
Solving Probability and Statistics Problems by Program Synthesis

Leonard Tang
Harvard University

Mathematics

Elizabeth Ke
MIT

Mathematics

Nikhil Singh
MIT

Media Lab

Nakul Verma
Columbia University

Computer Science Department

Iddo Drori
MIT

EECS

Abstract
We solve university level probability and statis-
tics questions by program synthesis using
OpenAI’s Codex, a Transformer trained on
text and fine-tuned on code. We transform
course problems from MIT’s 18.05 Introduc-
tion to Probability and Statistics and Harvard’s
STAT110 Probability into programming tasks.
We then execute the generated code to get
a solution. Since these course questions are
grounded in probability, we often aim to have
Codex generate probabilistic programs that
simulate a large number of probabilistic depen-
dencies to compute its solution. Our approach
requires prompt engineering to transform the
question from its original form to an explicit,
tractable form that results in a correct program
and solution. To estimate the amount of work
needed to translate an original question into its
tractable form, we measure the similarity be-
tween original and transformed questions. Our
work is the first to introduce a new dataset of
university-level probability and statistics prob-
lems and solve these problems in a scalable
fashion using the program synthesis capabili-
ties of large language models.

1 Introduction

Let’s say we play a game where I keep flipping a
coin until I get heads. If the first time I get heads
is on the n-th coin, then I pay you 2n − 1 dollars.
How much would you pay me to play this game?

How would one solve this problem in an auto-
mated fashion? Existing approaches to solving such
a problem, typical in university level probability
and statistics courses, overwhelmingly hinge upon
directing foundation models to formulate answers
in a deductive fashion, whether via a sequence of
steps (Hendrycks et al., 2021) or formal operations
(Amini et al., 2019).

An alternate compelling approach is to simulate
a given task on a large scale and aggregate results
across multiple scenarios. Such an approach, usu-
ally dubbed as probabilistic programming in the

literature (Wingate et al., 2011), offers a flexible
mechanism for solving a variety of probabilistic
tasks.

Inspired by this insight, our goal is to solve
probability problems both via simulation and di-
rect methods by leveraging the power of a pro-
gram synthesizer such as OpenAI’s Codex (Chen
et al., 2021). Codex is a Transformer model trained
on text and fine-tuned on code, which has the ca-
pacity to write programs that can simulate arbi-
trary stochastic tasks. Our core approach is neatly
demonstrated in Figure 1. We transform raw ques-
tion text into a programming task. This is then fed
into Codex, generating a probabilistic program. We
can then execute this code to get the correct re-
sponse.

To the best of our knowledge, we are the first
to propose such a simulation based approach to
solve probability questions. To evaluate the effi-
cacy of our approach, we collect two sets of 20
undergraduate-level probability and statistics prob-
lems, curated from MIT’s 18.05 and Harvard’s
STAT110.

The key to our success lies in the carefully en-
gineered prompts we present to Codex. Critically,
we introduce the notion of Concept-Grounded Task
prompting, i.e. priming Codex with related con-
cepts and problem-solving strategies in its prompt
(cf. Figure 2).

1.1 Related Work

Foundation models. Foundation models (Bom-
masani et al., 2021) such as GPT-3 (Brown et al.,
2020) have demonstrated impressive and unfore-
seen emergent capabilities from their learning pro-
cess, including aptitude in automatic speech recog-
nition, vision, commonsense reasoning, and more
(Moritz et al., 2020; Dosovitskiy et al., 2021; Bosse-
lut et al., 2019). For the task of answering questions
specifically, such models have recently achieved
strong performance (Rajpurkar et al., 2018). How-

Figure 1: Probabilistic Simulation Program Workflow Example: (i) The original problem is translated into a pro-
gramming task that asks Codex to simulate a large number of probabilistic scenarios, (ii) Codex generates such a
program, and (iii) the program is executed to yield an answer.

ever, when tasked with solving university-level
quantitative problems, foundation model perfor-
mance is poor (Hendrycks et al., 2021).

Probability benchmarks. Though recent works
have introduced datasets, such as MATH, MAWPS,
MathQA, Math23k, and GSM8K (Hendrycks et al.,
2021; Koncel-Kedziorski et al., 2016; Amini et al.,
2019; Wang et al., 2017; Cobbe et al., 2021), that
focus on benchmarking mathematical question an-
swering, including probability questions, but all
of these works only consider grade-school level
question difficulty. We are the first to present two
datasets of undergraduate-level probability and
statistics questions.

2 Dataset

We introduce two datasets of questions from two
separate undergraduate-level probability and statis-
tics courses of varying difficulty and a set of quan-
titative finance interview questions. We describe
the datasets below:

1. The first dataset consists of applied questions
in probability. We take 20 questions that have
numerical answers from MIT’s 18.05: Intro-
duction to Probability and Statistics (Bloom,
2014). Course topics include various probabil-
ity and statistics concepts, including counting,
conditional probability, discrete and continu-
ous random variables, expectation and vari-
ance, central limit theorem, joint distributions,
maximum likelihood estimators, Bayesian up-
dating, null hypothesis significance testing,
and confidence intervals.

2. The second dataset, in contrast to the first
dataset, consists of conceptual questions in
probability and statistics. We take 20 ques-
tions that have numerical answers from Har-
vard’s STAT110: Probability (Blitzstein, 2021)
and Brainstellar (Seth, 2021) online cata-
logue of quantitative finance probability brain-
teasers. Topics include: distributions, moment
generating functions, expectation, variance,
covariance, correlation, conditional probabil-
ity, joint distributions, marginal distributions,
conditional distributions, limit theorems, and
Markov chains.

See Appendix for the list of all questions in our
datasets.

3 Methods

3.1 Models and Evaluation

As our core program synthesizer, we leverage Ope-
nAI’s Codex (Chen et al., 2021). Given a raw ques-
tion text, we use the following experimentation
pipeline: we convert each question into a program-
ming task, prompt Codex with the task to get a
programmatic solution, and execute the program
generated by Codex, comparing the execution re-
sult to the ground truth solution.

A critical component of this workflow is prompt
engineering (i.e. the conversion from question to
programming task). We examine prompt engineer-
ing in further detail in Section 3.2 and measure
the degree to which we manipulate the prompt in
Section 4.2.

Figure 2: Concept-Grounded Workflow Example: (i) The original problem is translated into a programming task
that includes Bayes’ Theorem within its context, (ii) Codex generates a program, and (iii) the program is executed
to yield an answer.

