steps.

a. Start with small, manageable pieces of code, that deals with
serial communication) and test them, one at a time.

b. Add more and more small pieces, testing them each time, as
you go.

c. Never write a large portion of code that works with serial
communication without testing its smallest workable pieces
first.

SEROUT TROUBLESHOOTING.

BASIC
Stamp

I/O
Pin

Gnd
(Vss)

BASIC
Stamp

I/O
Pin

Gnd
(Vss)

To other
devices

To other
devices

1 kΩ

Vdd

BASIC
Stamp

Vss

I/O
Pin

Gnd
(Vss)

BASIC
Stamp

I/O
Pin

Gnd
(Vss)

To other
devices

To other
devices

1 kΩ

Figure 5.36: SEROUT Open-Drain
Circuit. This circuit is for use with
the Open, Non-inverted baudmode.

Figure 5.37: SEROUT Open-
Source Circuit. This circuit is for
use with the Open, Inverted
baudmode.

SEROUT - BASIC Stamp Command Reference

Page 306 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

2. Pay attention to timing.
a. Be very careful to calculate and overestimate the amount of

time operations should take within the BASIC Stamp.
Misunderstanding the timing constraints is the source of most
problems with code that communicate serially.

b. If the serial communication in your project is bi-directional,
the above statement is even more critical.

3. Pay attention to wiring.
a. Take extra time to study and verify serial communication

wiring diagrams. A mistake in wiring can cause strange
problems in communication, or no communication at all.
Make sure to connect the ground pins (Vss) between the
devices that are communicating serially.

4. Verify port setting on the PC and in the SERIN/SEROUT
commands.
a. Unmatched settings on the sender and receiver side will cause

garbled data transfers or no data transfers. If the data you
receive is unreadable, it is most likely a baud rate setting
error.

5. If data transmitted to the Stamp Editor's Debug Terminal is
garbled, verify the output format.
a. A common mistake is to send data with SEROUT in ASCII

format. For example, SEROUT 16, 84, [0] instead of
SEROUT 16, 84, [DEC 0]. The first example will send a byte
equal to 0 to the PC, resulting in the Debug Terminal clearing
the screen (since 0 is the control character for a clear-screen
action).

Demo Program (SEROUT.bas)
' This program transmits the characters "A", "B", "C" and "D" (Inverted 2400 baud, N81) on
' I/O pin 0, followed by a number and a carriage return.

'{$STAMP BS1} 'STAMP directive (specifies a BS1)

SYMBOL Result = W0

Result = 1500
Loop:
 SERIN 0, N2400, ("ABCD"), #Result
 PAUSE 1000
GOTO Loop

1

5: BASIC Stamp Command Reference – SEROUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 307

Demo Program (SERIN-OUT_SENDER.bs2 & SERIN-OUT_RECEIVER.bs2)
' Using two BS2-IC's, connect the circuit shown in the SEROUT command description and
' run this program on the BASIC Stamp designated as the Sender. This program
' demonstrates the use of Flow Control (FPin). Without flow control, the sender would
' transmit the whole word "HELLO!" in about 6 ms. The receiver would catch the first byte at
' most; by the time it got back from the first 1-second PAUSE, the rest of the data would be
' long gone. With flow control, communication is flawless since the sender waits for the
' receiver to catch up.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

Loop:
 SEROUT 1\0, 16468, ["HELLO!"] ' Send the greeting.
 PAUSE 2500
GOTO Loop

' Using two BS2-IC's, connect the circuit shown in the SEROUT command description and
' run this program on the BASIC Stamp designated as the Receiver. This program
' demonstrates the use of Flow Control (FPin). Without flow control, the sender would
' transmit the whole word "HELLO!" in about 6 ms. The receiver would catch the first byte at
' most; by the time it got back from the first 1-second PAUSE, the rest of the data would be
' long gone. With flow control, communication is flawless since the sender waits for the
' receiver to catch up.

Letter VAR BYTE
Again:
 SERIN 1\0, 16468, [Letter] ' Get 1 byte.
 DEBUG Letter ' Display on screen.
 PAUSE 1000 ' Wait a second.
GOTO Again

Case2:
 DEBUG "Branched to Case2",cr
GOTO Start

2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also (with
modifications). Locate the proper
source code file or modify the
STAMP directive and the
Baudmode before downloading to
the BS2e, BS2sx or BS2p.

SEROUT - BASIC Stamp Command Reference

Page 308 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

5: BASIC Stamp Command Reference – SHIFTIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 309

SHIFTIN BS1 BS2 BS2e BS2sx BS2p

SHIFTIN Dpin, Cpin, Mode, [Variable {\Bits} {, Variable {\Bits}…}]

Function
Shift data in from a synchronous serial device.

• Dpin is a variable/constant/expression (0 – 15) that specifies the I/O
pin that will be connected to the synchronous serial device’s data
output. This pin will be set to input mode.

• Cpin is a variable/constant/expression (0 – 15) that specifies the I/O
pin that will be connected to the synchronous serial device’s clock
input. This pin will be set to output mode.

• Mode is a variable/constant/expression (0 – 3), or one of four
predefined symbols, that tells SHIFTIN the order in which data bits
are to be arranged and the relationship of clock pulses to valid data.
See Table 5.90 for value and symbol definitions.

• Variable is a variable in which incoming data bits will be stored.

• Bits is an optional variable/constant/expression (1 – 16) specifying
how many bits are to be input by SHIFTIN. If no Bits entry is given,
SHIFTIN defaults to 8 bits.

Quick Facts
 BS2 BS2e BS2sx BS2p

Timing of Th and tl 14 µs / 46 µs 14 µs / 46 µs 5.6 µs / 18 µs 5.6 µs / 18.8 µs
Transmission Rate ~16 kbits/sec ~16 kbits/sec ~42 kbits/sec ~42 kbits/sec

Explanation
SHIFTIN and SHIFTOUT provide an easy method of acquiring data from
synchronous serial devices. Synchronous serial differs from asynchronous
serial (like SERIN and SEROUT) in that the timing of data bits (on a data
line) is specified in relationship to clock pulses (on a clock line). Data bits
may be valid after the rising or falling edge of the clock line. This kind of
serial protocol is commonly used by controller peripherals like ADCs,
DACs, clocks, memory devices, etc.

At their heart, synchronous-serial devices are essentially shift-registers;
trains of flip-flops that pass data bits along in a bucket brigade fashion to a

2 e
2

sx
2

p
2

Table 5.89: SHIFTIN Quick Facts.

SHIFTIN - BASIC Stamp Command Reference

Page 310 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

single data output pin. Another bit is output each time the appropriate
edge (rising or falling, depending on the device) appears on the clock line.

The SHIFTIN instruction first causes the clock pin to output low and the
data pin to switch to input mode. Then, SHIFTIN either reads the data pin
and generates a clock pulse (PRE mode) or generates a clock pulse then
reads the data pin (POST mode). SHIFTIN continues to generate clock
pulses and read the data pin for as many data bits as are required.

Making SHIFTIN work with a particular device is a matter of matching the
mode and number of bits to that device’s protocol. Most manufacturers
use a timing diagram to illustrate the relationship of clock and data. Items
to look for include: 1) which bit of the data arrives first; most significant bit
(MSB) or least significant bit (LSB) and 2) is the first data bit ready before
the first clock pulse (PRE) or after the first clock pulse (POST). Table 5.90
shows the values and symbols available for the Mode argument and Figure
5.38 shows SHIFTIN’s timing.

Symbol Value Meaning
MSBPRE 0 Data is msb-first; sample bits before clock pulse
LSBPRE 1 Data is lsb-first; sample bits before clock pulse

MSBPOST 2 Data is msb-first; sample bits after clock pulse
LSBPOST 3 Data is lsb-first; sample bits after clock pulse

(Msb is most-significant bit; the highest or leftmost bit of a nibble, byte, or word. Lsb is the
least-significant bit; the lowest or rightmost bit of a nibble, byte, or word.)

th

Clock
(Cpin)

Data
(Dpin)

-tl-

-pre modes
sample data
before
clock pulse

1st

-post modes
sample data
before
clock pulse

2nd

Figure 5.38: SHIFTIN Timing
Diagram. Refer to the SHIFTIN
Quick Answers table for timing
information on th and tl.

Table 5.90: SHIFTIN Mode Values
and Symbols.

SHIFTIN OPERATION.

5: BASIC Stamp Command Reference – SHIFTIN

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 311

Here is a simple example:

Result VAR BYTE
SHIFTIN 0, 1, MSBPRE, [Result]

Here, the SHIFTIN command will read I/O pin 0 (the Dpin) and will
generate a clock signal on I/O 1 (the Cpin). The data that arrives on the
Dpin depends on the device connected to it. Let's say, for example, that a
shift register is connected and has a value of $AF (10101111) waiting to be
sent. Additionally, let's assume that the shift register sends out the most
significant bit first, and the first bit is on the Dpin before the first clock
pulse (MSBPRE). The SHIFTIN command above will generate eight clock
pulses and sample the data pin (Dpin) eight times. Afterward, the Result
variable will contain the value $AF.

By default, SHIFTIN acquires eight bits, but you can set it to shift any
number of bits from 1 to 16 with the Bits argument. For example:

Result VAR BYTE
SHIFTIN 0, 1, MSBPRE, [Result \4]

Will only input the first 4 bits. In the example discussed above, the Result
variable will be left with %1010.

Some devices return more than 16 bits. For example, most 8-bit shift
registers can be daisy-chained together to form any multiple of 8 bits; 16,
24, 32, 40... To solve this, you can use a single SHIFTIN instruction with
multiple variables. Each variable can be assigned a particular number of
bits with the Bits argument. As in:

ResultLow VAR WORD
ResultHigh VAR NIB
SHIFTIN 0, 1, MSBPRE, [ResultHigh\4 , ResultLow\16]

The above code will first shift in four bits into ResultHigh and then 16 bits
into ResultLow. The two variables together make up a 20 bit value.

