

599 Menlo Drive, Suite 100
Rocklin, California 95765, USA
Office/Tech Support: (916) 624-8333
Fax: (916) 624-8003

General E-mail: info@parallaxinc.com
Technical E-mail: stamptech@parallaxinc.com
Web Site: www.parallaxinc.com
Educational Resources: www.stampsinclass.com

Weekend Application Kits Rev 1 - Page 1.1
 2001 Parallax, Inc. - all rights reserved.

Infrared Emitting Diode
& 40 kHz Infrared Detector Stamp™ Weekend Application Kit

Introduction
This document is for use with the infrared (IR) LED and 40 kHz detector added to
on-line orders above $25 placed on www.parallaxinc.com from noon on April 26
through April 29, 2001. You can use the parts in this kit for object detection and line
of sight communication. This document has six examples to get you started along
with references to other Parallax documentation with more information (all available
for free download).

Applications
The infrared (IR) LED in this kit is similar to what you would find in any handheld
remote for your TV, cable box, VCR, etc. The IR detector inside each of these
appliances is also very similar to the detector in your kit. These two components can
be used together to perform a variety of functions. Just a few examples are:

• Object detection – determining when a person or object either reflects
broadcasted IR or breaks an IR beam.

• Proximity detection – broadcasting IR that when reflected indicates the
presence of an object/person within a certain proximity. You can also use
some techniques to get a distance measurement with high enough resolution
for some personal robotics applications.

• Communication - taking instructions from some handheld remotes and for
communication between BASIC Stamps.

Contents Page
Introduction 1.1
Applications 1.1
Parts 1.2
Circuit 1.2
Breaking the Beam and Testing the Circuit 1.3
Proximity Detection 1.5
Distance Detection 1.6
Reading Signals from a Universal IR Remote 1.8
Entering Multiple Numbers 1.13
Stamp to Stamp Communication 1.15
Extending the IR Range and Capabilities 1.18

 - Page 1.2

Stamp™ Weekend Application Kit

Parts

Quantity
Parallax
Stock Code

Schematic Symbol, Part
Drawing and Description

1 350-00017

 IR
LED 1

2

1

2 Short
Leg

Shrink wrapped IR LED

1 350-00014

1
2
3

1
2
3

View from Top
40 kHz IR Detector

1 150-02210

220 Ω

1

2
1 2

220 ΩΩ resistor

Circuit
Figure 1.1 shows how to connect the parts. In this example, we’ll use BASIC Stamp
I/O pin P7 to send signals out the IR LED and P8 to read the 40 kHz IR detector’s
output.

Figure 1.1: IR LED and
detector schematic.

P8

Vss

Vdd IR
LED

220 Ω

Vss

P7

The IR detector is designed to send a low signal when it sees IR flashing on and off at
about 40 kHz with a 50% duty cycle, meaning that the on/of times are equal.

 - Page 1.3

Infrared Emitting Diode & 40 kHz Infrared Detector

Although the FREQOUT command only goes up to 32,768 Hz, if you leave off any
filtering, you can use arguments above 32,768 to specify the frequency of a harmonic
signal. In other words, when you use a command like FREQOUT 7,1,37500 without
the RC filter shown in the BASIC Stamp Manual, a harmonic signal is broadcast at
roughly 37500. The 40 kHz detectors do a good job picking up this signal. The
unfiltered FREQOUT signal also causes the IR detector’s output to rebound more
slowly than when it sees 40 kHz at 50% duty. The result is that you can send the
FREQOUT signal out 1 I/O pin, stop sending the signal, and still have enough time to
check the detector’s (slowly rebounding) output.

For more information on how the “FREQOUT trick” works, take a look at the
beginning of Chapter 5 in the Parallax Robotics! v1.4 Student Workbook. It’s
available for free download from the www.stampsinclass.com à Downloads à
Educational Curriculum page. This chapter also discusses the IR wavelengths these
components use in case you want to try to find substitute parts locally.

Breaking the Beam and Testing the Circuit
The round bump on the face of the IR detector is a lens it uses to collect light. In the
absence of IR flashing on and off at around 40 kHz, the IR detector sends a 5 V high
signal. When IR flashing on and off at around 40 kHz enters this lens, the circuitry
inside the IR detector sets its output to 0 V (active-low).