3.2 Prompt Engineering
Large generative language models, including
Codex, are known to be extremely sensitive to input
prompts (Reynolds and McDonell, 2021). Below,
we outline and describe three classes of prompts
that we communicate to Codex with and their asso-
ciated effects:

• Program Task Specification: One class of
prompts converts probability questions into
direct task specifications (Reynolds and Mc-
Donell, 2021). In this case, these specifica-
tions are explicit programming assignments.
For instance, if the original question is "What
is the probability of flipping two heads in
a row given a fair coin?", the correspond-
ing task specification would be "Write a pro-
gram that computes the probability of flipping
two heads in a row given a fair coin." While
these prompts occasionally suffice, in many
instances additional prompt manipulation is
required.

• Probabilistic Simulation Programming:
While the above classes of prompts produce
programs deterministic in nature, our third
prompting technique hinges upon the power
of probabilistic simulation programs, i.e. pro-
grams that simulate a large number of scenar-
ios and aggregate results across simulations
to determine an approximate answer. To trig-
ger such simulation behavior in Codex, we
include in our prompt the substring "Write a
large-scale simulation program to estimate,"
followed by the desired task. Figure 1 presents
an example using such a prompting scheme.

• Concept-Grounded Task: An extremely use-

ful extension beyond Program Task Specifica-
tion is to include relevant information pertain-
ing to both the question and program contexts.
The question context includes related topics
or mathematical rules to use. This is primarily
represented in the form of canonical equations,
definitions, and theorems. Providing Codex
with hints on problem-solving strategy involv-
ing these concepts is extremely helpful. For
instance, if a question is related to the con-
cept of Bayes’ Theorem, appending the trans-
formed prompt with an explicit instruction to
use Bayes’ Theorem results in a correct pro-
gram. This is demonstrated in Figure 2. In ad-
dition to the question context, it may be useful
to specify the programming context, including
which packages or libraries the program will
load and use, such as packages for symbolic
math, integration, or optimization.

4 Results

4.1 Evaluating Program Output

It is possible for Codex to generate code which
appears to yield a correct answer, but in reality is
not a correct method to solve the problem. Thus,
we explicitly inspect the code generated by Codex
to check for its logical correctness. See Figure 3
for an explicit example which we encountered.

Another peculiar challenge in evaluating
Codex’s generated simulation programs lies in the
approximate nature of their output. Specifically, we
can only achieve perfect accuracy in the limit of
simulation scale. Hence, we designate a numerical
output resulting from program execution as correct
when it is within 1% of the ground truth solution.

Figure 3: Evaluating Codex requires more than just
checking the numerical answer. It requires evaluating
the logic of the program, and seeing that it actually
answers the program. Though the computed answer
matches the ground truth solution of 0.5, the Codex
program is written with the intention of calculating the
unconditional probability of having fraternal twins (as-
suming fraternal and identical twins have equal proba-
bilities), and completely ignores the conditioning infor-
mation in the problem.

4.2 Achieving Perfect Results

Following the methods discussed in Section 3.2, we
are able to generate correct programs for all ques-
tions in both datasets. See the Appendix for addi-
tional detail regarding the original question text, the
corresponding prompt-engineered transformation,
the generated program, and finally the program
evaluation for each question in each dataset.

Since our approach involves prompt engineering
in the process of translating a question to a pro-
gramming task, we seek a concrete measure of the
effort necessary in this transformation. Our met-
ric is computed as follows: for any given pair of
original question and transformed programming
task, we compute the cosine similarity between
the Sentence-BERT (Reimers and Gurevych, 2019)
embedding of the question and Sentence-BERT
embedding of the task.

Figure 4 shows that we have an average similar-
ity of 0.80 in MIT’s 18.05 and an average similarity
of 0.79 in STAT110. As a baseline reference we

also include the average pairwise similarity score
among the original questions, thus indicating we
only need minor changes to the text.

Figure 4: Sentence-BERT Similarity between origi-
nal questions and programming tasks by course. Each
course’s transformation similarities are contextualized
by baseline question similarities, i.e. the average pair-
wise similarity between the original questions.

Finally, since theses course are available online,
we verify that Codex is not overfitting to training
data, by writing and solving our own novel ques-
tions.

4.3 Implementation Details
We fix all Codex’s hyperparameters to be the same
for all experiments: top-p1 is set to 1, sampling
temperature is set to 0 (i.e. argmax), and maxi-
mum sequence length is set to 750 tokens. Both
frequency and presence penalty are set to 0, and
we do not halt on any stop sequences. We use the
davinci engine for all of our generations.

5 Conclusion

To the best of our knowledge, this is the first work
to present a state-of-the-art method that leverages
the program synthesis and probabilistic simula-
tion capabilities of foundation models to solve
university-level probability and statistics problems.
Through the use of prompt engineering, including
priming Codex with concepts and problem-solving
strategies, we achieve full correctness on our novel
datasets. We plan to expand our work to further un-
derstand the underlying structure of programming
tasks that are amenable to Codex manipulation,
and in a similar vein move towards the automatic
translation of questions to programming tasks.

1top-p designates the portion p of the token probability
mass a language model samples from at each step.

References
Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik

Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. MathQA: Towards interpretable
math word problem solving with operation-based
formalisms. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 2357–2367, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Joe Blitzstein. 2021. Statistics 110 probability.

Jonathan Bloom. 2014. Introduction to probability and
statistics.

Rishi Bommasani et al. 2021. On the opportunities
and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Çelikyilmaz, and Yejin Choi.
2019. Comet: Commonsense transformers for au-
tomatic knowledge graph construction. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics (ACL).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Mark Chen et al. 2021. Evaluating large language mod-
els trained on code.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Ja-
cob Hilton, Reiichiro Nakano, Christopher Hesse,
and John Schulman. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. ICLR.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini,
Nate Kushman, and Hannaneh Hajishirzi. 2016.
MAWPS: A math word problem repository. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1152–1157, San Diego, California. Association for
Computational Linguistics.

Niko Moritz, Takaaki Hori, and Jonathan Le. 2020.
Streaming automatic speech recognition with the
transformer model. In ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 6074–6078.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 784–
789, Melbourne, Australia. Association for Compu-
tational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 3982–3992, Hong Kong, China. Association
for Computational Linguistics.

Laria Reynolds and Kyle McDonell. 2021. Prompt pro-
gramming for large language models: Beyond the
few-shot paradigm. CoRR, abs/2102.07350.

Varun Seth. 2021. Brainstellar.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845–
854, Copenhagen, Denmark. Association for Com-
putational Linguistics.