A SIMPLE SHIFTIN EXAMPLE.

CONTROLLING THE NUMBER OF BITS

RECEIVED.

SHIFTIN - BASIC Stamp Command Reference

Page 312 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Demo Program (SHIFTIN.bs2)
' This program uses the SHIFTIN instruction to interface with the ADC0831 8-bit
' analog-to-digital converter from National Semiconductor.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

ADres VAR BYTE 'A-to-D result: one byte.
CS CON 0 'Chip select is pin 0.
AData CON 1 'ADC data output is pin 1.
CLK CON 2 'Clock is pin 2.

HIGH CS 'Deselect ADC to start.

' In the loop below, just three lines of code are required to read the ADC0831. The
' SHIFTIN command does most of the work. The mode argument in the SHIFTIN command
' specifies msb or lsb-first and whether to sample data before or after the clock.
' In this case, we chose msb-first, post-clock. The ADC0831 precedes its data output
' with a dummy bit, which we take care of by specifying 9 bits of data instead of 8.

Again:
 LOW CS 'Activate the ADC0831.
 SHIFTIN AData, CLK, MSBPOST, [ADres\9] 'Shift in the data.
 HIGH CS 'Deactivate ADC0831.
 DEBUG ? ADres 'Show us the conversion result.
 PAUSE 1000 'Wait a second.
GOTO Again 'Do it again.

2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS2e, BS2sx or
BS2p.

5: BASIC Stamp Command Reference – SHIFTOUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 313

SHIFTOUT BS1 BS2 BS2e BS2sx BS2p

SHIFTOUT Dpin, Cpin, Mode, [OutputData {\Bits} {,OutputData {\Bits}…}]

Function
Shift data out to a synchronous serial device.

• Dpin is a variable/constant/expression (0 – 15) that specifies the I/O
pin that will be connected to the synchronous serial device’s data
input. This pin will be set to output mode.

• Cpin is a variable/constant/expression (0 – 15) that specifies the I/O
pin that will be connected to the synchronous serial device’s clock
input. This pin will be set to output mode.

• Mode is a variable/constant/expression (0 – 1), or one of two
predefined symbols, that tells SHIFTOUT the order in which data
bits are to be arranged. See Table 5.92 for value and symbol
definitions.

• OutputData is a variable/constant/expression containing the data to
be sent.

• Bits is an optional variable/constant/expression (1 – 16) specifying
how many bits are to be output by SHIFTOUT. If no Bits entry is
given, SHIFTOUT defaults to 8 bits.

Quick Facts
 BS2 BS2e BS2sx BS2p

Timing of th, tl,
ta and tb

14 µs / 46 µs 14 µs / 46 µs 5.6 µs / 18 µs 5.6 µs / 18.8 µs

Transmission Rate ~16 kbits/sec ~16 kbits/sec ~42 kbits/sec ~42 kbits/sec

Explanation
SHIFTIN and SHIFTOUT provide an easy method of acquiring data from
synchronous serial devices. Synchronous serial differs from asynchronous
serial (like SERIN and SEROUT) in that the timing of data bits (on a data
line) is specified in relationship to clock pulses (on a clock line). Data bits
may be valid after the rising or falling edge of the clock line. This kind of
serial protocol is commonly used by controller peripherals like ADCs,
DACs, clocks, memory devices, etc.

2 e
2

sx
2

p
2

Table 5.91: SHIFTOUT Quick
Facts.

SHIFTOUT - BASIC Stamp Command Reference

Page 314 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

At their heart, synchronous-serial devices are essentially shift-registers;
trains of flip-flops that receive data bits in a bucket brigade fashion from a
single data input pin. Another bit is input each time the appropriate edge
(rising or falling, depending on the device) appears on the clock line.

The SHIFTOUT instruction first causes the clock pin to output low and the
data pin to switch to output mode. Then, SHIFTOUT sets the data pin to
the next bit state to be output and generates a clock pulse. SHIFTOUT
continues to generate clock pulses and places the next data bit on the data
pin for as many data bits as are required for transmission.

Making SHIFTOUT work with a particular device is a matter of matching
the mode and number of bits to that device’s protocol. Most
manufacturers use a timing diagram to illustrate the relationship of clock
and data. One of the most important items to look for is which bit of the
data should be transmitted first; most significant bit (MSB) or least
significant bit (LSB). Table 5.92 shows the values and symbols available
for the Mode argument and Figure 5.39 shows SHIFTOUT’s timing.

Symbol Value Meaning
LSBFIRST 0 Data is shifted out lsb-first
MSBFIRST 1 Data is shifted out msb-first

(Msb is most-significant bit; the highest or leftmost bit of a nibble, byte, or word. Lsb is the
least-significant bit; the lowest or rightmost bit of a nibble, byte, or word.)

Figure 5.39: SHIFTOUT Timing
Diagram. Refer to the SHIFTOUT
Quick Answers table for timing
information on th, tl, ta and tb.

Table 5.92: SHIFTOUT Mode
Values and Symbols.

SHIFTOUT OPERATION.

th

Clock
(cpin)

Data
(dpin)

tl

SHIFTOUT begins,
makes Cpin output low

=previous state of pin unknown

ta

ta

tb

5: BASIC Stamp Command Reference – SHIFTOUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 315

Here is a simple example:

SHIFTOUT 0, 1, MSBFIRST, [250]

Here, the SHIFTOUT command will write to I/O pin 0 (the Dpin) and will
generate a clock signal on I/O 1 (the Cpin). The SHIFTOUT command will
generate eight clock pulses while writing each bit (of the 8-bit value 250)
onto the data pin (Dpin). In this case, it will start with the most significant
bit first as indicated by the Mode value of MSBFIRST.

By default, SHIFTOUT transmits eight bits, but you can set it to shift any
number of bits from 1 to 16 with the Bits argument. For example:

SHIFTOUT 0, 1, MSBFIRST, [250 \4]

Will only output the lowest 4 bits (%0000 in this case).

Some devices require more than 16 bits. To solve this, you can use a single
SHIFTOUT command with multiple values. Each value can be assigned a
particular number of bits with the Bits argument. As in:

SHIFTOUT 0, 1, MSBFIRST, [250\4 , 1045\16]

The above code will first shift out four bits of the number 250 (%1111) and
then 16 bits of the number 1045 (%0000010000010101). The two values
together make up a 20 bit value.

In the examples above, specific numbers were entered as the data to
transmit, but, of course, the SHIFTOUT command will accept variables
and expressions for the OutputData and even for the Bits argument.

A SIMPLE SHIFTOUT EXAMPLE.

CONTROLLING THE NUMBER OF BITS

TRANSMITTED.

SHIFTOUT ACCEPTS VARIABLES AND
EXPRESSIONS FOR OUTPUTDATA AND

BITS ARGUMENTS.

SHIFTOUT - BASIC Stamp Command Reference

Page 316 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Demo Program (SHIFTOUT.bs2)
' This program uses the SHIFTOUT command to interface to the 74HC595 shift register as an
' 8-bit output port. The '595 requires a minimum of three inputs: data, clock, and latch. See
' the figure in the SHIFTOUT command description in the manual for wiring information.
' SHIFTOUT automatically handles the data and clock, pulsing the clock to shift data bits into
' the '595. An extra step (pulsing the latch input) is required to move the shifted bits in parallel
' onto the '595's output pins. Note: this code does not control the output-enable or reset lines
' of the '595. This means that before the BASIC Stamp first sends, the '595's output latches
' are turned on and may contain random data. In critical applications, you should hold
' output-enable high (disabled) until the BASIC Stamp can take control.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

DataP CON 0 ' Data pin to 74HC595.
Clock CON 1 ' Shift clock to 74HC595.
Latch CON 2 ' Moves data from register to output latch.
Counter VAR BYTE ' Counter for demo program.

' This loop moves the 8-bit value 'counter' onto the output lines of the '595, pauses, then
' increments counter and repeats. The data is shifted msb first so that the msb appears on
' pin QH and the lsb on QA. Changing 'msbfirst' to 'lsbfirst' causes the data to
' appear backwards on the outputs.

Again:
 SHIFTOUT DataP,Clock,MSBFIRST,[Counter] ' Send the bits.
 PULSOUT Latch,1 ' Transfer to outputs.
 PAUSE 50 ' Wait briefly.
 Counter = Counter + 1 ' Increment counter.
GOTO Again ' Do it again.

2 e
2

sx
2

p
2

74HC595

To P0

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

QB

QC

QD

QE

QF

QG

QH

GND

VCC

QA

DATA IN

OE

LATCH

CLK

RESET

SQH

Vss

LEDs 470 (all)Ω
Vdd

Vdd

Vss

To P2

To P1

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS2e, BS2sx or
BS2p.

Figure 5.40: SHIFTOUT Timing
Diagram. Refer to the SHIFTOUT
Quick Answers table for timing
information on th, tl, ta and tb.

5: BASIC Stamp Command Reference – SLEEP

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 317

SLEEP BS1 BS2 BS2e BS2sx BS2p

SLEEP Period

Function
Put the BASIC Stamp into low-power mode for a specified time.

• Period is a variable/constant/expression (1 – 65535) that specifies
the duration of sleep. The unit of time for Period is 1 second, though
the BASIC Stamp rounds up to the nearest multiple of 2.3 seconds.