By pointing the IR LED’s output at the IR detector’s input (see Figure 1.2), we can
test to make sure the system is working by writing a program that tells you if there is
an obstacle, such as a piece of paper or your hand between the IR LED and the
detector. If there is nothing to break the beam, the IR detector sends a low signal. If
there is something breaking the beam, the IR detector does not see the modulated IR
and sends a high signal.

 - Page 1.4

Stamp™ Weekend Application Kit

Figure 1.2: Test setup
for breaking the beam.

O
bject

O
bject

IR detected

IR not detected

Try this program. The debug terminal should tell you whether or not the beam is
broken. If it tells you the beam is broken regardless of whether or not there is
something blocking the IR, it means you have a problem with either your wiring or
setup. Double check Figure 1.1 and 1.2, and try again.

' Program Listing 1.1 - Testing the IR Beam.bs2

IR_detect var bit
low 7

loop:

 pause 50
 freqout 7, 1, 38500
 IR_detect = in8
 if IR_detect = 0 then unbroken

 ' Make sure to add six spaces to the debug statement
 ' below. That way both debug statements will have the
 ' same number of spaces for a better display.

 debug home, "Beam is broken; object detected. "
 goto loop

 unbroken:
 debug home, "Beam is unbroken; object not detected."
 goto loop

 - Page 1.5

Infrared Emitting Diode & 40 kHz Infrared Detector

This code uses the FREQOUT command to broadcast a harmonic at about 37.5 kHz,
which turns out to be the best harmonic frequency for detection using the “FREQOUT
trick”.

Proximity Detection
You can also point the IR-LED away from the detector (see Figure 1.3). When an
object is close enough (and not dark black, which absorbs IR quite well), it reflects
the IR signal back to the detector.

Figure 1.3: Test setup
for proximity detection

O
b

ject

IR not detected

O
b

ject

IR detected

Program listing 1.2 is almost the same as Program Listing 1.1. The only difference is
that Program Listing 1.2 considers the presence of IR as indicating the presence of an
object, while Program Listing 1.1 sees it in reverse.

' Program Listing 1.2 – Proximity Detection.bs2

IR_detect var bit
low 7

loop:

 pause 50
 freqout 7, 1, 38500
 IR_detect = in8

 - Page 1.6

Stamp™ Weekend Application Kit

 if IR_detect = 0 then not_detected

 debug home, "Output is high, no object detected."
 goto loop

 not_detected:

 ' This time, add a space to the end of this debug
 ' command. This will keep both strings the same
 ' length and make the display better.

 debug home, "Output is low, object is detected. "
 goto loop

Distance Detection
Program listing 1.3 uses a frequency argument of 37500 for maximum sensitivity.
Then it progressively detunes the detector by using frequencies that make the detector
less sensitive using these frequency arguments:

37500,38250,39500,40500,41500

Figure 1.4 shows how this detuning can be used to give you a rough idea of an
object’s distance from the detector.

 - Page 1.7

Infrared Emitting Diode & 40 kHz Infrared Detector

Zone 0

Zone 1

Zone 2

Zone 3

Zone 4

40
.0

40.
5

41
.5

42
.5

43
.0

36
45

.0

Frequency in kHz

R
el

at
iv

e
S

en
si

tiv
ity

Zone 5

D
is

ta
nc

e

Object

100%

0%

Figure 4: Test setup for distance detection.

The key idea here is that as the object gets closer, the reflected IR is brighter. In other
words, the signal is stronger. To cause the IR detector’s 40 kHz filter not to see the
object, the frequency that’s broadcast has to be further from the filter’s center
frequency. It’s pretty easy to write a PBASIC program that tests at each frequency
and tracks when the object was no longer detected.

Run Program Listing 1.3 and try placing your hand, or a piece of paper at various
distances from the detector. You should be able to detect at least zones 0 through 4;
zone 5 may or may not show up.