David Wingate, Andreas Stuhlmueller, and Noah Good-
man. 2011. Lightweight implementations of proba-
bilistic programming languages via transformational
compilation. In Proceedings of the Fourteenth In-
ternational Conference on Artificial Intelligence and
Statistics, volume 15 of Proceedings of Machine
Learning Research, pages 770–778, Fort Lauderdale,
FL, USA. PMLR.

https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://projects.iq.harvard.edu/stat110/home
https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring-2014/
https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring-2014/
http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2108.07258
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.1109/ICASSP40776.2020.9054476
https://doi.org/10.1109/ICASSP40776.2020.9054476
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
http://arxiv.org/abs/2102.07350
http://arxiv.org/abs/2102.07350
http://arxiv.org/abs/2102.07350
https://brainstellar.com/
https://doi.org/10.18653/v1/D17-1088
https://proceedings.mlr.press/v15/wingate11a.html
https://proceedings.mlr.press/v15/wingate11a.html
https://proceedings.mlr.press/v15/wingate11a.html

A MIT 18.05: Introduction to Probability and Statistics

Topic Probability
Original question In class we worked with non-transitive dice: Red: 3 3 3 3 3 6; Green: 1 4 4 4 4 4; White: 2 2

2 5 5 5. Find the probability that white beats green.
Codex input Given non-transitive dice: Red: 3 3 3 3 3 6; Green: 1 4 4 4 4 4; White: 2 2 2 5 5 5, write a

program that computes the probability that white beats green.
Codex output

import itertools

red = [3, 3, 3, 3, 3, 6]
green = [1, 4, 4, 4, 4, 4]
white = [2, 2, 2, 5, 5, 5]

def prob_white_beats_green(red, green, white):
rolls = list(itertools.product(red, green, white))
wins = [1 for (r, g, w) in rolls if w > g]
return sum(wins) / len(rolls)

prob_white_beats_green(red, green, white)

Solution 7/12

Question 1 from 18.05

Topic Probability
Original question Calculate the probability of getting a two-pair poker hand.
Codex input A hand is a set of 5 cards that are drawn randomly from a standard 52 card deck with 13

ranks of 4 cards each.

A two-pair poker hand is a hand that contains 3 unique ranks, where no more than
2 cards in the hand can share the same rank. That is, 3 or more cards cannot share the same
rank.

Write a program that generates simulations for calculating the average probability
of getting a two-pair poker hand.

Codex output
import random

def get_rank_counts(hand):
""""""
Returns a dictionary with ranks as keys and the number

of cards with that rank as values.
""""""
rank_counts = {}
for card in hand:

rank = card[0]
if rank in rank_counts:

rank_counts[rank] += 1
else:

rank_counts[rank] = 1
return rank_counts

def has_two_pair(hand):
""""""
Returns True if the hand has two pairs, and False

otherwise.
""""""
rank_counts = get_rank_counts(hand)
two_pair = False
for rank in rank_counts:

if rank_counts[rank] == 2:
if two_pair:

return True
else:

two_pair = True
return False

def run_simulation():
""""""
Runs a simulation of drawing 5 cards randomly from a

deck of 52 cards.
""""""
two_pair = 0
for i in range(1000000):

deck = [r+s for r in ’23456789TJQKA’ for s in ’SHDC’]
random.shuffle(deck)
hand = deck[:5]
if has_two_pair(hand):

two_pair += 1
return two_pair/1000000

print(run_simulation())

Solution 0.047539

Question 2 from 18.05

Topic Probability
Original question Calculate the probability of getting a three-of-a-kind poker hand.
Codex input A hand is a set of 5 cards that are drawn randomly from a standard 52 card deck with 13

ranks of 4 cards each.

A three-pair poker hand is a hand that contains exactly 3 cards that share one rank,
1 card of another rank, and a final card of another rank.

Write a program that generates simulations for calculating the average probability
of getting a three-pair poker hand.

Codex output
import random

def get_rank_counts(hand):
"""
Return a dictionary with ranks as keys and their counts

as values.
"""
ranks = [card[0] for card in hand]
return {rank: ranks.count(rank) for rank in ranks}

def is_three_pair(hand):
"""
Return True if hand is a three pair hand.
"""
rank_counts = get_rank_counts(hand)
return 3 in rank_counts.values()

def get_three_pair_probability(n):
"""
Return the probability of getting a three pair hand.
"""
three_pair_count = 0
for _ in range(n):

deck = [
’2C’, ’2D’, ’2H’, ’2S’,
’3C’, ’3D’, ’3H’, ’3S’,
’4C’, ’4D’, ’4H’, ’4S’,
’5C’, ’5D’, ’5H’, ’5S’,
’6C’, ’6D’, ’6H’, ’6S’,
’7C’, ’7D’, ’7H’, ’7S’,
’8C’, ’8D’, ’8H’, ’8S’,
’9C’, ’9D’, ’9H’, ’9S’,
’TC’, ’TD’, ’TH’, ’TS’,
’JC’, ’JD’, ’JH’, ’JS’,
’QC’, ’QD’, ’QH’, ’QS’,
’KC’, ’KD’, ’KH’, ’KS’,
’AC’, ’AD’, ’AH’, ’AS’

]
hand = random.sample(deck, 5)
if is_three_pair(hand):

three_pair_count += 1
return three_pair_count / n

print(get_three_pair_probability(1000000))

Solution 0.021128

Question 3 from 18.05

Topic Probability
Original question In class we worked with non-transitive dice: Red: 3 3 3 3 3 6; Green: 1 4 4 4 4 4; White: 2 2

2 5 5 5. Find the probability that green beats red.
Codex input Given two non-transitive dice:

Red: 3 3 3 3 3 6;
Green: 1 4 4 4 4 4.
Write a program that computes the probability that green beats red.

Codex output
def dice_prob(dice1, dice2):

’’’
dice1: list of dice 1
dice2: list of dice 2
’’’
Your code here
red_wins = 0
green_wins = 0
for i in dice1:

for j in dice2:
if i > j:

red_wins += 1
elif j > i:

green_wins += 1
return green_wins / (red_wins + green_wins)

Test Cases
dice1 = [3, 3, 3, 3, 3, 6]
dice2 = [1, 4, 4, 4, 4, 4]
print(dice_prob(dice1, dice2))

Solution 25/36

Question 4 from 18.05

Topic Conditional Probability
Original question Mr. Smith has two children. At least one of them is a boy. What is the probability that both

children are boys?
Codex input Write a program that computes the probability that both children are boys given that one of

them is a boy.
Codex output

probability that one child is a boy
p_one_boy = 1/4

probability that both children are boys
p_both_boys = 1/4

probability that one of them is a boy
p_one_is_boy = 3/4

probability that both children are boys given that one of
them is a boy

p_both_boys_given_one_boy = p_both_boys / p_one_is_boy

print(p_both_boys_given_one_boy)

Solution 1/3

Question 5 from 18.05

Topic Discrete Random Variables, Standard Deviation
Original question Let X be the result of rolling a fair 4-sided die. Let Y be the result of rolling a fair 6-sided

die. Let Z be the average of X and Y. Find the standard deviation of X.
Codex input In Probability,

Write a program that computes the variance and standard deviation of rolling a fair 4-sided
die 1000000 times.