Quick Facts
 BS1 BS2 BS2e BS2sx BS2p

Current draw
during run

2 mA 8 mA 25 mA 60 mA 40 mA

Current draw
during SLEEP

20 µA 40 µA 60 µA 60 µA 60 µA

Accuracy of
SLEEP

±1% @ 75°F
with stable

power supply

±1% @ 75°F
with stable

power supply

±1% @ 75°F
with stable

power supply

±1% @ 75°F
with stable

power supply

±1% @ 75°F
with stable

power supply

Explanation
SLEEP allows the BASIC Stamp to turn itself off, then turn back on after a
programmed period of time. The length of SLEEP can range from 2.3
seconds to slightly over 18 hours. Power consumption is reduced to the
amount described in Table 5.93, assuming no loads are being driven. The
resolution of the SLEEP instruction is 2.304 seconds. SLEEP rounds the
specified number of seconds up to the nearest multiple of 2.304. For
example, SLEEP 1 causes 2.3 seconds of sleep, while SLEEP 10 causes 11.52
seconds (5 x 2.304) of sleep.

Pins retain their previous I/O directions during SLEEP. However, outputs
are interrupted every 2.3 seconds during SLEEP due to the way the chip
keeps time. The alarm clock that wakes the BASIC Stamp up is called the
watchdog timer. The watchdog is a resistor/capacitor oscillator built into
the interpreter chip. During SLEEP, the chip periodically wakes up and
adjusts a counter to determine how long it has been asleep. If it isn’t time
to wake up, the chip “hits the snooze bar” and goes back to sleep.

To ensure accuracy of SLEEP intervals, the BASIC Stamp periodically
compares the watchdog timer to the more-accurate resonator time base. It

1 2 e
2

sx
2

p
2

1
NOTE: Expressions are not
allowed as arguments on the BS1.

Table 5.93: SLEEP Quick Facts.

SLEEP - BASIC Stamp Command Reference

Page 318 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

calculates a correction factor that it uses during SLEEP. As a result, longer
SLEEP intervals are accurate to approximately ±1 percent.

If your application is driving loads (sourcing or sinking current through
output-high or output-low pins) during SLEEP, current will be interrupted
for about 18 ms when the BASIC Stamp wakes up every 2.3 seconds. The
reason is that the watchdog-timer reset that awakens the BASIC Stamp
also causes all of the pins to switch to input mode for approximately 18
ms. When the interpreter firmware regains control of the processor, it
restores the I/O directions dictated by your program.

If you plan to use END, NAP, or SLEEP in your programs, make sure that
your loads can tolerate these periodic power outages. The simplest
solution is often to connect resistors high or low (to +5V or ground) as
appropriate to ensure a continuing supply of current during the reset
glitch.

The demo program can be used to demonstrate the effects of the SLEEP
glitch with an LED and resistor as shown in Figure 5.41.

Demo Program (SLEEP.bs2)
' This program lights an LED and then goes to sleep. Connect an LED to pin 0 as shown in
' the description of SLEEP in the manual and run the program. The LED will turn on, then
' the BASIC Stamp will go to sleep. During sleep, the LED will remain on, but will blink
' at intervals of approximately 2.3 seconds due to the watchdog timeout and reset.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

LOW 0 ' Turn LED on
Snooze:
 SLEEP 10 ' Sleep for 10 seconds.
GOTO Snooze

1 2 e
2

sx
2

p
2

P0

Vdd

470 Ω

LED

Figure 5.41: SLEEP Example LED
Circuit.

NOTE: This is written for the BS2
but can be used for the BS1, BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS1, BS2e,
BS2sx or BS2p.

5: BASIC Stamp Command Reference – SOUND

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 319

SOUND BS1 BS2 BS2e BS2sx BS2p

SOUND Pin, (Note, Period {, Note, Period…})
(See FREQOUT)

Function
Generate square-wave tones for a specified period.

• Pin is a variable/constant (0 – 7) that specifies the I/O pin to use.
This pin will be set to output mode.

• Note is a variable/constant (0 – 255) specifying the type and
frequency of the tone. 1 – 127 are ascending tones and 128 – 255 are
ascending white noises ranging from buzzing (128) to hissing (255).

• Period is a variable/constant (1 - 255) specifying the amount of time
to generate the tone(s). The unit of time for Period is 12 ms.

Explanation
SOUND generates one of 255 square-wave frequencies on an I/O pin. The
output pin should be connected as shown in Figure 5.42.

The tones produced by SOUND can vary in frequency from 94.8 Hz (1) to
10,550 Hz (127). If you need to determine the frequency corresponding to a
given note value, or need to find the note value that will give you best
approximation for a given frequency, use the equations below.

Note = 127 – (((1/Frequency)-0.000095)/0.000083)

--and--

Frequency = (1/(0.000095 + ((127–Note)*0.000083))

Note, in the above equations, Frequency is in Hertz (Hz).

1
2 e

2
sx
2

p
2

SOUND - BASIC Stamp Command Reference

Page 320 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Demo Program (SOUND.bas)
' This program generates a constant tone 25 followed by an ascending tones. Both the tones
' have the same period (duration).

'{$STAMP BS1} 'STAMP directive (specifies a BS1)

SYMBOL Tone = B0

FOR Tone = 0 TO 255
 SOUND 1, (25, 10, Tone, 10)
NEXT

10µF (both)

++
≥40Ω Speaker
(or 8Ω in series
with 33Ω resistor)

from I/O pin

C1 C2

Notes:
C1 may be omitted for piezo speakers
C2 is optional, but reduces high-frequency noise

from I/O pin

Driving a Speaker

1k

0.1µF 0.01µF

1k

Driving an Audio Amplifier

Amplifier
(e.g., Radio Shack
277-1008C)

Vss Vss

Vss Vss Vss

Figure 5.42: Example RC filter
circuits for driving and audio
amplifier or a speaker.

1

5: BASIC Stamp Command Reference – STOP

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 321

STOP BS1 BS2 BS2e BS2sx BS2p

STOP

Function
Stop program execution.

Explanation
STOP prevents the BASIC Stamp from executing any further instructions
until it is reset. The following actions will reset the BASIC Stamp:

1. Pressing and releasing the RESET button on the development
board.

2. Driving the RES pin low then letting it float (high).
3. Downloading a new program
4. Disconnecting then reconnecting the power.

STOP differs from END in two respects:

1. Stop does not put the BASIC Stamp into low-power mode. The
BASIC Stamp draws just as much current as if it were actively
running program instructions.

2. The output glitch that occurs after a program has "ended" does not
occur after a program has "stopped."

Demo Program (STOP.bs2)
' This program is similar to SLEEP.bs2 except that the LED will not blink since the BASIC
' Stamp does not go into low power mode. Use the circuit shown in the description of the
' SLEEP command for this example.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

LOW 0 ' Turn LED on
STOP ' Stop the program forever

2 e
2

sx
2

p
2

2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS2e, BS2sx or
BS2p.

STOP - BASIC Stamp Command Reference

Page 322 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

5: BASIC Stamp Command Reference – STORE

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 323

STORE BS1 BS2 BS2e BS2sx BS2p

STORE ProgramSlot

Function
Designate a program slot for the READ/WRITE instructions to operate
upon.

• ProgramSlot is a variable/constant/expression (0 – 7) that specifies
the program slot to use for READ and WRITE instructions.

Explanation
STORE tells the BS2p which program slot to use when a READ or WRITE
instruction is executed. The STORE command only affects the READ and
WRITE instructions.

The STORE command allows a program to access all EEPROM locations
that exist on the BS2p, regardless of which program is running or which
program slot is active. The READ and WRITE commands can only access
locations 0 to 2047 within a single program slot. The STORE command
switches the program slot that the READ and WRITE commands operate
on.

The default program slot that the READ and WRITE instructions operate
on is the currently running program. The STORE command can be used
to temporarily change this, to any program slot. The change will remain
in effect until another STORE command is issued, or until another
program slot is executed.

Demo Program (STORE0.bsp)
' This program demonstrates the STORE command and how it affects the READ and WRITE
' commands. This program "STORE0.BSP" is intended to be downloaded into program
' slot 0. It is meant to work with STORE1.BSP and STORE2.BSP. Each program is very
' similar (they display the current Program Slot and Read/Write Slot numbers and the
' values contained in the first five EEPROM locations. Each program slot will have
' different data due to different DATA commands in each of the programs downloaded.

'{$STAMP BS2p, Store1.bsp, Store2.bsp} 'STAMP directive (specifies a BS2p)

DATA @0, 1, 2, 3, 4, 5

Idx VAR WORD
Value VAR BYTE

p
2

p
2

STORE - BASIC Stamp Command Reference

Page 324 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

' -------------------------- Main Routines --------------------------

Main:
 GOSUB DisplaySlotsAndReadData
 PAUSE 2000
 STORE 1 'Switch to READ/WRITE slot 1
 GOSUB DisplaySlotsAndReadData
 PAUSE 2000
 RUN 1 'Switch to program 1

' --------------------------- Subroutines ---------------------------
DisplaySlotsAndReadData:
 GET 127, Value
 DEBUG CR, "Prog Slot: ", DEC1 Value.LOWNIB
 DEBUG " R/W Slot: ", DEC1 Value.HIGHNIB, CR, CR

 FOR Idx = 0 TO 4
 READ Idx, Value
 DEBUG "Location: ", DEC Idx, " Value: ", DEC3 Value, CR
 NEXT
RETURN

Demo Program (STORE1.bsp)
DATA @0, 6, 7, 8, 9, 10

Idx VAR WORD
Value VAR BYTE

' -------------------------- Main Routines --------------------------
Main:
 GOSUB DisplaySlotsAndReadData
 PAUSE 2000
 STORE 0 'Switch to READ/WRITE slot 0
 GOSUB DisplaySlotsAndReadData
 PAUSE 2000
 RUN 2 'Switch to program 2