' Program Listing 1.3 – Distance Detection.bs2

 counter var nib
 IR_outputs var byte
 IR_freq var word

 output 7

 main:

 IR_outputs = 0

 - Page 1.8

Stamp™ Weekend Application Kit

 ' Load sensor outputs into l_IR_outputs and r_IR_outputs
 ' using a for...next loop,and a lookup table, and bit
 ' addressing.

 for counter = 0 to 4

 lookup counter,[37500,38250,39500,40500,41500], IR_freq

 freqout 7,1, IR_freq
 IR_outputs.lowbit(counter) = ~in8

 next

 ' Display l_IR_outputs and r_IR_outputs in binary and ncd
 ' format.

 debug home, "Readings from IR detector", cr
 debug "Binary IR_outputs: ", bin5 IR_outputs, cr
 debug "Object is in zone: ",dec5 ncd(IR_outputs)

 goto main

Reading Signals from a Universal IR Remote
You can configure most universal remotes to use SONY® Corporation’s IR
communication protocol to send messages to the BASIC Stamp. To try this you’ll
need to dig up the documentation for one of your universal remotes or buy one. They
are available for around $10 at most electronics retail outlets (such as Radio Shack®)
and also at general purpose retailers (such as K-Mart®).

Once you’ve got the documentation for your universal remote, check the instructions
for how to configure it for a particular TV. There’s usually a programming button
that you have to press and hold until an LED on the remote blinks a couple of times.
Then, you enter the a code from a list of manufacturers (also in the universal remote’s
documentation), and the LED will blink twice again indicating that the code was
accepted. Follow the instructions in the universal remote’s documentation to make
the universal remote send signals to a SONY® television.

Try Program Listing 1.4 to see if the BASIC Stamp is receiving the expected
messages. While running Program Listing 1.4, Press and hold the 5 key on the
remote. Check and make sure your display is similar to Figure 1.5, which shows what
the debug terminal should display. The pulse duration values might slightly different
from yours, but the decimal and binary numbers at the bottom of the display should
match exactly.

 - Page 1.9

Infrared Emitting Diode & 40 kHz Infrared Detector

Figure 5: Debug terminal
when you press and hold the
5 key while running Program
Listing 1.4.

'--

' Program Listing 1.4 – Display IR Remote.bs2

'--
declarations:

IR_det_pin con 8
pause_time con 20
active_low con 0

IR_detect var in8

IR_pulse var word(12)
counter var nib
type var nib
pulse_delay_time con 2

debounce_time con 20
IR_message var byte
active_high con 1

 - Page 1.10

Stamp™ Weekend Application Kit

'--
initialize: ' Boot Routine

 debug cls

'--
main: ' Main Routine

 if IR_detect = 1 then main:
 gosub display_heading
 gosub find_and_display_start_pulse
 gosub process_IR_pulses
 gosub display_IR_pulse_values
 gosub convert_to_binary_number_display

goto main

'--
display_heading: ' Subroutine

 debug home
 debug "IR Messages Pulsed ", cr, cr
 debug "Pulse Duration Value", cr
 debug "-------------------------------", cr

return

'--
find_and_display_start_pulse: ' Subroutine

 for counter = 0 to 15
 pulsin IR_det_pin,active_low,IR_pulse(0)
 if IR_pulse(0) > 900 then display_start_bit
 next

 goto exit_find_and_display_start

 display_start_bit:
 debug "Start"
 debug " = ", dec5 IR_pulse(0) * 2, " us "
 debug " Start Bit", cr

 exit_find_and_display_start:

return

'--
process_IR_pulses: ' Subroutine

 check_for_stop_bit:
 pulsin IR_det_pin,active_high,IR_pulse(0)
 if IR_pulse(0) > 1400 and IR_pulse(0) <> 0 then continue
 goto check_for_stop_bit

 - Page 1.11

Infrared Emitting Diode & 40 kHz Infrared Detector

 continue:

 pulsin IR_det_pin,active_low,IR_pulse(0)
 pulsin IR_det_pin,active_low,IR_pulse(1)
 pulsin IR_det_pin,active_low,IR_pulse(2)
 pulsin IR_det_pin,active_low,IR_pulse(3)
 pulsin IR_det_pin,active_low,IR_pulse(4)
 pulsin IR_det_pin,active_low,IR_pulse(5)
 pulsin IR_det_pin,active_low,IR_pulse(6)
 pulsin IR_det_pin,active_low,IR_pulse(7)
 pulsin IR_det_pin,active_low,IR_pulse(8)
 pulsin IR_det_pin,active_low,IR_pulse(9)
 pulsin IR_det_pin,active_low,IR_pulse(10)
 pulsin IR_det_pin,active_low,IR_pulse(11)

return

'--
display_IR_pulse_values: ' Subroutine

 for counter = 0 to 10

 debug " ", dec2 counter
 debug " = ", dec5 IR_pulse(counter) * 2, " us "

 branch IR_pulse(counter)>>9,[zero,one]

