
CS Theory (Spring ’25) March 4, 2025

Lecture Note: Communication Lower Bounds

Instructor: Josh Alman

In class last time, we defined communication and we gave communication protocol for a few interesting

problems, including the following:

Example 1. EQUALITY(x, y) =

{
1 x = y

0 x ̸= y
. We showed an O(n)-communication protocol for

EQUALITY last time.

Example 2. MAJORITY(x, y) =

{
1 if xy contains more 1’s than 0’s

0 otherwise
. We showed an O(log n)-

communication protocol for MAJORITY last time.

Example 3. PARITY(x, y) =

{
1 if xy contains an odd number of 1’s

0 otherwise
. We showed an O(1)-

communication protocol for PARITY last time.

Our goal today is to give lower bounds, showing that these protocols are the best possible, in terms of

amount of communication. We have showed last time we cannot do better than 2 bits of communication

for PARITY, so our main goals are showing lower bounds for EQUALITY and PARITY.

The proof approach we will use is actually very similar to the the proof approach for streaming lower

bounds. Recall that when we were proving streaming lower bounds, we gave two key definitions: distin-

guishable inputs and length-n distinguishing set (see the lecture note of February 25). The key argument

was that if you have a length-n distinguishing set, then any streaming algorithm must assign different

elements in it to different memory configurations. This means the size of the length-n distinguishing set

is a lower bound on the number of possible memory configurations on length-n inputs, so the memory

usage of the streaming algorithm is lower-bounded by the logarithm of the size of the distinguishing set.

We will give some analogous definitions for communication protocols: fooling pairs of inputs and

length-n fooling set.

1 Communication Lower Bounds

We fix a function f : {0, 1}∗ × {0, 1}∗ → {0, 1}.

Definition 4 (Fooling pairs). For strings a, b, c, d ∈ {0, 1}∗, the pairs (a, b) and (c, d) are called fooling

pairs for f if the two conditions hold:

• f(a, b) = f(c, d).

• f(a, d) ̸= f(a, b) or f(c, b) ̸= f(a, b) (or both).

1

Alice

a

c

Bob

b

d

accept

reject

accept

Figure 1: An illustration of fooling pairs

For example, one possible situation for fooling pairs (a, b) and (c, d) are illustrated in Figure 1. When

the inputs to Alice and Bob are (a, b) or (c, d), they accept, but when the input is (a, d) they reject.

Definition 5. A length-n fooling set for f is a set of Sn ⊂ {0, 1}∗ × {0, 1}∗ such that the following two

conditions hold:

• If (a, b) ∈ Sn, then |a| ≤ n/2 and |b| ≤ n/2.

• Any two distinct (a, b), (c, d) ∈ Sn are fooling pairs for f .

We have the following theorem, which says that we will have a communication lower bound for input

size n if we have a length-n fooling set. Note the similarity between this and the theorem we proved for

streaming lower bounds (which says we have a streaming lower bound if we have a length-n distinguishable

set).

Theorem 6. If f has a length-n fooling set Sn, then any protocol P for f must use at least

(1/100) log2 |Sn| bits of communication for inputs of total length1 at most n.

To prove Theorem 6, we need the following definition of transcripts.

Definition 7 (Transcripts). A transcript of a protocol P on input (a, b) is the entire message history

of the protocol P running on input (a, b). Formally, it is of a sequence of pairs (sender, content), where

each pair corresponds to a bit in the communication, the sender can be Alice or Bob, and the content

can be 0 or 1.

The idea to prove Theorem 6 is to consider the map from input pairs to the transcript of the protocol

P running on this input. If the number of transcripts on length-n input pairs is less than the size of a

length-n fooling set, then by pigeonhole principle, there will be two fooling pairs that are mapped to the

same transcript: but we will show this cannot happen. Therefore, the number of possible transcripts on

length-n input pairs is at least the size of a length-n fooling set. We thus need to prove an upper bound

on the number of transcripts based on the amount of communication, which is the following lemma.

Lemma 8. For a protocol that uses k bits of communication, there are at most 4k possible transcripts.

Proof. For each of the k bits in the communication, it can be sent by Alice or Bob, and it can be either

0 or 1. Thus, for each bit, there are 4 possibilities. Therefore, for the k-bit communication, there are at

most 4k possible transcripts.