' --------------------------- Subroutines ---------------------------
DisplaySlotsAndReadData:
 GET 127, Value
 DEBUG CR, "Prog Slot: ", DEC1 Value.LOWNIB
 DEBUG " R/W Slot: ", DEC1 Value.HIGHNIB, CR, CR

 FOR Idx = 0 TO 4
 READ Idx, Value
 DEBUG "Location: ", DEC Idx, " Value: ", DEC3 Value, CR
 NEXT
RETURN

p
2

5: BASIC Stamp Command Reference – STORE

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 325

Demo Program (STORE2.bsp)
DATA @0, 11, 12, 13, 14, 15

Idx VAR WORD
Value VAR BYTE

' -------------------------- Main Routines --------------------------
Main:
 GOSUB DisplaySlotsAndReadData
 PAUSE 2000
 STORE 0 'Switch to READ/WRITE slot 0
 GOSUB DisplaySlotsAndReadData
STOP 'Stop execution

' --------------------------- Subroutines ---------------------------
DisplaySlotsAndReadData:
 GET 127, Value
 DEBUG CR, "Prog Slot: ", DEC1 Value.LOWNIB
 DEBUG " R/W Slot: ", DEC1 Value.HIGHNIB, CR, CR

 FOR Idx = 0 TO 4
 READ Idx, Value
 DEBUG "Location: ", DEC Idx, " Value: ", DEC3 Value, CR
 NEXT
RETURN

The next Demo Program, StoreAll.bsp, is not related to the previous three
programs. StoreAll.bsp demonstrates the use of the STORE command to
treat contiguous program slots as one block of memory (14 kbytes). This
illustrates one of the most powerful uses of the STORE command.

Demo Program (STOREALL.bsp)
' This program demonstrates the STORE command and how it can be used to "flatten"
' the EEPROM space for applications requiring a lot of storage. This program
' writes to EEPROM locations within program slots 1 though 7 and, thus, has access
' to 14 kbytes of space.

'{$STAMP BS2p} 'STAMP directive (specifies a BS2p)

Idx VAR WORD
Value VAR WORD

' -------------------------- Main Routines --------------------------
Main:
 DEBUG "Writing...", CR
 PAUSE 2000
 FOR Idx = 2048 TO 16383 STEP 32 'Write values to EEPROM

p
2

p
2

STORE - BASIC Stamp Command Reference

Page 326 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

 Value = Idx – 2048 * 2 'Use different numbers in each location
 GOSUB WriteWordToEEPROM
 DEBUG "Location: ", DEC5 Idx, " Value: ", DEC5 Value, CR
 NEXT

 DEBUG "Reading...", CR
 PAUSE 2000
 FOR Idx = 2048 TO 16383 STEP 32 'Read values from EEPROM
 GOSUB ReadWordFromEEPROM
 DEBUG "Location: ", DEC5 Idx, " Value: ", DEC5 Value, CR
 NEXT
STOP

' --------------------------- Subroutines ---------------------------
WriteWordToEEPROM:
 'NOTE: This routine is written to work only when Idx is an even-byte boundary
 STORE Idx >> 11 'Set to proper READ/WRITE slot (upper 3-bits of address)
 WRITE Idx, Value.LOWBYTE
 WRITE Idx+1, Value.HIGHBYTE
RETURN

ReadWordFromEEPROM:
 'NOTE: This routine is written to work only when Idx is an even-byte boundary
 STORE Idx >> 11 'Set to proper READ/WRITE slot (upper 3-bits of address)
 READ Idx, Value.LOWBYTE
 READ Idx+1, Value.HIGHBYTE
RETURN

5: BASIC Stamp Command Reference – TOGGLE

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 327

TOGGLE BS1 BS2 BS2e BS2sx BS2p

TOGGLE Pin

Function
Invert the state of an output pin.

• Pin is a variable/constant/expression (0 – 15) that specifies which
I/O pin to set high. This pin will be placed into output mode.

Explanation
TOGGLE sets a pin to output mode and inverts the output state of the pin,
changing 0 to 1 and 1 to 0.

In some situations TOGGLE may appear to have no effect on a pin’s state.
For example, suppose pin 2 is in input mode and pulled to +5V by a 10k
resistor. Then the following code executes:

DIR2 = 0 ' Pin 2 in input mode.
PIN2 = 0 ' Pin 2 output driver low.
DEBUG ? PIN2 ' Show state of pin 2 (1 due to pullup).
TOGGLE 2 ' Toggle pin 2 (invert PIN2, put 1 in DIR2).
DEBUG ? PIN2 ' Show state of pin 2 (1 again).

--or--

DIR2 = 0 ' Pin 2 in input mode.
OUT2 = 0 ' Pin 2 output driver low.
DEBUG ? IN2 ' Show state of pin 2 (1 due to pullup).
TOGGLE 2 ' Toggle pin 2 (invert OUT2, put 1 in DIR2).
DEBUG ? IN2 ' Show state of pin 2 (1 again).

The state of pin 2 doesn’t change; it's high (due to the resistor) before
TOGGLE, and it’s high (due to the pin being output high) afterward. The
point is that TOGGLE works on the OUTS register, which may not match
the pin’s state when the pin is initially an input. To guarantee that the state
actually changes, regardless of the initial input or output mode, do this:

PIN2 = PIN2' Make output driver match pin state.
TOGGLE 2 ' Then toggle.

--or—

OUT2 = IN2 ' Make output driver match pin state.
TOGGLE 2 ' Then toggle.

1 2 e
2

sx
2

p
2

1
NOTE: Expressions are not
allowed as arguments on the BS1.
The range of the Pin argument on
the BS1 is 0 – 7.

1

2 e
2

sx
2

p
2

1

2 e
2

sx
2

p
2

TOGGLE - BASIC Stamp Command Reference

Page 328 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Demo Program (TOGGLE.bas)
' Connect LEDs to pins 0 through 3 as shown in the TOGGLE command description in the
' manual and run this program. The TOGGLE command will treat you to a light show. You
' may also run the demo without LEDs. The debug window will show you the states of pins 0
' through 3.

'{$STAMP BS1} 'STAMP directive (specifies a BS1)

SYMBOL ThePin = B0 ' Variable to count 0-3.
Again:
 FOR ThePin = 0 TO 3 ' Pins 0 to 3 driving LEDs.
 TOGGLE ThePin ' Toggle each pin.
 DEBUG CLS, #PINS ' No LEDs? Watch debug screen.
 PAUSE 200 ' Brief delay.
 NEXT ' Next pin
GOTO Again ' Repeat endlessly.

Demo Program (TOGGLE.bs2)
' Connect LEDs to pins 0 through 3 as shown in the TOGGLE command description in the
' manual and run this program. The TOGGLE command will treat you to a light show. You
' may also run the demo without LEDs. The debug window will show you the states of pins 0
' through 3.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

ThePin VAR NIB ' Variable to count 0-3.
Again:
 FOR ThePin = 0 TO 3 ' Pins 0 to 3 driving LEDs.
 TOGGLE ThePin ' Toggle each pin.
 DEBUG CLS, BIN4 INA ' No LEDs? Watch debug screen.
 PAUSE 200 ' Brief delay.
 NEXT ' Next pin
GOTO Again ' Repeat endlessly.

2 e
2

sx
2

p
2

1

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS2e, BS2sx or
BS2p.

P0
220 Ω

LED

P1
220 Ω

P2
220 Ω

P3
220 Ω

Vss

LED

Vss

LED

Vss

LED

Vss

Figure 5.43: Example LED circuit
for TOGGLE demo programs.

5: BASIC Stamp Command Reference – WRITE

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 329

WRITE BS1 BS2 BS2e BS2sx BS2p

WRITE Location, DataItem

Function
Write DataItem into Location in EEPROM.

• Location is a variable/constant/expression (0 – 255 on BS1, 0 – 2047
on all other BASIC Stamps) that specifies the EEPROM address to
write to.

• DataItem is a variable/constant/expression specifying the value to
be stored.

Quick Facts
 BS1 BS2 BS2e, BS2sx BS2p

Range of
EEPROM
locations

0 to 255 0 to 2047 0 to 2047 0 to 2047
(see notes below)

Maximum
number of
writes per
location

10 million 10 million 100,000 100,000

Special
notes

n/a n/a

WRITE only works
with current

program slot on
BS2e and BS2sx.

WRITE works with
any program slot as

set by
the STORE
command.

Explanation
The EEPROM is used for both program storage (which builds downward
from address 255 on BS1, 2047 on all other BASIC Stamps) and data
storage (which builds upward from address 0). The WRITE instruction
stores a byte of data to any EEPROM address. Any location within the
EEPROM can be written to (including your PBASIC program's locations)
at run-time. This feature is mainly used to store long-term data from
EEPROM; data stored in EEPROM is not lost when the power is removed.

The following WRITE command stores the value 245 at location 100:

1 2 e
2

sx
2

p
2

1

NOTE: Expressions are not
allowed as arguments on the BS1.

A SIMPLE WRITE COMMAND.

Table 5.94: WRITE Quick Facts.

WRITE - BASIC Stamp Command Reference

Page 330 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

WRITE 100, 245

--or--

WRITE 100, 245

The EEPROM is organized as a sequential set of byte-sized memory
locations. The WRITE command only stores byte-sized values into
EEPROM. This does not mean that you can't write word-sized values,
however. A word consists of two bytes, called a low-byte and a high-byte.
If you wanted to write a word-sized value, you'll need to use two WRITE
commands and a word-size value or variable (along with some handy
modifiers). For example,

SYMBOL Value = W0 'The full word-sized variable
SYMBOL Value_Low = B0 'B0 happens to be the low-byte of W0
SYMBOL Value_High = B1 'B1 happens to be the high-byte of W0

Value = 1125

WRITE 0, Value_Low
WRITE 1, Value_High

--or--

Value VAR WORD

WRITE 0, Value.LOWBYTE
WRITE 1, Value.HIGHBYTE

When this program runs, the two WRITE commands will store the low-
byte and high-byte of the number 1125 into EEPROM.