 zero: debug " Binary-0", cr: goto loop_again
 one: debug " Binary-1", cr: goto loop_again

 loop_again:

 next

return

'--
convert_to_binary_number_display: ' Subroutine

 for counter = 0 to 10

 lookdown IR_pulse(counter), < [400,800],
IR_message.lowbit(counter)

 next

 debug cr,cr,"Binary Value: ", bin8 IR_message, cr
 debug "Decimal Value: ", dec3 IR_message, cr
 debug "Without bit-7: "
 debug " ",dec3 IR_message & %01111111,cr

return

 - Page 1.12

Stamp™ Weekend Application Kit

The IR detector’s output when pressing the 5-key looks about like this on an
oscilloscope.

 20 - 30 ms 2.4 ms 1.2 ms 0.6 ms

Pause
between

messages

Start
Pulse

Binary - 1 Binary - 0

LSB MSB

 0.6 ms 0.3 ms

Figure 6: IR Output.

Regardless of which key is pressed, the message repeats itself every 20 to 30 ms. The
start pulse lasts 2.4 ms, which is followed by binary pulses. A binary-1 lasts 1.2 ms, a
binary-0 lasts 0.6 ms, and the time between pulses is usually somewhere between 0.25
and 0.8 ms depending on the brand and vintage of the remote.

The BASIC Stamp 2p is fast enough to decide what value it received between pulses,
so the programming is considerably more concise (similar to Program Listing 1.7).
To keep it general, this program is set up for the BASIC Stamp 2.

To determine if an IR signal is being transmitted, an if…then statement just before the
main: routine checks over and over again to see if the IR detector’s output is active-
low. If yes, then it executes the rest of the program, else, it just keeps checking.
When an IR broadcast is detected, Program Listing 1.4 next searches for the start
pulse and displays it. Then, the data bits are captured and displayed. The
process_IR_pulses subroutine looks for the lengthy pause between data pulses (a
positive pulse). If you think about that high time between the last data pulse in the
previous message and the start pulse in the current message as a long positive pulse,
you’ll see the reasoning for the PULSIN and IF…THEN reasoning at work for
finding the first data pulse. It will either return a number larger than 2.8 ms or a data
overrun value of 0. As soon as this happens, you’re in the middle of the start pulse.
So, the next negative pulse will be signal the start of the first data pulse.

Since this program was designed to work with the BASIC Stamp 2 or better, each
PULSIN command is consecutive to prevent any data bits from being lost due to
processing time.

 - Page 1.13

Infrared Emitting Diode & 40 kHz Infrared Detector

Entering Multiple Numbers
You can use Program Listing 1.5 to display sequences of numbers entered into the
universal remote. This program is only using the first seven bits instead of all eleven
bits the remote sends. This saves memory, and you can still use most of the
commonly used keys on the remote. The program waits for you to press the “Enter”
key on the remote before displaying the value. You can use the previous example
program (Program Listing 1.4) to figure out what the code is for each key and expand
this program’s functionality.

'--

' Program Listing 1.5 – Entering Multiple Numbers with IR.bs2

'--
declarations:

IR_det_pin con 8
IR_detect var in8

pause_time con 20
active_low con 0
active_high con 1
debounce_time con 200

enter con 11
power con 21

IR_pulse var word(7)
counter var nib
type var nib
entered_value var word
pulse_delay_time con 2
IR_message var byte

'--
initialize: ' Boot Routine

 IR_message = 0
 entered_value = 0

 debug cls
 debug "Enter a number between 0 and 65535.", cr
 debug "Press the enter key on your remote", cr

 - Page 1.14

Stamp™ Weekend Application Kit

 debug "to see the number you entered.", cr, cr
 debug "Press Power (TV on/off) to start over", cr, cr

'--
main: ' Main Routine

 if IR_detect = 1 then main:
 get_IR_data:
 gosub process_IR_pulses
 if IR_message = power then initialize
 if IR_message > enter then user_pressed_wrong_key
 if IR_message = enter then user_pressed_enter

 ' Correct for the fact that the 1-key is 0, the 2-key
 ' is 1,..., the 0 key is 9.