1the sum of the lengths of Alice’s and Bob’s inputs

2

We have the next lemma to show that a fooling pair of inputs must correspond to different transcripts

for a given protocol.

Lemma 9. If (a, b) and (c, d) are a fooling pair of f , then for any protocol P for f , the transcripts of P

running on (a, b) and (c, d) must be different.

Proof. Since (a, b) and (c, d) are a fooling pair, we have f(a, b) = f(c, d) and without loss of generality

f(a, d) ̸= f(a, b). Assume to the contrary that P has the same transcript when running on (a, b) and

(c, d).

Consider the transcript of P running on input (a, d). We will show that the transcripts are the same

for the inputs (a, d), (a, b) and (c, d). We show this by induction.

Suppose the part of transcripts corresponding to the first k bits of communication are the same for

the inputs (a, d), (a, b) and (c, d). Then, when Alice’s input is a, Alice could not tell whether Bob’s input

is b or d within the first k bits of communication. Therefore, if the (k + 1)-th bit of communication is

sent by Alice when the protocol runs on input (a, d), Alice will also send the (k + 1)-th bit when the

input is (a, b), and the bit Alice sends will be the same no matter whether the input is (a, b) or (a, d).

Similarly, when Bob’s input is d, Bob could not tell whether Alice’s input is a or c within the first k bits

of communication, so if the (k + 1)-th bit of communication is sent by Bob when the protocol runs on

input (a, d), Bob will also send the (k + 1)-th bit when the input is (c, d), and the bit Bob sends will

be the same no matter whether the input is (a, d) or (c, d). To summarize, the part of the transcript

corresponding to the first k + 1 bits are the same for the inputs (a, d), (a, b) and (c, d).

As the transcripts are the same for the inputs (a, d), (a, b) and (c, d), whether Alice accepts will be

the same for the inputs (a, d) and (a, b), contradicting f(a, d) ̸= f(a, b). It follows that our assumption

is wrong, so the transcript must be different for the inputs (a, b) and (c, d).

Now we are ready to prove Theorem 6.

Proof of Theorem 6. If P uses less than (1/100) log2 |Sn| bits of communication for every input of total

length at most n, by Lemma 8, the total number of possible transcripts for those inputs is at most

(1/100) log2 |Sn|∑
i=0

4i ≤ 2 · 4(1/100) log2 |Sn| = 2 · |Sn|1/50 < |Sn|.

Thus, by pigeonhole principle, there are two pairs in Sn that have the same transcript under the protocol

P . This contradicts Lemma 9

Below we use Theorem 6 to prove communication lower bounds for EQUALITY and MAJORITY.

Theorem 10. Any protocol for EQUALITY must use at least n/1000 bits of communication.

Proof. Let Sn := {(a, a) | a ∈ {0, 1}∗ and |a| = ⌊n/2⌋}. This is a length-n fooling set, as for any two pairs

(a, a), (b, b) in Sn, EQUALITY(a, a) = EQUALITY(b, b) = 1 but EQUALITY(a, b) = 0. Therefore, by

Theorem 6, any protocol for EQUALITY needs at least

1

100
log2 |Sn| =

1

100
log2(2

⌊n/2⌋) ≥ n

1000

bits of communication.

3

Theorem 11. Any protocol for MAJORITY must use at least (1/1000) log2 n bits of communication.

Proof. Let m := ⌊n/2⌋, and let Sn := {(a, b) | a = 1k0m−k, b = 1m−k+10k−1, 1 ≤ k ≤ m}.
This is a length-n fooling set, as for any two pairs (1k0m−k, 1m−k+10k−1), (1ℓ0m−ℓ, 1m−ℓ+10ℓ−1)

in Sn, supposing k < ℓ without loss of generality, we have MAJORITY(1k0m−k, 1m−k+10k−1) =

MAJORITY(1ℓ0m−ℓ, 1m−ℓ+10ℓ−1) = 1 but MAJORITY(1k0m−k, 1m−ℓ+10ℓ−1) = 0. Therefore, by Theo-

rem 6, any protocol for MAJORITY needs at least

1

100
log2 |Sn| =

1

100
log2m ≥ 1

1000
log2 n

bits of communication.

4

	Communication Lower Bounds