Codex output
import random

def variance(lst):
mean = sum(lst) / len(lst)
return sum((i - mean) ** 2 for i in lst) / len(lst)

def standard_deviation(lst):
return variance(lst) ** 0.5

def main():
lst = []
for i in range(1000000):

lst.append(random.randint(1, 4))
print(variance(lst))
print(standard_deviation(lst))

if __name__ == ’__main__’:
main()

Solution 1.118

Question 6 from 18.05

Topic Discrete Random Variables, Standard Deviation
Original question Let X be the result of rolling a fair 4-sided die. Let Y be the result of rolling a fair 6-sided

die. Let Z be the average of X and Y. Find the standard deviation of Y.
Codex input In Probability, Write a program that computes the variance and standard deviation of rolling

a fair 6-sided die 1000000 times.
Codex output

import statistics

def variance_and_standard_deviation():
data = []
for i in range(1000000):

data.append(random.randint(1,6))
print(statistics.variance(data))
print(statistics.stdev(data))

variance_and_standard_deviation()

Solution 1.708

Question 7 from 18.05

Topic Discrete Random Variables, Standard Deviation
Original question Let X be the result of rolling a fair 4-sided die. Let Y be the result of rolling a fair 6-sided

die. Let Z be the average of X and Y. Find the standard deviation of Z.
Codex input Let X be the result of rolling a fair 4-sided die. Let Y be the result of rolling a fair 6-sided die.

Let Z be the average of X and Y. Write a program that computes the standard deviation of Z.
Codex output

import math

def standard_deviation(lst):
mean = sum(lst) / len(lst)
return math.sqrt(sum([(x - mean) ** 2 for x in lst]) /

len(lst))

def main():
X = [1, 2, 3, 4]
Y = [1, 2, 3, 4, 5, 6]
Z = []
for i in X:

for j in Y:
Z.append((i + j) / 2)

print(standard_deviation(Z))

if __name__ == "__main__":
main()

Solution 1.021

Question 8 from 18.05

Topic Discrete Random Variables, Expectation
Original question Let X be the result of rolling a fair 4-sided die. Let Y be the result of rolling a fair 6-sided die.

You win 2X dollars if X>Y and lose 1 dollar otherwise. After playing this game 60 times,
what is your expected total gain?

Codex input In Probability,
X is the result of rolling a fair 4-sided die and Y is the result of rolling a fair 6-sided die. You
win 2X if X > Y and lose 1 otherwise.
Write a program that computes the expected total gain after rolling both dice 60 times.

Codex output
import random

def roll_dice():
return random.randint(1, 4)

def roll_dice_6():
return random.randint(1, 6)

def play_game():
total_gain = 0
for i in range(60):

x = roll_dice()
y = roll_dice_6()
if x > y:

total_gain += 2 * x
else:

total_gain -= 1
return total_gain

def main():
total_gain = 0
for i in range(1000):

total_gain += play_game()
print(total_gain / 1000)

if __name__ == ’__main__’:
main()

Solution 55

Question 9 from 18.05

Topic Counting, Continuous Variables
Original question Boxes of Raisin Bran cereal are 30cm tall. Due to settling, boxes have a higher density of

raisins at the bottom (h = 0) than at the top (h = 30). Suppose the density (in raisins per cm
of height) is given by f(h) = 40 - h. How many raisins are in a box?

Codex input Boxes of Raisin Bran cereal are 30cm tall.
Suppose the density of raisins per cm of height is given by f(h) = 40 - h.
Using scipy.integrate, write a program that computes how many raisins are in a box.

Codex output
import numpy as np
import scipy.integrate as integrate

def f(h):
return 40 - h

def integrate_f(a, b):
return integrate.quad(f, a, b)

print(integrate_f(0, 30))

Solution 750

Question 10 from 18.05

Topic Probability, Continuous Variables
Original question Boxes of Raisin Bran cereal are 30cm tall. Due to settling, boxes have a higher density of

raisins at the bottom (h = 0) than at the top (h = 30). Suppose the density (in raisins per cm of
height) is given by f(h) = 40 - h. What is the probability that a random raisin is in the bottom
third of the box?

Codex input h ranges from 0 to 30. Integrate f(h) = 40 - h from 0 to 10. Divide by the integration of h
from 0 to 30.

Codex output
def f(h):

return 40 - h

def integrate(f, a, b, N):
"""
Integrates f from a to b using N intervals
"""
dx = (b - a) / N
total = 0
for i in range(N):

total += f(a + i * dx)
return total * dx

print(integrate(f, 0, 10, 100000) / integrate(f, 0, 30,
100000))

Solution 7/15

Question 11 from 18.05

Topic Prior Odds
Original question You have a drawer that contains 50 coins. 10 coins have probability p = 0.3 of heads, 30

coins have probability p = 0.5 and 10 coins have probability p = 0.7. You pick one coin at
random from the drawer and flip it. What are the (prior) odds you chose a 0.3 coin?

Codex input You have a drawer that contains 10 white coins and 40 black coins.
You pick one coin at random from the drawer. Write a program that computes the odds that
you chose a white coin.

In probability, the odds of an event E is P(E)/P(E^c).
Codex output

P(E) = 10/50
P(E^c) = 40/50
odds = P(E)/P(E^c) = 10/40

print(10/40)

Solution 1/4

Question 12 from 18.05

Topic Joint Distributions
Original question Suppose X and Y have joint pdf f(x, y) = c(x2 + xy) on [0, 1] × [0, 1]. Find c.
Codex input Define variables x, y, c.

Using Sympy, integrate f(x, y) = c(x^2+xy) from 0 to 1 for x and 0 to 1 for y; set it equal to 1
in an equation. Find c that makes the expression 1.

Codex output
import sympy as sp

x, y, c = sp.symbols(’x y c’)

f = c * (x**2 + x*y)

sp.integrate(f, (x, 0, 1), (y, 0, 1))

sp.solve(sp.Eq(1, sp.integrate(f, (x, 0, 1), (y, 0, 1))), c)

Solution 12/7

Question 13 from 18.05

Topic Central Limit Theorem, Probability
Original question To head the newly formed US Dept. of Statistics, suppose that 50% of the population supports

Erika, 20% supports Ruthi, and the rest are split between Peter, Jon and Jerry. A poll asks 400
random people who they support. Use the central limit theorem to estimate the probability
that at least 52.5% of those polled prefer Erika?