EEPROM differs from RAM, the memory in which variables are stored, in
several respects:

1. Writing to EEPROM takes more time than storing a value in a
variable. Depending on many factors, it may take several
milliseconds for the EEPROM to complete a write. RAM storage is
nearly instantaneous.

2. The EEPROM can only accept a finite number of write cycles per
location before it wears out. Table 5.94 indicates the guaranteed
number of writes before failure. If a program frequently writes to
the same EEPROM location, it makes sense to estimate how long it

WRITING WORD VALUES VS. BYTE

VALUES.

1

2 e
2

sx
2

p
2

1

2 e
2

sx
2

p
2

SPECIAL NOTES FOR EEPROM
USAGE.

5: BASIC Stamp Command Reference – WRITE

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 331

might take to exceed the guaranteed maximum. For example, on
the BS2, at one write per second (86,400 writes/day) it would take
nearly 116 days of continuous operation to exceed 10 million.

3. The primary function of the EEPROM is to store programs (data is
stored in leftover space). If data overwrites a portion of your
program, the program will most likely crash.

Check the program’s memory map to determine what portion of memory
your program occupies and make sure that EEPROM writes cannot stray
into this area. You may also use the DATA directive on the BS2, BS2e,
BS2sx and BS2p to set aside EEPROM space.

On the BS1, location 255 holds the address of the last instruction in your
program. Therefore, your program can use any space below the address
given in location 255. For example, if location 255 holds the value 100,
then your program can use locations 0–99 for data.

On other BASIC Stamps, you'll need to view the Memory Map of the
program before you download it, to determine the last EEPROM location
used. See the "Memory Map Function" section in Chapter 3.

On the BS2p, the READ and WRITE commands can affect locations in any
program slot as set by the STORE command. See the STORE command for
more information.

Demo Program (WRITE.bas)
' This program writes a few bytes to EEPROM and then reads them back out and displays
' them on the screen.

'{$STAMP BS1} 'STAMP directive (specifies a BS1)

SYMBOL ValAddr = B0
SYMBOL Value = B1

WriteItOut:
 WRITE 0, 100 'Write some data to location 0 through 3
 WRITE 1, 200
 WRITE 2, 45
 WRITE 3, 28

ReadItOut:
 FOR ValAddr = 0 TO 3 'Read all four locations and display the
 READ ValAddr, Value 'value on the screen
 DEBUG ? Value

1

1

2 e
2

sx
2

p
2

p
2

WRITE - BASIC Stamp Command Reference

Page 332 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

 NEXT

Demo Program (WRITE.bs2)
' This program writes a few bytes to EEPROM and then reads them back out and displays
' them on the screen.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

ValAddr VAR BYTE
Value VAR BYTE

WriteItOut:
 WRITE 0, 100 'Write some data to location 0 through 3
 WRITE 1, 200
 WRITE 2, 45
 WRITE 3, 28

ReadItOut:
 FOR ValAddr = 0 TO 3 'Read all four locations and display the
 READ ValAddr, Value 'value on the screen
 DEBUG ? Value
 NEXT

2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS2e, BS2sx or
BS2p.

5: BASIC Stamp Command Reference – XOUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 333

XOUT BS1 BS2 BS2e BS2sx BS2p

XOUT Mpin, Zpin, [House\Command { \Cycles} {, House\Command { \Cycles}…}]

Function
Send an X-10 power-line control command (through the appropriate
power-line interface).

• Mpin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to output X-10 signals (modulation) to the power-line interface
device. This pin will be set to output mode.

• Zpin is a variable/constant/expression (0 – 15) that specifies the I/O
pin that inputs the zero-crossing signal from the power-line
interface device. This pin will be set to input mode.

• House is a variable/constant/expression (0 – 15) that specifies the X-
10 house code (values 0 - 15 representing letters A through P).

• Command is a variable/constant/expression (0 – 30) that specifies the
command to send. Values 0 – 15 correspond to unit codes 1 – 16.
Other commands are shown in Table 5.96.

• Cycles is an optional variable/constant/expression (1 – 255)
specifying the number of times to transmit a given key or command.
If no Cycles entry is used, XOUT defaults to two. The Cycles entry
should be used only with the DIM and BRIGHT command codes

Quick Facts
 BS2, BS2e, BS2sx and BS2p

Compatible
power-line
interfaces

PL-513 and TW-523

Special notes
The XOUT command will stop the BASIC Stamp program until it is able

to send the transmission. If there is no AC power to the power-line
interface, the BASIC Stamp program will halt forever.

Explanation
XOUT lets you control appliances via signals sent through household AC
wiring to X-10 modules. The appliances plugged into these modules can
be switched on or off; lights may also be dimmed. Each module is
assigned a house code and unit code by setting dials or switches on the

2 e
2

sx
2

p
2

Table 5.95: XOUT Quick Facts.

XOUT - BASIC Stamp Command Reference

Page 334 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

module. To talk to a particular module, XOUT sends the appropriate
house code and unit code. The module with the corresponding code
listens for its house code again followed by a command (on, off, dim, or
bright).

X-10 signals are digital codes imposed on a 120 kHz carrier that is
transmitted during zero crossings of the AC line. To send X-10
commands, a controller must synchronize to the AC line frequency with
50 µs precision, and transmit an 11-bit code sequence representing the
command.

XOUT interfaces to the AC power-line through an approved interface
device such as a PL-513 or TW-523, available from Parallax or X-10
dealers. The hookup requires a length of four-conductor phone cable and a
standard modular phone-base connector (6P4C type). Connections are
shown in Figure 5.44.

P0

Vdd

10 kΩ

Bottom of power-line
interface (PL-513 or TW-523)

P1

Vss

1 2 3 4

Figure 5.44: XOUT Power-Line
Interface Circuit.

X-10 PROTOCOL DETAILS.

5: BASIC Stamp Command Reference – XOUT

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 335

Table 5.96 lists the XOUT command codes and their functions:

Command Value Function
UnitOn %10010 Turn on the currently selected unit.
UnitOff %11010 Turn off the currently selected unit.
UnitsOff %11100 Turn off all modules in this house code.
LightsOn %10100 Turn on all lamp modules in this house code.

Dim %11110 Reduce brightness of currently selected lamp.
Bright %10110 Increase brightness of currently selected lamp.

Note: In most applications, it’s not necessary to know the code for a given X-10 instruction.
Just use the command constant (UnitOn, Dim, etc.) instead. But knowing the codes leads to
some interesting possibilities. For example, XORing a UnitOn command with the value
%1000 turns it into a UnitOff command, and vice-versa. This makes it possible to write the
equivalent of an X-10 “toggle” instruction.

Here is an example of the XOUT instruction:

Zpin CON 0 ' Zpin is P0.
Mpin CON 1 ' Mpin is P1.
HouseA CON 0 ' House code A = 0.
Unit1 CON 0 ' Unit code 1 = 0.

XOUT Mpin, Zpin, [HouseA\Unit1] ' Get unit 1's attention..
XOUT Mpin, Zpin, [HouseA\UnitOn] ' ..and tell it to turn on.

You can combine those two XOUT instructions into one like so:

XOUT Mpin, Zpin, [HouseA\Unit1\2, HouseA\UnitOn]' Unit 1 on.

Note that to complete the attention-getting code HouseA\Unit1 we tacked
on the normally optional cycles entry \2 to complete the command before
beginning the next one. Always specify two cycles in multiple commands
unless you’re adjusting the brightness of a lamp module.

Here is an example of a lamp-dimming instruction:

Zpin CON 0 ' Zpin is P0.
Mpin CON 1 ' Mpin is P1.
HouseA CON 0 ' House code A = 0.
Unit1 CON 0 ' Unit code 1 = 0.

XOUT Mpin, Zpin, [HouseA\Unit1] 'Get unit 1's attention..
XOUT Mpin, Zpin, [HouseA\UnitOff\2, HouseA\Dim\10] 'Dim halfway.

The dim/bright commands support 19 brightness levels. Lamp modules
may also be turned on and off using the standard UnitOn and UnitOff
commands. In the example instruction above, we dimmed the lamp by

Table 5.96: XOUT Commands and
Their Function.

A SIMPLE XOUT EXAMPLE: TURNING

AN APPLIANCE ON.

COMBINING MULTIPLE COMMANDS.

DIMMING LIGHTS.

XOUT - BASIC Stamp Command Reference

Page 336 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

first turning it completely off, then sending 10 cycles of the Dim
command. This may seem odd, but it follows the peculiar logic of the X-10
system.

Demo Program (X10.bs2)
' This program--really two program fragments--demonstrates the syntax and use of the XOUT
' command. XOUT works like pressing the buttons on an X-10 control box; first you press one
' of 16 keys to identify the unit you want to control, then you press the key for the action you
' want that unit to take (turn ON, OFF, Bright, or Dim). There are also two group-action keys,
' Lights ON and All OFF. Lights ON turns all lamp modules on without affecting appliance
' modules. All OFF turns off all modules, both lamp and appliance types. Connect the BASIC
' Stamp to a power-line interface as shown in the XOUT command description in the manual.

'{$STAMP BS2} 'STAMP directive (specifies a BS2)

Zpin CON 0 ' Zero-crossing-detect pin from TW523 or PL513.
Mpin CON 1 ' Modulation-control pin to TW523 or PL513.
HouseA CON 0 ' House code: 0=A, 1=B... 15=P
Unit1 CON 0 ' Unit code: 0=1, 1=2... 15=16
Unit2 CON 1 ' Unit code 1=2.

