Welcome!

COMS W3157
Advanced Programming
Spring 2016

Teaching staff

- 10 Teaching Assistants (TAs), mostly former 3157 students
 - Emilia Pakulski enp2111@columbia.edu Head TA
 - Heather Preslier hnp2108@columbia.edu
 - Katie Lin kl2532@columbia.edu
 - Chaiwen Chou cc3636@columbia.edu
 - Daniel Cole <u>dhc2131@columbia.edu</u>
 - Gary Lin gml2153@columbia.edu
 - Bo Gan <u>bg2539@columbia.edu</u>
 - Gedion Metaferia gym2103@columbia.edu
 - Kevin Chen <u>kxc2103@columbia.edu</u>
 - Lucas Schuermann lvs2124@columbia.edu
- TA email & office hours
 - Email to <u>cucs3157-tas@googlegroups.com</u> goes to all teaching staff
 - TA room 1st floor, Mudd building
 - TA calendar: http://bit.ly/3157-cal (will be filled by this weekend)
- Instructor email & office hours
 - Jae Woo Lee jae@cs.columbia.edu 715 CEPSR
 - Jae's calendar: http://bit.ly/jae-cal (will be filled by Friday)
 - First week only: Wednesday, 3:30-5:30pm, or grab me after my classes

Who am I?

- Jae Woo Lee
 - Lecturer in Computer Science
 - Teaching first, research second
 - Just call me Jae (pronounced 'Jay')
 - Note that this is NOT a general rule address instructors as Professors unless told otherwise
- My background
 - Undergrad in Columbia College
 - Many years of professional experience
 - Designing and coding large-scale software systems
 - Running a start-up company
 - Came back to Columbia for Ph.D.
 - More info at http://www.cs.columbia.edu/~jae/

This course

According to BWOG:

One of "The Best Classes Ever"
One of "Classes To Take Before You Die I Mean Graduate"

- Introduction to systems programming
 - Arguably the most important course in the CS curriculum
 - It'll get you ...
- Follow the River and You Will Find the C
 - Paper published in SIGCSE 2011
 - Describes this course: what, how, and why
 - Great overview of what you are in for

(See http://www.cs.columbia.edu/~jae/ for links)

Review session

- Logistics
 - One topic / week, multiple sessions by different TAs
 - When:
 - Friday 5:40 6:40pm
 - Sunday 7:10 8:10pm
 - Monday 7:10 8:10pm
 - Where:
 - CLIC lab: http://www.cs.columbia.edu/clic/directions.html
 - Attendance optional, but recommended
- Topics
 - UNIX basics, editors, Git, etc. (in the beginning)
 - Lecture reviews
 - Lab assignment clarifications & reviews
 - Lab solutions walk-through
 - Exam preps

Participate in class, please!

- Classes is no fun (for me, at least) if we don't interact
 - Answer questions I pose
 - Ask questions anytime
 - Embarrass me when I'm wrong
- People are afraid to ask when they think:
 - "I'm the only one who doesn't know this."
 - "I can't frame this question clearly and eloquently."
 - "Maybe he just said it when I dozed off just now..."
- Big class, so I may not entertain all questions, but:

NEVER BE AFRAID TO ASK ANYTHING, IN THIS CLASS AND IN LIFE!

Prerequisites

- Absolutely required:
 - 2 or 3 semesters of Columbia-level programming courses
 - Ex) 1006-1004-3134; 1007-3137; etc.
- Almost required
 - Data Structures (3134 or 3137) STRONGLY recommended
 - No dependency with 3157
 - But you want to take DS before 3157 for general CS/programming maturity
 - Don't take DS together with 3157 too much programming
 - Not impossible if you have to or really want to, but you have been warned
- Recommended:
 - Familiarity with UNIX environment
 - If not, you need to learn it ASAP
 - Knowledge of Java
 - Only to draw comparisons with C/C++
- No C/C++ knowledge assumed

Course objective

- Simply put:
 - Right now, you are a programming student
 - After this course, you will become a programmer
- How?
 - Move beyond Java
 - Learn C/C++
 - Become proficient in UNIX programming tools
 - Move beyond toy programming
 - Learn advanced techniques used in real-world software
 - Learn design principles used in large-scale software

Why C?