Codex input Suppose that 50% of the population supports Erika. A poll asks 400 random people who they
support.
Write a program that uses the central limit theorem to compute the probability that at least
52.5% of those polled support Erika.

Codex output
import random

def poll(n):
"""
n: number of people polled
returns: percentage of people in favor of Erika
"""
generate a list of n random numbers between 0 and 1
if the number is less than 0.5, the person is in favor

of Erika
if the number is greater than 0.5, the person is in

favor of Erica
return the percentage of people in favor of Erika
count = 0
for i in range(n):

if random.random() < 0.5:
count += 1

return count / n

def poll_prob(n, m):
"""
n: number of people polled
m: number of times the poll is conducted
returns: probability that at least 52.5% of the

population supports Erika
"""
run poll_prob() m times
count the number of times the poll is in favor of Erika
return the number of times the poll is in favor of

Erika divided by m
count = 0
for i in range(m):

if poll(n) >= 0.525:
count += 1

return count / m

print(poll_prob(400, 10000))

Solution 0.16

Question 14 from 18.05

Topic Central Limit Theorem, Probability
Original question To head the newly formed US Dept. of Statistics, suppose that 50% of the population supports

Erika, 20% supports Ruthi, and the rest are split between Peter, Jon and Jerry. A poll asks 400
random people who they support. Use the central limit theorem to estimate the probability
that less than 25% of those polled prefer Peter, Jon or Jerry?

Codex input Suppose that 30% of the population supports Peter. A poll asks 400 random people who they
support.
Write a program that uses the central limit theorem to compute the probability that less than
25% of those polled support Peter.

Codex output
import random

def poll(n, p):
count = 0
for i in range(n):

if random.random() < p:
count += 1

return count

def main():
peter_support = 0.3
n = 400
p = 0.25
poll_size = 1000
count = 0
for i in range(poll_size):

if poll(n, peter_support) < p * n:
count += 1

print(count / poll_size)

if __name__ == "__main__":
main()

Solution 0.0145

Question 15 from 18.05

Topic Uniform Random Variables, Probability
Original question Alice and Bob are trying to meet for lunch and both will arrive, independently of each other,

uniformly and at random between noon and 1pm. Let A and B be the number of minutes after
noon at which Alice and Bob arrive, respectively. Then A and B are independent uniformly
distributed random variables on [0, 60]. Find the probability that Alice arrives before 12:30.

Codex input A and B are trying to meet for lunch between 12:00 and 1:00. Alice and Bob arriving for
lunch are independent and uniformly distributed events.
Write a function that finds the probability that A arrives before 12:30.

Codex output
def prob_a_before_1230(a, b):

return a / (a + b)

print(prob_a_before_1230(0.5, 0.5))

Solution 1/2

Question 16 from 18.05

Topic Uniform Random Variables, Probability
Original question Alice and Bob are trying to meet for lunch and both will arrive, independently of each other,

uniformly and at random between noon and 1pm. Let A and B be the number of minutes after
noon at which Alice and Bob arrive, respectively. Then A and B are independent uniformly
distributed random variables on [0, 60]. Now suppose that Alice and Bob are both rather
impatient and will leave if they have to wait more than 15 minutes for the other to arrive.
What is the probability that Alice and Bob will have lunch together?

Codex input Alice and Bob are trying to meet for lunch and both will arrive, independently of each other,
uniformly and at random between 12pm and 1pm. Suppose that Alice and Bob are both
rather impatient and will leave if they have to wait more than 15 minutes for the other to
arrive. Write a function that randomly computes the probability that Alice and Bob will have
lunch together.

Codex output
import random

def lunch_together():
Alice arrives at time
time_a = random.uniform(0, 60)
Bob arrives at time
time_b = random.uniform(0, 60)
If both arrive within 15 minutes of each other, they

have lunch together
if abs(time_a - time_b) <= 15:

return True
else:

return False

def prob_lunch_together():
Run lunch_together() 10,000 times
count = 0
for i in range(10000):

if lunch_together():
count += 1

Return probability
return count / 10000

print(prob_lunch_together())

Solution 7/16

Question 17 from 18.05

Topic Prior Odds
Original question You have a drawer that contains 50 coins. 10 coins have probability p = 0.3 of heads, 30

coins have probability p = 0.5 and 10 coins have probability p = 0.7. You pick one coin at
random from the drawer and flip it. What are the (prior) odds you chose a 0.7 coin?

Codex input You have a drawer that contains 10 white coins and 40 black coins.
You pick one coin at random from the drawer. Write a program that computes the odds that
you chose a white coin.

In probability, the odds of an event E is P(E)/P(E^c).
Codex output

P(E) = 10/50
P(E^c) = 40/50
odds = P(E)/P(E^c) = 10/40

print(10/40)

Solution 1/4

Question 18 from 18.05

Topic Null Hypothesis Significance Testing, Type I Error
Original question One generates a number x from a uniform distribution on the interval [0, θ]. One decides

to test H0: θ = 2 against HA: θ = 2 by rejecting H0 if x ≤ 0.1 or x ≥ 1.9. Compute the
probability of a type I error.

Codex input One generates a number x from a uniform distribution on the interval [0, θ].
One decides to test H0: θ = 2 against HA: θ = 2 by rejecting H0 if x ≤ 0.1 or x ≥ 1.9.
Using numpy, write a program that computes the probability of a type I error.

Codex output
import numpy as np

theta = 2
n = 100000

x = np.random.uniform(0, theta, n)

type_I_error = np.sum(x <= 0.1) + np.sum(x >= 1.9)

print(type_I_error / n)

Solution 0.1

Question 19 from 18.05

Topic Null Hypothesis Significance Testing, Type II Error
Original question One generates a number x from a uniform distribution on the interval [0, θ]. One decides

to test H0: θ = 2 against HA: θ = 2 by rejecting H0 if x ≤ 0.1 or x ≥ 1.9. Compute the
probability of a type II error if the true value of θ is 2.5.

Codex input One generates a number x from a uniform distribution on the interval [0, θ].

One decides to test H0 : θ = 2 against HA : θ = 2 by rejecting H0 if x ≤ 0.1 or x
≥ 1.9, and accepted otherwise.

Given that θ = 2.5, write a program that computes the type II error.

The type II error is the probability that the null hypothesis is mistakenly accepted.
Codex output

import numpy as np

theta = 2.5

def type_II_error(theta, x):
return 1 - np.sum(np.logical_or(x < 0.1, x > 1.9)) /

len(x)

x = np.random.uniform(0, theta, 100000)

print(type_II_error(theta, x))

Solution 0.72

Question 20 from 18.05

B Harvard STAT110: Probability

Topic Complementary Probability
Original Question In any 15-minute interval, there is a 20% probability that you will see at least one shooting

star. What is the probability that you see at least one shooting star in the period of an hour?
Codex Input In any 15-minute interval, there is a 20% probability that you will see at least one shooting

star.