' This first example turns a standard (appliance or non-dimmer lamp) module ON, then OFF.
' Note that once the Unit code is sent, it need not be repeated--subsequent instructions are
' understood to be addressed to that unit.

XOUT Mpin, Zpin, [HouseA\Unit1\2, HouseA\UnitOn]' Talk to Unit 1. Turn it ON.
PAUSE 1000 ' Wait a second.
XOUT Mpin, Zpin, [HouseA\UnitOff] ' Tell it to turn OFF.

' The next example talks to a lamp module using the dimmer feature. Dimmers go from full
' ON to dimmed OFF in 19 steps. Because dimming is relative to the current state of the
' lamp, the only guaranteed way to set a predefined brightness level is to turn the dimmer fully
' OFF, then ON, then dim to the desired level.

XOUT Mpin, Zpin, [HouseA\Unit2] ' Talk to Unit 2.

' This example shows the use of the optional Cycles argument. Here we Dim for 10 cycles.

XOUT Mpin, Zpin, [HouseA\UnitOff\2, HouseA\Dim\10]

STOP

2 e
2

sx
2

p
2

NOTE: This is written for the BS2
but can be used for the BS2e,
BS2sx and BS2p also. Locate the
proper source code file or modify
the STAMP directive before
downloading to the BS2e, BS2sx or
BS2p.

Appendix A: ASCII Chart

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 337

ASCII Chart (first 128 characters)
Dec Hex Char Name / Function Dec Hex Char Dec Hex Char Dec Hex Char

0 00 NUL Null 32 20 space 64 40 @ 96 60 `
1 01 SOH Start Of Heading 33 21 ! 65 41 A 97 61 a
2 02 STX Start Of Text 34 22 " 66 42 B 98 62 b
3 03 ETX End Of Text 35 23 # 67 43 C 99 63 c
4 04 EOT End Of Transmit 36 24 $ 68 44 D 100 64 d
5 05 ENQ Enquiry 37 25 % 69 45 E 101 65 e
6 06 ACK Acknowledge 38 26 & 70 46 F 102 66 f
7 07 BEL Bell 39 27 ' 71 47 G 103 67 g
8 08 BS Backspace 40 28 (72 48 H 104 68 h
9 09 HT Horizontal Tab 41 29) 73 49 I 105 69 i
10 0A LF Line Feed 42 2A * 74 4A J 106 6A j
11 0B VT Vertical Tab 43 2B + 75 4B K 107 6B k
12 0C FF Form Feed 44 2C , 76 4C L 108 6C l
13 0D CR Carriage Return 45 2D - 77 4D M 109 6D m
14 0E SO Shift Out 46 2E . 78 4E N 110 6E n
15 0F SI Shift In 47 2F / 79 4F O 111 6F o
16 10 DLE Data Line Escape 48 30 0 80 50 P 112 70 p
17 11 DC1 Device Control 1 49 31 1 81 51 Q 113 71 q
18 12 DC2 Device Control 2 50 32 2 82 52 R 114 72 r
19 13 DC3 Device Control 3 51 33 3 83 53 S 115 73 s
20 14 DC4 Device Control 4 52 34 4 84 54 T 116 74 t
21 15 NAK Non Acknowledge 53 35 5 85 55 U 117 75 u
22 16 SYN Synchronous Idle 54 36 6 86 56 V 118 76 v
23 17 ETB End Transmit Block 55 37 7 87 57 W 119 77 w
24 18 CAN Cancel 56 38 8 88 58 X 120 78 x
25 19 EM End Of Medium 57 39 9 89 59 Y 121 79 y
26 1A SUB Substitute 58 3A : 90 5A Z 122 7A z
27 1B ESC Escape 59 3B ; 91 5B [123 7B {
28 1C FS File Separator 60 3C < 92 5C \ 124 7C |
29 1D GS Group Separator 61 3D = 93 5D] 125 7D }
30 1E RS Record Separator 62 3E > 94 5E ^ 126 7E ~
31 1F US Unit Separator 63 3F ? 95 5F _ 127 7F delete

Note that the control codes (lowest 32 ASCII characters) have no standardized screen symbols. The characters listed for them are
just names used in referring to these codes. For example, to move the cursor to the beginning of the next line of a printer or
terminal often requires sending line feed and carriage return codes. This common pair is referred to as "LF/CR."

ASCII Chart

Page 338 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Appendix B: Reserved Words

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 339

Reserved Words
BS1 BS2 BS2e/sx

(same as BS2
plus below)

 BS2p
(same as BS2
 plus below)

AND ON2400 ABS HOME OUTL GET AUXIO
B0..B13 OR AND IHEX OUTPUT PUT GET

BIT0..BIT15 OT300 ASC IHEX1..IHEX4 OUTS RUN I2CIN
BRANCH OT600 B0..B25 IF PAUSE I2COUT
BSAVE OT1200 BELL IN0..IN15 RCTIME IOTERM

BUTTON OT2400 BKSP INA REV LCDCMD
DEBUG OUTPUT BIN INB PULSIN LCDIN

DIR0..DIR7 PAUSE BIN1..BIN4 INC PULSOUT LCDOUT
DIRS PIN0..PIN7 BIT IND PWM MAINIO

EEPROM PINS BIT0..BIT15 INH RANDOM OWIN
END PORT BRANCH INL READ OWOUT
FOR POT BRIGHT INPUT REP POLLIN

GOSUB PULSIN BUTTON INS REVERSE POLLOUT
GOTO PULSOUT BYTE ISBIN SBIN POLLMODE
HIGH PWM CLS ISBIN1..ISBIN16 SBIN1..SBIN16 POLLRUN

IF RANDOM CON ISHEX SDEC POLLWAIT
INPUT READ COS ISHEX1..ISHEX4 SDEC1..SDEC5 PUT

LET REVERSE COUNT LIGHTSON SERIN RUN
LOOKDOWN SERIN CR LOOKDOWN SEROUT STORE

LOOKUP SEROUT DATA LOOKUP SHEX
LOW SLEEP DCD LOW SHEX1..SHEX4
MAX SOUND DEBUG LOWBIT SHIFTIN
MIN STEP DEC LOWNIB SHIFTOUT
N300 SYMBOL DEC1..DEC5 LSBFIRST SIN
N600 T300 DIG LSBPOST SKIP
N1200 T600 DIM LSBPRE SLEEP
N2400 T1200 DIR0..DIR15 MAX STEP
NAP T2400 DIRA MIN STOP

NEXT THEN DIRB MSBFIRST STR
ON300 TOGGLE DIRC MSBPOST SQR
ON600 W0..W6 DIRD MSBPRE TAB
ON1200 WRITE DIRH NAP THEN

 DIRL NCD TO
 DIRS NEXT TOGGLE
 DTMFOUT NIB UNITOFF
 END NIB0..NIB3 UNITON
 FOR NOT UNITSOFF
 FREQOUT NUM VAR
 GOSUB OR W0..W12
 GOTO OUT0..OUT15 WAIT
 HEX OUTA WAITSTR
 HEX1..HEX4 OUTB WORD
 HIGH OUTC WRITE
 HIGHBIT OUTD XOR
 HIGHNIB OUTH XOUT

Reserved Words

Page 340 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Appendix C: Conversion Formatters

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 341

Conversion Formatters
This appendix lists the Conversion Formatters available for the commands
SERIN, I2CIN, LCDIN, and OWIN and demonstrates, though various
input/output data examples, exactly what will be received when using
these formatters.

Decimal Characters Received
Formatters ⊗⊗ 123 123⊗⊗ -123⊗⊗ ⊗⊗123⊗⊗ 12345⊗⊗ 65536⊗⊗ 255255⊗⊗

DEC -- -- 123 123 123 12345 0 58647
DEC1 -- 1 1 1 1 1 6 2
DEC2 -- 12 12 12 12 12 65 25
DEC3 -- 123 123 123 123 123 655 255
DEC4 -- -- 123 123 123 1234 6553 2552
DEC5 -- -- 123 123 123 12345 0 25525
SDEC -- -- 123 -123 123 12345 0 -6889
SDEC1 -- 1 1 -1 1 1 6 2
SDEC2 -- 12 12 -12 12 12 65 25
SDEC3 -- 123 123 -123 123 123 655 255
SDEC4 -- -- 123 -123 123 1234 6553 2552
SDEC5 -- -- 123 -123 123 12345 0 25525

⊗ Means any non-decimal-numeric characters such as letters, spaces, minus signs, carriage
returns, control characters, etc. (Decimal numerics are: 0,1,2,3,4,5,6,7,8 and 9).

-- Means no valid data (or not enough valid data) was received so the SERIN command will
halt forever (unless the Timeout argument is used).

Hexadecimal Characters Received
Formatters ⊗⊗ 1F 1F⊗⊗ -1F⊗⊗ ⊗⊗1F⊗⊗ 15AF⊗⊗ 10000⊗⊗ 3E517⊗⊗

HEX -- -- 1F 1F 1F 15AF 0 E517
HEX1 -- 1 1 1 1 1 1 3
HEX2 -- 1F 1F 1F 1F 15 10 3E
HEX3 -- -- 1F 1F 1F 15A 100 3E5
HEX4 -- -- 1F 1F 1F 15AF 1000 3E51
SHEX -- -- 1F -1F 1F 15AF 0 -1AE9

SHEX1 -- 1 1 -1 1 1 1 3
SHEX2 -- 1F 1F -1F 1F 15 10 3E
SHEX3 -- -- 1F -1F 1F 15A 100 3E5
SHEX4 -- -- 1F -1F 1F 15AF 1000 3E51

NOTE: The HEX formatters are not case sensitive. For example, 1F is the same as 1f.
⊗ Means any non-hexadecimal-numeric characters such as letters (greater than F), spaces,

minus signs, carriage returns, control characters, etc. (Hexadecimal numerics are:
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F).