- It's cool
 - There are two kinds of programmers: those who know
 C and those who don't
 - Corollary: There are two kinds of Java programmers: those who know C and those who don't
 - Your kung fu will be better than theirs
- It's fundamental
 - Understand how computers work
- It's useful
 - Get ready for OS class
 - Build foundation to learn C++ and Objective-C

Topics covered

Course is divided into 3 parts:

- 1) C
 - Mastery of C language is the most important part
 - Everything else depends on it!
- 2) UNIX systems programming
 - Process control, signal, I/O, TCP/IP networking
 - Sockets API and HTTP protocol
 - Write your own web server from scratch!
- 3) C++
 - C++ language: we will not cover everything
 - Generic programming: templates and STL

COMS 3136 for non-CS majors

- COMS W3136 Essential Data Structures in C/C++
 - Please consider 3136 if you're not a CS major
 - Offered in Fall semesters
- A fusion of 3157 and 3134
 - 3157-lite: C & C++, but no heavy systems stuff
 - 3134-extract: only the most important data structures
 - Kill two birds with one 4-credit stone!
 - Bridges E1006 and many 4000-level CS courses
 - Perfect for EE & IEOR folks who came to 3157 to learn
 C/C++ but found it a bit too much

Grading

- You get overall score out of 100, comprised of:
 - Lab assignments 25%
 - Midterm exam #1 25%
 - Midterm exam #2 25%
 - Final exam 25%
- I look at everyone's lab & exam scores in a big spreadsheet sorted by the overall score
- I decide cutoffs for letter grades A+, ..., D, F
 - No predetermined formula
 - Cutoff for A- has been around median, but no guarantee
- Booster: I reserve the right to raise one's overall score by a small amount (typically less than 0.5%)

Booster

- Grade boost based on subjective evaluation
 - Most people will not get it
 - Have been used to boost some borderline cases
 - Can be up to 5% in theory, but never been > 1%
- Based on:
 - Class participation
 - Mailing list participation
 - Beautiful code
 - Awesome documentation
 - Optional work

11 assignments (aka labs)

- Some labs may not be graded
 - A random subset of at least 7 out of 11 will be graded
 - Assume that a lab is graded unless I say otherwise after the deadline
 - Lowest score will be dropped (i.e. converted to zero)
 - In other words, everyone is forced to get zero on one lab
 - Note that labs have different weights (between 100 and 150), so you'd be at a disadvantage if you end up dropping a bigger one

Deadline

- Soft deadline, and then hard deadline 2 days later
 - You use 1 late day if you submit within 24 hours after the soft deadline
 - You use 2 late days if you submit between 24 and 48 hours after the soft deadline
 - After 48 hours past the soft deadline, no submission will be accepted
- You have 7 late days total; up to 2 can be used for a single lab
 - Check your late days by running: /home/w3157/submit/check-late-days
- Absolutely no exception under any circumstances
- After you receive grade, you have 2 weeks to send re-grade request

Lab grading

Grading model

- You are a software company
- I hire you to develop a product according to spec
- You ship the finished & polished product on time
- TAs are the end users who will pay you with grade

What this means:

- Your software doesn't work, they don't pay
- Your software didn't follow spec, they don't pay
- Your software didn't ship on time, they don't pay
- But you worked so hard... they sympathize, but they don't pay

For example:

- Your software doesn't compile you get ZERO
- Deductions for not following spec EXACTLY
 - Ex) Spec asked for README.txt file, not README, not README.md, not Readme.txt

Exams

"This class is amazing. Jae is amazing. The TAs are amazing. There's not much bad to say about it other than... Oh. Right. The tests."

- Anonymous, CULPA

How to do well on exams

Exams are closed-book, written, and based on labs and lectures. So I suggest you should:

- 1. Do the labs. I mean, really do the labs.
 - Don't let TAs fix your problems you need that pain
 - Don't just "get it working" understand every detail
 - Don't code by trial & error understand your errors
- 2. Learn to read code on paper
 - Read & understand every line of solution code
 - Read & understand every line of sample exams
 - Read & understand code from the textbook
 - Then try coding them yourself without looking
- 3. Attend lectures and pay attention

Cheating. Please don't.