There are 4 15-minute intervals in an hour.

Write a simulation program to estimate the probability that you see at least one
shooting star in the period of an hour.

Codex Output
import random

def star():
return random.random() <= 0.2

def star_in_hour():
count = 0
for i in range(4):

if star():
count += 1

return count >= 1

def estimate_probability():
count = 0
for i in range(10000):

if star_in_hour():
count += 1

return count / 10000

print(estimate_probability())

Solution 0.594

Question 1 from STAT110

Topic Conditional Probability
Original Question A certain couple tells you that they have two children, at least one of which is a girl. What is

the probability that they have two girls?
Codex Input A couple has two children, with at least one child being a girl.

Write a simulation program to estimate the probability that the both children are girls.
Codex Output

import random

def random_kid():
return random.choice([""boy"", ""girl""])

both_girls = 0
older_girl = 0
either_girl = 0

random.seed(0)
for _ in range(10000):

younger = random_kid()
older = random_kid()
if older == ""girl"":

older_girl += 1
if older == ""girl"" and younger == ""girl"":

both_girls += 1
if older == ""girl"" or younger == ""girl"":

either_girl += 1

print(""P(both | older):"", both_girls / older_girl)
print(""P(both | either):"", both_girls / either_girl)

Solution 1/3

Question 2 from STAT110

Topic Conditional Probability
Original Question You have a group of couples that decide to have children until they have their first girl, after

which they stop having children. What is the expected gender ratio of the children that are
born? What is the expected number of children each couple will have?

Codex Input N couples decide to have children (both boys and girls) until they have their first girl, after
which they stop having children.

Write a sampling program to estimate the ratio of boys to girls after all N couples
stop having children.

Codex Output
import random

def children():
return random.choice([’boy’, ’girl’])

def children_until_girl(n):
boys = 0
girls = 0
for i in range(n):

child = children()
if child == ’boy’:

boys += 1
else:

girls += 1
break

return (boys, girls)

def children_until_girl_sampling(n, samples):
boys = 0
girls = 0
for i in range(samples):

child = children_until_girl(n)
boys += child[0]
girls += child[1]

return (boys, girls)

def children_until_girl_ratio(n, samples):
boys, girls = children_until_girl_sampling(n, samples)
return float(boys) / float(girls)

print(children_until_girl_ratio(5, 10000))

Solution 1/2

Question 3 from STAT110

Topic Expected Value
Original Question A lazy high school senior types up application and envelopes to n different colleges, but puts

the applications randomly into the envelopes. What is the expected number of applications
that went to the right college?

Codex Input A lazy high school senior types up application and envelopes to n different colleges, but
puts the applications randomly into the envelopes. Write a program to calculate the expected
number of applications that were put in the right envelopes.

Codex Output
import random

def main():
n = int(input(""Enter the number of colleges: ""))
num_trials = int(input(""Enter the number of trials: ""))
count = 0
for i in range(num_trials):

applications = [i for i in range(n)]
envelopes = [i for i in range(n)]
random.shuffle(envelopes)
for i in range(n):

if applications[i] == envelopes[i]:
count += 1

print(""The expected number of applications that were
put in the right envelopes is"", count/num_trials)

if __name__ == ""__main__"":
main()

Solution 1

Question 4 from STAT110

Topic Expected Value and Conditional Expectation
Original Question What’s the expected number of coin flips until you get two heads in a row? What’s the

expected number of coin flips until you get two tails in a row?
Codex Input Generate 1000 sequences of random coin flips, and end each sequence once you get two

consecutive heads. Write a program that computes the average sequence length.
Codex Output

import random

def flip_coin():
return random.choice([’H’, ’T’])

def flip_coin_until_consecutive_heads():
seq = ’’
while True:

seq += flip_coin()
if seq[-2:] == ’HH’:

break
return seq

def flip_coin_until_consecutive_heads_1000_times():
seqs = []
for i in range(1000):

seqs.append(flip_coin_until_consecutive_heads())
return seqs

def compute_average_sequence_length():
seqs = flip_coin_until_consecutive_heads_1000_times()
return sum([len(seq) for seq in seqs]) / len(seqs)

print(compute_average_sequence_length())

Solution 6

Question 5 from STAT110

Topic Expected Value
Original Question Let’s say we play a game where I keep flipping a coin until I get heads. If the first time I get

heads is on the nth coin, then I pay you 2n-1 dollars. How much would you pay me to play
this game?

Codex Input Let’s say we play a game where I keep flipping a coin until I get heads.

If the first time I get heads is on the nth coin, then I pay you 2n-1 dollars.

Write a large-scale simulation program to determine how much you would pay me
to play this game.

Codex Output
import random

def flip_coin():
return random.randint(0,1)

def play_game(n):
heads = False
count = 0
while not heads:

count += 1
heads = flip_coin()

return 2*count - 1

def run_simulation(n):
total = 0
for i in range(n):

total += play_game(n)
return total/n

print(run_simulation(100000))

Solution 3

Question 6 from STAT110

Topic Bayes’ Theorem and Conditional Probability
Original Question You have two coins, one of which is fair and comes up heads with a probability 1/2, and the

other which is biased and comes up heads with probability 3/4. You randomly pick coin and
flip it twice, and get heads both times. What is the probability that you picked the fair coin?

Codex Input You have one coin that is fair and comes up heads with probability 1/2.

You have another coin that is biased and comes up heads with probability 3/4.

You pick either the fair or biased coin with 50-50 probability. You flip the chosen
coin twice.

Write a program using Bayes’ Theorem to compute and print the probability of
having picked the fair coin, given the fact that the chosen coin lands heads both times.

Codex Output
P(fair|H,H) = P(H,H|fair) * P(fair) / P(H,H)
P(H,H|fair) = P(H|fair) * P(H|fair)
P(H,H) = P(H|fair) * P(H|fair) * P(fair) + P(H|biased) *

P(H|biased) * P(biased)
P(fair|H,H) = (1/2 * 1/2 * 1/2) / (1/2 * 1/2 * 1/2 + 3/4

* 3/4 * 1/2)

print((1/2 * 1/2 * 1/2) / (1/2 * 1/2 * 1/2 + 3/4 * 3/4 *
1/2))

Solution 4/13

Question 7 from STAT110

Topic Conditional Probability
Original Question How many people do we need in a class to make the probability that two people have the

same birthday more than 1/2? For simplicity, assume there are 365 days in a year.
Codex Input Write a program to compute how many people do we need in a class to make the probability

that two people have the same birthday more than 1/2? There are 365 days in a year.
Codex Output

def birthday_paradox(n):
"""
n: number of people in the class
"""
return 1 - (1 - 1/365)**(n*(n-1)/2)

print(birthday_paradox(23))

Solution 23

Question 8 from STAT110

Topic
Original Question A bag contains one marble which is either green or blue, with equal probabilities. A green

marble is put in the bag (so there are 2 marbles now), and then a random marble is taken
out. The marble taken out is green. What is the probability that the remaining marble is also
green?