-- Means no valid data (or not enough valid data) was received so the SERIN command will
halt forever (unless the Timeout argument is used).

Conversion Formatters

Page 342 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Additional

Hexadecimal
Characters Received

Formatters ⊗⊗ 1F 1F⊗⊗ $1F $1F⊗⊗ -$1F⊗⊗ ⊗⊗$1F⊗⊗ $15AF⊗⊗
IHEX -- -- -- -- 1F 1F 1F 15AF

IHEX1 -- -- -- 1 1 1 1 1
IHEX2 -- -- -- 1F 1F 1F 1F 15
IHEX3 -- -- -- -- 1F 1F 1F 15A
IHEX4 -- -- -- -- 1F 1F 1F 15AF
ISHEX -- -- -- -- 1F -1F 1F 15AF
ISHEX1 -- -- -- 1 1 -1 1 1
ISHEX2 -- -- -- 1F 1F -1F 1F 15
ISHEX3 -- -- -- -- 1F -1F 1F 15A
ISHEX4 -- -- -- -- 1F -1F 1F 15AF

NOTE: The HEX formatters are not case sensitive. For example, 1F is the same as 1f.
⊗ Means any non-hexadecimal-numeric characters such as letters (greater than F), spaces,

minus signs, carriage returns, control characters, etc. (Hexadecimal numerics are:
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F).

-- Means no valid data (or not enough valid data) was received so the SERIN command will
halt forever (unless the Timeout argument is used).

Binary Characters Received

Formatters ⊗⊗ 11 11⊗⊗ -11⊗⊗ ⊗⊗11⊗⊗ 101⊗⊗ 3E517⊗⊗
BIN -- -- 11 11 11 101 1

BIN1 -- 1 1 1 1 1 1
BIN2 -- 11 11 11 11 10 1

BIN3 – BIN16 -- -- 11 11 11 101 1
SBIN -- -- 11 -11 11 101 1
SBIN1 -- 1 1 -1 1 1 1
SBIN2 -- 11 11 -11 11 10 1

SBIN3 – SBIN16 -- -- 11 -11 11 101 1
⊗ Means any non-binary-numeric characters such as letters, spaces, minus signs, carriage

returns, control characters, etc. (Binary numerics are: 0 and 1).
-- Means no valid data (or not enough valid data) was received so the SERIN command will

halt forever (unless the Timeout argument is used).

Appendix C: Conversion Formatters

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 343

Additional

Binary
Characters Received

Formatters ⊗⊗ 11 11⊗⊗ %11 %11⊗⊗ -%11⊗⊗ ⊗⊗%11⊗⊗ %101⊗⊗
IBIN -- -- -- -- 11 11 11 101
IBIN1 -- -- -- 1 1 1 1 1
IBIN2 -- -- -- 11 11 11 11 10

IBIN3 – IBIN16 -- -- -- -- 11 11 11 101
ISBIN -- -- -- -- 11 -11 11 101

ISBIN1 -- -- -- 1 1 -1 1 1
ISBIN2 -- -- -- 11 11 -11 11 10

ISBIN3 – ISBIN16 -- -- -- -- 11 -11 11 101
⊗ Means any non-binary-numeric characters such as letters, spaces, minus signs, carriage

returns, control characters, etc. (Binary numerics are: 0 and 1).
-- Means no valid data (or not enough valid data) was received so the SERIN command will

halt forever (unless the Timeout argument is used).

Conversion Formatters

Page 344 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Index

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 345

— Symbols —
-, 63, 64, 66, 67
&, 66, 73
&/, 66, 75
*, 66, 67
**, 66, 68
*/, 66, 68
/, 66, 69
//, 66, 70
?, 100, 102, 145, 207, 301
^, 66, 74
^/, 66, 75
|, 66, 73
|/, 66, 75
~, 63, 64
+, 66, 67
<<, 66, 72
>>, 66, 72

— 1 —
1-Wire Protocol, 197–203, 205–11

— 2 —
24LC16B EEPROM, 138, 144

— A —
ABS, 63, 64
Absolute Value (ABS), 63, 64
Accessing I/O Pins, 45, 46, 47
Add (+), 66, 67
Aliases, 53–55
Aliases and Variable Modifiers, 53–55
Analog I/O, 107, 123, 239, 247, 255, 319
AND (&), 66, 73
AND NOT (&/), 66, 75

Architecture, 45
Arrays, 51–53
ASC ?, 100, 102, 145, 207, 301
ASCII Chart, 337
ASCII Notation, 59
Asynchronous Serial, 274, 294
ATN, 11, 13, 15, 17
Auxiliary I/O Pins, 81, 157
AUXIO, 81–82, 189

— B —
B0-B13, 45
BASIC Stamp

Architecture, 45
Hardware, 7
Memory, 45
Networking, 304
Pinouts, 8–17
Projects (DOS), 42–43
Projects (Windows), 37–40
Reserved Words, 339

BASIC Stamp 1 Carrier Board, 18
BASIC Stamp 1 Rev. D, 9
BASIC Stamp 2 Carrier Board, 19
BASIC Stamp Activity Board, 23
BASIC Stamp DOS Editor, 41
BASIC Stamp Windows Editor, 34
Baud Mode (table), 276, 296
Baud Mode, Choosing, 278, 297
BELL, 105
BIN, 99, 100, 139, 145, 169, 173, 200,

208, 283, 300
Binary Notation, 59
Binary Operators, 62, 66–75

Add (+), 66, 67
AND (&), 66, 73
AND NOT (&/), 66, 75
Digit (DIG), 66, 72
Divide (/), 66, 69
Maximum (MAX), 66, 71
Minimum (MIN), 66, 70

Index

Page 346 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Modulus (//), 66, 70
Multiply (*), 66, 67
Multiply High (**), 66, 68
Multiply Middle (*/), 66, 68
OR (|), 66, 73
OR NOT (|/), 66, 75
Reverse (REV), 66, 73
Shift Left (<<), 66, 72
Shift Right (>>), 66, 72
Subtract (-), 66, 67
XOR (^), 66, 74
XOR NOT (^/), 66, 75

Binary Radian, 65
BKSP, 105
Board of Education, 22
Brad, 65
BRANCH, 83–84
Branching, 83–84, 85–87, 129–32, 133–

34, 149–54, 231–33, 265–66, 269–71
Bright, 335
BS1-IC, 9
BS2e-IC, 12
BS2-IC, 10
BS2p24-IC, 16
BS2p40-IC, 16
BS2sx-IC, 14
BUTTON, 85–87

— C —
Cable (Programming), 26
Carrier Board

BS1, 18
BS2, 19
Super, 20

CLS, 105
Comparison Operators, 149
Compile-time Expressions, 56–58, 60
Conditional GOSUB, 152
Conditional Logic Operators, 151
Conditions, 149–54
Connecting & Downloading, 29
Connecting/Disconnecting, 25, 26

Connection (diagram), 29
Constants, 56–58
Control Characters, 104
Conversion Formatters, 341
Conversion Formatters (SERIN), 283
Conversion Formatters (SEROUT), 300
COS, 63, 64
Cosine (COS), 63, 64
COUNT, 89–90
Counting Pulses, 89–90
CR, 105
Current Limit, 9, 11, 13, 15, 17
Cycle Counting, 89

— D —
DATA, 91–96

Reading Word Values, 95
Writing Block, 93
Writing Text Strings, 94, 112
Writing Word Values, 94, 113

Data and Program Downloading, 93, 112
DCD, 63, 64
Debounce Buttons, 85
DEBUG, 97–106
DEBUG Formatters, 99
DEBUG Formatting (BS1), 98
DEBUG Formatting (Non-BS1), 99
DEC, 99, 100, 102, 139, 145, 169, 173,

200, 208, 278, 283, 298, 300
Decimal Notation, 59
Decoder (DCD), 63, 64
Default State, I/O Pins, 47
Default State, I/O Pins (BS1), 46
Defining Constants, 56–58
Defining Symbols, 49–56
Delaying Execution, 213
Development Boards, 18
DIG, 66, 72
Digit (DIG), 66, 72
Digital I/O, 81, 85, 89, 135, 137, 143, 155,

157, 159, 167, 171, 187, 189, 195, 197,

Index

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 347

205, 215, 225, 267, 273, 293, 309, 313,
327, 333

Dim, 335
Direction (setting of I/O pins), 45, 46, 155,

195, 267
DIRS, 46
DIRS (BS1), 45
Discussion List, 2
Displaying Information, 97
Displaying Unsigned Numbers, 101
Divide (/), 66, 69
DS1820 Temperature Sensor, 203, 210
DTMFOUT, 107–10

— E —
Editor

Described (DOS), 42
Described (Windows), 34
DOS, 41
Editor Screen (DOS) (diagram), 42
Editor Screen (Windows) (diagram), 34
Editor Tabs (Windows), 34
Identify (Window), 40
Installing, 33
Memory Map (DOS), 43
Memory Map (Windows), 40
Shortcut Keys (DOS), 44
Shortcut Keys (Windows), 41
STAMP Directive, 35
Status (Windows), 35
System Requirements, 33
Using, 33
Using Multiple Modules (Windows), 35
Windows, 34

Editor Software (table), 30, 33
EEPROM, 111–14
EEPROM Usage, 91, 261–64, 321
EEPROM Usage (BS1), 111
Encoder (NCD), 63, 65
END, 115
Expressions, 56–58
Expressions in Constants, 58