REQURED READING:

http://www.cs.columbia.edu/~jae/honesty.html

- You are cheating if you:
 - Take code from friends, or search for code on the Internet
 - Look at solutions that your friend has from previous semester
 - Upload any class materials (including your own code) to public repository (ex.
 GitHub) during or after this semester
- We can tell
 - We know about the Internet too
 - You submit work history minimum 5 commits required
- Result of cheating
 - Case 1: You get caught
 - Academic penalty 1 letter grade down for mild cases; F for severe ones
 - Referral to the Office of Judicial Affairs
 - 38 people got caught in Fall 2015
 - Case 2: You get away with it
 - You will keep cheating for the rest of your life have a nice life.

Class ListServ

- Communication between all of us
 - Official announcements, lecture notes, lab assignments
 - Should be the 1st place to go for non-personal questions
- Do:
 - Ask & answer questions
 - Provide helpful tips and fun links for your classmates
 - Be considerate & friendly
- Don't:
 - Ask questions without first trying to solve it on your own
 - Post code or critical info that leads directly to solution
 - Be impatient & rude
- TAs and I respond to emails in this order:
 - 1. All pending questions on the listserv first
 - 2. All pending questions sent to cucs3157-tas@googlegroups.com
 - 3. Then individual emails
 - 4. NEVER send a same question separately to multiple people
 - You will get banned from ever sending an email if you get caught doing this.

Manage ListServ emails

- Learn to manage high volume filter by tags in subject
 - [cs3157] all emails from the class listserv will have this tag
 - [ANN] important announcements from me or TAs
 - [LABn] information relevant on a particular lab
 - Examples:
 - [cs3157][ANN] Sample midterm
 - [cs3157][ANN][LAB7] Correction on lab7 instruction
 - [cs3157][LAB6] in case you're curious about fdopen()
- Setup Gmail filters
- Keep up diligently
- Yes, I know about Piazza. Thanks for your suggestion.

Textbooks

- Required
 - 1. The C Programming Language (2nd ed.) aka K&R C
 - By Kernighan and Ritchie
 - Simply the best
 - 2. A Tour of C++
 - By Bjarne Stroustrup
 - Available at Book Culture 112 st, between Broadway & Amsterdam: http://www.bookculture.com
- Highly recommended reference for UNIX programming
 - Advanced Programming in the UNIX Environment (3nd ed.)
 - By Stevens & Rago

HW0: 100 points total

- Part A (20 points): due Tuesday 1/19 11:59pm (tonight)
 - 1. Subscribe to 3157 ListServ today
 - https://lists.cs.columbia.edu/mailman/listinfo/cs3157
 - In the textbox "Your name (optional)" put Your Full Name (UNI)
 - For example: Jae Woo Lee (jwl3)
 - You must reply to the confirm email (which might be in your spam folder)
 - Then receive "Welcome to the "Cs3157" mailing list"
 - This email contains your password for accessing archives of past postings
 - 2. Get a CS account (required for the course)
 - \$50 per semester my apologies for the added expense, but currently no way around it
 - http://www.cs.columbia.edu/crf/
 - Choose NO sponsor & BASH shell
 - Get the textbooks
 - Start reading K&R chapters 1,2,3,4

HW0 continued

- Part B (30 points): due Thursday 1/21 11:59pm
 - 1. Read the following two documents:
 - http://www.cs.columbia.edu/education/honesty
 - http://www.cs.columbia.edu/~jae/honesty.html
 - 2. Send me an email containing:
 - Subject: "[3157] hw0-UNI"
 - Without the quotes, sole space before hw0, UNI replaced with your actual UNI in lowercase
 - Your name, major & school program, year
 - Ex) Jae Woo Lee, Physics, Columbia College, class of 1994
 - Your pledge
 - see honesty.html above
 - CS classes taken and/or other programming background
 - Optionally anything else you want to let me know
 - Optionally attach a picture of you, but please reduce image file size to about 100KB

HW0 continued

- Part C (50 points): due Sunday 1/24 11:59pm
 - HARD deadline late days cannot be used on hw0
 - Lab0 posted on the course home page
 - Submit through CourseWorks
 - Please do NOT take this course if this is hard for you