 lookup IR_message,[1,2,3,4,5,6,7,8,9,0],IR_message
 entered_value = entered_value * 10 + IR_message
 pause debounce_time
 debug "You pressed ", dec1 IR_message, cr
 goto main

 user_pressed_wrong_key:
 debug "Press one of the numeric keys", cr
 debug "or press enter. ", cr
 goto main

 user_pressed_enter:
 debug "The number entered was: ", dec5 entered_value, cr, cr
 entered_value = 0

goto main

'--
process_IR_pulses: ' Subroutine

 check_for_stop_bit:
 pulsin IR_det_pin,active_high,IR_pulse(0)
 if IR_pulse(0) > 1400 and IR_pulse(0) <> 0 then continue
 goto check_for_stop_bit

 continue:

 pulsin IR_det_pin,active_low,IR_pulse(0)
 pulsin IR_det_pin,active_low,IR_pulse(1)
 pulsin IR_det_pin,active_low,IR_pulse(2)
 pulsin IR_det_pin,active_low,IR_pulse(3)

 - Page 1.15

Infrared Emitting Diode & 40 kHz Infrared Detector

 pulsin IR_det_pin,active_low,IR_pulse(4)
 pulsin IR_det_pin,active_low,IR_pulse(5)
 pulsin IR_det_pin,active_low,IR_pulse(6)

 for counter = 0 to 6
lookdown IR_pulse(counter), < [400,800], IR_message.lowbit(counter)
 next

return

Stamp to Stamp Communication

For kicks, let’s create our own Stamp-2-Stamp protocol. Here are some specifications
I just made up:

− A start bit is 1 ms
− A binary-0 is 2 ms
− A binary-1 is 3 ms
− A stop bit is 4 ms
− The delay between pulses is 2 ms + any loop processing overhead
− 8 data bits are transmitted

This activity is designed for use with two BASIC Stamp 2 modules. Connect your IR
LED and IR detector circuits to separate BASIC Stamp 2 modules as shown in Figure
1.7. Download Program Listing 1.6 into the transmitting BS2, and disconnected it
from the programming cable. Next, connect the receiving BS2 to the programming
cable and download Program Listing 1.7 into it. Leave it connected to the
programming cable for debugging. Press and release the reset button on the
transmitting BS2 while pointing its IR LED at the receiving BS2’s IR detector. The
receiving BS2 will display the number the transmitting BS2 sent (25 in this case).

 - Page 1.16

Stamp™ Weekend Application Kit

Figure 7: IR Output.

'--

File Name: Program Listing 1.6 - Stamp-2-Stamp IR_tx.bs2

'--

IR_LED_pin con 7
IR_freq con 37500

start_bit con 1
stop_bit con 4
bin_0 con 2
bin_1 con 3
between_pulses con 2

counter var nib
IR_message var byte
duration var nib

IR_message = 25

freqout IR_LED_pin,start_bit,IR_freq
pause between_pulses

for counter = 0 to 7

 duration = 2 + IR_message.lowbit(counter)
 freqout IR_LED_pin,duration,IR_freq
 pause between_pulses

 - Page 1.17

Infrared Emitting Diode & 40 kHz Infrared Detector

next
freqout IR_LED_pin,stop_bit,IR_freq

' ****** Reset Stamp to run again *******
stop

'--

File Name: Program Listing 7 - Stamp-2-Stamp IR_rx.bs2

'--

IR_detect_pin con 8
IR_signal var in8

start_bit con 500
bin_0 con 1100
bin_1 con 1600
stop_bit con 1900

active_low con 0

counter var nib
IR_pulse var word
duration var nib
IR_message var byte

loop:

 if IR_signal = 1 then loop

 process_message:
 pulsin IR_detect_pin,active_low,IR_pulse
 if IR_pulse > stop_bit then display_message
 lookdown IR_pulse, < [bin_0,bin_1],
IR_message.lowbit(counter)
 counter = counter + 1
 goto process_message

 display_message:
 debug "Message received,", cr
 debug "it's ", dec3 IR_message, cr
 IR_message = 0
 counter = 0

goto loop

 - Page 1.18

Stamp™ Weekend Application Kit

Extending the IR Range and Capabilities
You can use a transistor and a 100 Ω to better than double the transmitting power of
the IR LED in your kit. A 555 timer can also be used to enable BASIC Stamp to use
the SERIN and SEROUT commands for IR data exchange. The circuit is featured in
BASIC Stamp 1 Application Note 11 – Infrared Communication. The BASIC Stamp
1 application notes are available for free download from the www.parallaxinc.com à
Downloads page.