Codex Input A woman is pregnant with twin boys.
Twins may be either identical or fraternal (non-identical).
In general, only 1/3 of all twins born are identical.
Identical twins must be of the same sex, while fraternal twins may or may not be.
Assume that identical twins are equally likely to be both boys or both girls, while for fraternal
twins all possibilities are equally likely.
Given the above information, write a simulation program to estimate the average probability
that the woman’s twins are identical.

Codex Output
import random

def green_marble_probability(num_trials):
"""
num_trials: number of trials
"""
num_green = 0
for i in range(num_trials):

bag = [’green’, ’blue’]
random.shuffle(bag)
bag.append(’green’)
random.shuffle(bag)
if bag[0] == ’green’:

num_green += 1
return num_green / num_trials

print(green_marble_probability(100000))

Solution 2/3

Question 9 from STAT110

Topic Conditional Probability
Original Question Calvin and Hobbes play a match consisting of a series of games, where Calvin has probability

0.5 of winning each game (independently). They play with a ’win by two’ rule: the first
player to win two games more than his opponent wins the match. Find the probability that
Calvin wins the match (in terms of p)

Codex Input Calvin and Hobbes play a match consisting of a series of games, where Calvin has
probability 0.5 of winning each game (independently).

They play with a ’win by two’ rule: the first player to win two games more than
his opponent wins the match.

Write a simulation program to estimate the average probability that Calvin wins
the match.

Codex Output
import random

def calvin_wins(n):
wins = 0
for i in range(n):

if random.random() < 0.5:
wins += 1

return wins >= 2

def calvin_wins_match(n):
wins = 0
for i in range(n):

if calvin_wins(2):
wins += 1

return wins / n

print(calvin_wins_match(100000))

Solution 0.25

Question 10 from STAT110

Topic Geometric Probability
Original Question Two witches make a nightly visit to an all-night coffee shop. Each arrives at a random time

between 0:00 and 1:00. Each one of them stays for exactly 30 minutes. On any one given
night, what is the probability that the witches will meet at the coffee shop?

Codex Input Two witches make a nightly visit to an all-night coffee shop.
Each arrives at a random time between 0:00 and 1:00.
Each witch stays at the coffee shop for exactly 30 minutes.
Write a simulation program to estimate the average probability that the witches will see each
other at the coffee shop.

Codex Output
import random

def witches():
witches = []
for i in range(2):

witches.append(random.randint(0,60))
return witches

def main():
witches_seen = 0
for i in range(100000):

w = witches()
if w[0] > w[1]:

if w[0] - w[1] < 30:
witches_seen += 1

else:
if w[1] - w[0] < 30:

witches_seen += 1
print(witches_seen/100000)

main()

Solution 0.75

Question 11 from STAT110

Topic Geometric Probability
Original Question p and q are two points chosen at random between 0 & 1. What is the probability that the ratio

p/q lies between 1 & 2?
Codex Input Roll a die.

If the die is 4, 5, or 6, you get paid the value of the roll.
If the die is 1, 2, or 3, you reroll and get paid the value of the new roll.
Write a program that computes the expected value.

Codex Output
import random

def prob_p_q():
p = random.random()
q = random.random()
if p/q >= 1 and p/q <= 2:

return True
else:

return False

def prob_p_q_sim(n):
count = 0
for i in range(n):

if prob_p_q():
count += 1

return count/n

print(prob_p_q_sim(100000))

Solution 1/4

Question 12 from STAT110

Topic Conditional Expectation
Original Question Roll a die, and you get paid what the dice shows. But if you want, you can request a second

chance & roll the die again; get paid what the second roll shows instead of the first. What is
the expected value?

Codex Input Roll a die, and you get paid what the number on the dice.
You can request a second chance and roll the die again. You get paid the number on second
roll instead of the first.
Write a function to compute the expected value in Monte Carlo.

Codex Output
import random

def roll_die():
return random.randint(1,6)

def second_chance():
return random.randint(1,6)

def monte_carlo(n):
total = 0
for i in range(n):

first_roll = roll_die()
second_roll = second_chance()
total += max(first_roll, second_roll)

return total/n

print(monte_carlo(100000))

Solution 4.25

Question 13 from STAT110

Topic Conditional Expectation
Original Question A very innocent monkey throws a fair die. The monkey will eat as many bananas as are

shown on the die, from 1 to 5. But if the die shows ’6’, the monkey will eat 5 bananas and
throw the die again. This may continue indefinitely. What is the expected number of bananas
the monkey will eat?

Codex Input A very innocent monkey throws a fair 6-sided die repeatedly.
If the die value is 1 to 5, the monkey eats that many bananas and stops.
If the die value is 6, the monkey will eat 5 bananas.
Write a program that computes the average number of bananas that the monkey will eat
before it stops.

Codex Output
import random

def main():
ask user for number of trials
trials = int(input(""How many trials? ""))
initialize the number of bananas eaten
bananas = 0
loop for the number of trials
for i in range(trials):

initialize the number of bananas eaten
bananas_eaten = 0
loop until the monkey stops eating bananas
while True:

generate a random number between 1 and 6
die = random.randint(1, 6)
if the die value is 1 to 5, the monkey eats that

many bananas and stops
if die <= 5:

bananas_eaten += die
break

if the die value is 6, the monkey will eat 5
bananas

elif die == 6:
bananas_eaten += 5

add the number of bananas eaten to the total
bananas += bananas_eaten

calculate the average number of bananas eaten
average = bananas / trials
print the average number of bananas eaten
print(""The average number of bananas eaten is"",

average)

main()

Solution 4

Question 14 from STAT110

Topic Conditional Expectation
Original Question A fair coin is tossed repeatedly until 5 consecutive heads occurs. What is the expected

number of coin tosses?
Codex Input Write a program to simulate the average number of coin flips needed until you get 5 heads in

a row for the first time.
Codex Output

import random

def flip_coin():
return random.choice([’H’, ’T’])

def flip_until_five_heads():
heads = 0
count = 0
while heads < 5:

count += 1
if flip_coin() == ’H’:

heads += 1
else:

heads = 0
return count

def average_flips_until_five_heads():
total = 0
for i in range(1000):

total += flip_until_five_heads()
return total / 1000

print(average_flips_until_five_heads())

Solution 62

Question 15 from STAT110

Topic Geometric Probability, Expected Value
Original Question A stick of length 1 breaks at a random point distributed uniformly across it length. What is

the expected length of the smaller part of the broken stick?
Codex Input A stick of length 1 is split into two portions at a random point distributed uniformly across it

length.
Write a simulation program that estimates the average length the shorter portion of the stick.