— F —
Flow Control, 288, 302
FOR…NEXT, 117–22
FPin, 288, 302
FREQOUT, 123–25

— G —
Generating Pulses, 243–44
Generating Random Numbers, 251–54
Generating Sound (BS1), 319–20
Generating Sound (Non-BS1), 123–25
GET, 127–28
GOSUB, 129–32
GOTO, 133–34
Guidelines, 25

— H —
Hardware

BASIC Stamp 1 Carrier Board, 18
BASIC Stamp 2 Carrier Board, 19
BASIC Stamp Activity Board, 23
BASIC Stamps, 7
Board of Education, 22
BS1, 8
BS2, 10
BS2e, 12
BS2p, 16
BS2sx, 14
Development Boards, 18
Super Carrier Board, 20

HEX, 99, 100, 139, 145, 169, 173, 200,
208, 283, 300

Hexadecimal Notation, 59
HIGH, 135–36
Hitachi 44780 Controller, 159, 167, 171
HOME, 105

Index

Page 348 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

— I —
I/O Pins

Accessing, 45, 46, 47
Auxiliary, 81, 157
Directions, 45, 46, 155, 195, 267
Main, 157, 189
Pinouts

BS1, 9
BS2, 11
BS2e, 13
BS2p, 17
BS2sx, 15

Reading, 47
Reading (BS1), 45
Source/Sink

BS1, 9
BS2, 11
BS2e, 13
BS2p, 17
BS2sx, 15

Writing (BS1), 45
I2C Protocol, 137–42, 143–48
I2CIN, 137–42
I2COUT, 143–48
IBIN, 100, 139, 145, 169, 173, 200, 208,

283, 300
IF…THEN, 83, 149–54
IHEX, 100, 139, 145, 169, 173, 200, 208,

283, 300
INPUT, 155–56
INS, 46
Integer Math Rules, 62
Interface to Telephone Line, 109
Inverse (~), 63, 64
IOTERM, 81, 157–58, 189
ISBIN, 100, 139, 145, 169, 173, 200, 208,

283, 300
ISHEX, 100, 139, 145, 169, 173, 200, 208,

283, 300

— L —
Language

PBASIC, 7
LCD Commands, 161
LCD Customer Characters, 174
LCD Displays, 159, 167, 171
LCD Initialization, 161, 168, 172
LCDCMD, 159–66
LCDIN, 167–70
LCDOUT, 171–76
LightsOn, 335
LOOKDOWN, 83, 177–82
LOOKUP, 183–86
Loops, 117–22
LOW, 187–88
Low-Power Mode, 115, 191, 317–18
LSBFIRST, 314
LSBPOST, 310
LSBPRE, 310

— M —
Main I/O Pins, 157, 189
MAINIO, 81, 189–90
Mapping Non-Contiguous Numbers, 180,

185
MAX, 66, 71
Maximum (MAX), 66, 71
Measuring Pulses, 241–42
Measuring Variable Resistance, 239–40,

255–59
Memory, 45
Memory Map, 55

(DOS), 43
(Windows), 40

MIN, 66, 70
Minimum (MIN), 66, 70
Modifiers, 53–55
Modulus (//), 66, 70
MSBFIRST, 314
MSBPOST, 310

Index

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 349

MSBPRE, 310
Multiply (*), 66, 67
Multiply High (**), 66, 68
Multiply Middle (*/), 66, 68

— N —
NAP, 191–93
NCD, 63, 65
Negative (-), 63, 64
Networking BASIC Stamps, 304
Non-volatile Storage, 91
Numbering Systems, 56, 59
Numbers, 56, 59

— O —
OEMBS1, 9
OEMBS2, 10
OEMBS2e, 12
OEMBS2sx, 14
Open Baud Modes, 304
Operation, General Theory, 7
Operators

Binary, 62, 66–75
Comparison, 149
Comparison (LOOKDOWN), 179
Conditional Logic, 151
Unary, 62, 63–66

OR (|), 66, 73
OR NOT (|/), 66, 75
Order of Operations, 60–62
Orientation, 25
OUTPUT, 195–96
OUTS, 46
OWIN, 197–203
OWOUT, 205–11

— P —
P0-P15, 11, 13, 15, 17
P0-P7, 9

Pace, 299
Pacing, 293
Package Types

BS1, 8
BS2, 10
BS2e, 12
BS2p, 16
BS2sx, 14

Packing List, 6
Parity and Parity Errors, 286, 301
Parity and Timeout, 288
PAUSE, 213
PBASIC Language, 7
PCI, 9
PCO, 9
Pin-1 Indicators, 25
Pinouts

BS1, 8
BS2, 10
BS2e, 12
BS2p, 16
BS2sx, 14

PINS, 45
POLLIN, 215–18
POLLMODE, 219–23
POLLOUT, 225–28
POLLRUN, 231–33
POLLWAIT, 235–37
PORT, 45
POT, 239–40
Potentiometer, 215–18, 255–59
Power Control, 115, 191–93, 235–37, 317–

18
Power Supply, 22, 23

BS1, 9
BS2, 11
BS2e, 13
BS2p, 17
BS2sx, 15

Powerline Interface, 334
Precautions, 25
Programming Connections, 26
Projects

Index

Page 350 • BASIC Stamp Programming Manual 2.0b • www.parallaxinc.com

Download Modes, 39
Introduction (DOS), 42
Introduction (Windows), 37
Steps To Create (DOS), 43
Steps To Create (Windows), 38

Protocol
1-Wire, Dallas, 197–203, 205–11
Asynchronous RS-232, 273–92, 293–307
I2C, 137–42, 143–48
Synchronous (SPI), 309–12, 313–16
X10, 333–36

Pulse Width Modulation, 247–50
Pulses, Generating, 243–44
Pulses, Measuring, 241–42
PULSIN, 241–42
PULSOUT, 243–44
PUT, 245–46
PWM, 247–50

— Q —
Quick Start Guide, 29

— R —
Radian, Binary, 65
RAM Organization

BS1, 45
BS2, 46
BS2e, 46
BS2p, 46
BS2sx, 46

RANDOM, 251–54
Random Numbers, 251–54
RCTIME, 255–59
RCTime Equation, 257
READ, 261–64
Reading Potentiometers, 239–40, 255–59
Reading Pulses, 89–90, 241–42
Reading Word Values, 262
REP, 100, 104, 145, 207, 301
RES, 9, 11, 13, 15, 17

Reserved Words, 339
Reserving EEPROM Locations, 93
Reset, 9, 11, 13, 15, 17
RETURN, 265–66
REV, 66, 73
REVERSE, 267–68
Reverse (REV), 66, 73
Rules of Integer Math, 62
Rules of Symbols, 49
RUN, 269–71
Runtime, 60

— S —
SBIN, 100, 139, 145, 169, 173, 200, 208,

283, 300
Scratch Pad RAM, 56, 127, 245–46
SDEC, 100, 139, 145, 169, 173, 200, 208,

283, 300
Serial Timeout, 287, 303
Serial Troubleshooting, 290, 305
SERIN, 273–92
SEROUT, 293–307
SHEX, 100, 139, 145, 169, 173, 200, 208,

283, 300
Shift Left (<<), 66, 72
Shift Right (>>), 66, 72
SHIFTIN, 309–12
SHIFTOUT, 313–16
Shortcut Keys

Editor (DOS), 44
Editor (Windows), 41

SIN, 63, 65
SIN (pin), 11, 13, 15, 17
Sine (SIN), 63, 65
SKIP, 140, 170, 199, 284
SLEEP, 115, 317–18
SOUND, 319–20
Sound, Generation (BS1), 319–20
Sound, Generation (Non-BS1), 123–25
SOUT, 11, 13, 15, 17
Special Formatters (SERIN), 284
Special Formatters (SEROUT), 301

Index

BASIC Stamp Programming Manual 2.0c • www.parallaxinc.com • Page 351

SQR, 63, 66
Square Root (SQR), 63, 66
STAMP Directive, 35–39
Stamp List, 2
Starter Kit, 6
Static Sensitive Devices, 25
STOP, 321
STORE, 323–24
STR, 100, 103, 140, 145, 170, 199, 207,

284, 301
Subroutines, 129, 265
Subtract (-), 66, 67
Super Carrier Board, 20
Switching Program Slots, 269–71
Symbol Name Rules, 49
Synchronous Serial, 309–12, 313–16

— T —
TAB, 105
Tables, 91–96, 111–14, 177–82, 183–86
Telephone Touch Tones, 107
Theory of Operation, 7
Timeout, 273, 287, 293, 303
TOGGLE, 327–28
Tone Generation, 107–10, 123–25, 319–20
Troubleshooting Serial, 290, 305
Two's Compliment, 62

— U —
Unary Operators, 62, 63–66

Absolute Value (ABS), 63, 64
Cosine (COS), 63, 64
Decoder (DCD), 63, 64
Encoder (NCD), 63, 65
Inverse (~), 63, 64
Negative (-), 63, 64
Sine (SIN), 63, 65

Square Root (SQR), 63, 66
UnitOff, 335
UnitOn, 335
UnitsOff, 335

— V —
Variable Resistance, Measuring, 239–40,

255–59
Variables

Aliases, 53–55
Arrays, 51–53
Defining, 49–56
Fixed, 48
Modifiers, 53–55
Sizes, 50

VDD, 9, 11, 13, 15, 17, 22, 23
Versions, 2
VIN, 9, 11, 13, 15, 17
VSS, 9, 11, 13, 15, 17

— W —
W0-W6, 45
WAIT, 281, 284
WAITSTR, 140, 170, 199, 284, 285
Warranty, 2
WRITE, 329–32
Writing Word Values, 330

— X —
X0-X15, 17
X10 Control, 333–36
XOR (^), 66, 74
XOR NOT (^/), 66, 75
XOUT, 333–36