Codex Output
import random

def stick_splitting(n):
""""""
:param n: number of simulations to run
:return: average length of the shorter portion of the

stick after splitting it in half n times.
""""""

total = 0

for i in range(n):

generate a random number between 0 and 1,
representing the point at which to split the
stick.

split_point = random.random()

generate a random number between 0 and 1,
representing the length of the first portion of
the stick.

first_portion = random.random()

generate a random number between 0 and 1,
representing the length of the second portion of
the stick.

second_portion = 1 - first_portion

add up all lengths from each simulation run to get
an average length for each simulation run.

total += min(first_portion, second_portion)

return total / n

print(stick_splitting(100000))

Solution 1/4

Question 16 from STAT110

Topic Expected Value
Original Question You are given an urn with 100 balls (50 black and 50 white). You pick balls from urn one by

one without replacements until all the balls are out. A black followed by a white or a white
followed by a black is ’a color change’. Calculate the expected number of colour changes if
the balls are being picked randomly from the urn.

Codex Input You are given an urn with 100 balls (50 black and 50 white).
A sequence of balls is drawn from the urn without replacement until the urn is empty.
Drawing a black ball immediately followed by a white ball is considered a color change.
Drawing a white ball immediately followed by a black ball is also considered a color change.
Write a simulation program that estimates the average number of color changes in a 100-ball
sequence.

Codex Output
import random

def color_change(urn):
""""""Returns the number of color changes in a 100-ball

sequence.""""""
count = 0
while len(urn) > 0:

ball = urn.pop()
if len(urn) == 0: # last ball, no color change

break

next_ball = urn[-1] # next ball in sequence

if (ball == ’B’ and next_ball == ’W’) or (ball == ’W’
and next_ball == ’B’): # color change!
count += 1

return count

def main():

urn = [’B’] * 50 + [’W’] * 50 # create an urn with 50
black and 50 white balls

trials = 10000 # number of trials to run for simulation

total_color_changes = 0 # initialize total number of
color changes to zero

for i in range(trials): # run the simulation for the
specified number of trials
random.shuffle(urn) # shuffle the balls in the urn

before each trial

total_color_changes += color_change(list(urn)) # add
the number of color changes in this trial to the
total

print(total_color_changes / trials) # print the average
number of color changes over all trials

if __name__ == ’__main__’:
main()

Solution 50

Question 17 from STAT110

Topic Conditional Probability
Original Question X and Y are i.i.d. N(0, 1) random variables. You are given that X > 0 and Y > 0. What is the

probability that Y > X?
Codex Input X and Y are i.i.d. N(0, 1) random variables. Write a program to calculate the probability that

Y > X if both X > 0 and Y > 0.
Codex Output

X and Y are i.i.d. N(0, 1) random variables.
Write a program to calculate the probability that Y > X

if both X > 0 and Y > 0.

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

def prob_Y_greater_X():

Generate 1000 samples of X and Y, where X ~ N(0, 1)
and Y ~ N(0, 1).

x = np.random.normal(loc=0, scale=1, size=1000)
y = np.random.normal(loc=0, scale=1, size=1000)

Calculate the probability that Y > X if both X > 0 and
Y > 0

prob = sum([1 for i in range(len(x)) if x[i]>0 and
y[i]>0 and y[i]>x[i]])/sum([1 for i in range(len(x))
if x[i]>0 and y[i]>0])

return prob

if __name__ == ’__main__’:

print(prob_Y_greater_X())

Solution 1/2

Question 18 from STAT110

Topic Conditional Expectation
Original Question Suppose that you roll a dice. For reach roll, yo uare paid the face value. If a roll gives 4, 5,

or 6, you can roll the dice again. If you get 1, 2, or 3, the game stops. What is the expected
payoff of this game?

Codex Input Suppose we play a game where you roll a dice.
If a roll gives 4, 5, or 6, you are paid the face value and you roll the dice again.
If a roll gives 1, 2, or 3, you are paid the face value and you stop rolling.
Write a simulation program that estimates the average payoff of this game.

Codex Output
import random

def roll_dice():
return random.randint(1,6)

def play_game():
total = 0.0
while True:

roll = roll_dice()
if roll == 1 or roll == 2 or roll == 3: # stop

rolling and get paid the face value of the dice
roll.
total += roll # add the face value of the dice to

the total.
break # stop playing the game.

else: # keep rolling and add the face value
to the total.
total += roll

return total # return the total amount won from
playing this game.

main program starts here, DO NOT change it. It runs the
simulation and prints results.

number_of_games = 10000 # number of times we play this
game. Change it to 1000 to see more accurate results.

total = 0 # initial condition - we don’t have any
money at hand right now.

for i in range(number_of_games):
total += play_game() # add the amount won from each game

to get the total amount won.
print(""The average payoff from {} games is

{}"".format(number_of_games, total/number_of_games))

Solution 7

Question 19 from STAT110

Topic Bayes’ Theorem and Conditional Probability
Original Question A spam filter is designed by looking at commonly occurring phrases in spam. Suppose that

80% of email is spam. In 10% of the spam emails, the phrase "free money" is used, whereas
this phrase is only used in 1% of non-spam emails. A new email has just arrived, which does
mention "free money". What is the probability that it is spam?

Codex Input Suppose that 80% of email is spam. In 10% of the spam emails, the phrase "free money"
is used, whereas this phrase is only used in 1% of non-spam emails. A new email has just
arrived, which mentions "free money". Given that the email mentions "free money" and
using Bayes’ theorem, write a program to compute and print the probability that the email is
spam.

Codex Output
def bayes_theorem(p_spam, p_free_money_given_spam,

p_free_money_given_not_spam):
return (p_spam * p_free_money_given_spam) / (p_spam *

p_free_money_given_spam + (1 - p_spam) *
p_free_money_given_not_spam)

p_spam = 0.8
p_free_money_given_spam = 0.1
p_free_money_given_not_spam = 0.01

print(bayes_theorem(p_spam, p_free_money_given_spam,
p_free_money_given_not_spam))

Solution 0.9756

Question 20 from STAT110

