
ezFS: A Pedagogical Linux File System
Emma Nieh

c25en@dalton.org
The Dalton School
New York, NY, USA

Zijian Zhang
zz2795@columbia.edu
Columbia University
New York, NY, USA

Jason Nieh
nieh@cs.columbia.edu
Columbia University
New York, NY, USA

ABSTRACT
Hands-on programming experience is crucial for students to learn
about operating systems, but implementing key concepts such as
file systems is perceived as being too hard to do for a real operating
system in an introductory course on operating systems. To overcome
these barriers, we introduce ezFS, a Linux file system that supports
standard file system operations to persistent disk storage, yet is sim-
ple enough for students in an introductory operating systems course
to implement in a couple weeks. ezFS takes advantage of file system
and block storage interfaces in Linux that simplify file system imple-
mentation, such that its implementation requires only a fewhundred
lines of C code. We leverage standard file system interfaces to also
develop an ezFS grader that can automatically grade ezFS implemen-
tations so that it is easy to scale its use for teaching a large course.We
havesuccessfullyusedezFSasaprogrammingassignment inan intro-
ductory operating systems course for hundreds of college students.
ezFS significantly enhanced students’ understanding of how file sys-
temswork in real operating systems, was simpler to implement than
evenpseudoLinuxfilesystems,andwas lessdifficult tocomplete than
other programming assignments typically assigned for the course.

CCS CONCEPTS
• Social and professional topics→Computer science educa-
tion; • Software and its engineering→ File systemsmanage-
ment;Operating systems.

KEYWORDS
file systems, operating systems, computer science education, Linux
ACMReference Format:
Emma Nieh, Zijian Zhang, and Jason Nieh. 2025. ezFS: A Pedagogical Linux
File System. In Proceedings of the 56thACMTechnical SymposiumonComputer
Science Education V. 1 (SIGCSE TS 2025), February 26-March 1, 2025, Pittsburgh,
PA, USA.ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3641554.
3701884

1 INTRODUCTION
Hands-on learning through programming projects is crucial in com-
puter science education, especially for systems-oriented courses
such as operating systems (OS). OS courses often involve kernel
programming projects to teach students about real-world OS design

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0531-1/25/02
https://doi.org/10.1145/3641554.3701884

and implementation. An important topic for any OS course is file
systems (FS). A useful FS programming project would teach students
about how common file operationswork, including how an FS stores
data persistently to a storage device, creates and deletes files and
directories, and runs programs from the FS. The FS should support
reasonable size files so that students can use it to run real programs
and store real files such as images. The FS shouldworkwith a real OS
so students can see how a real FS works in practice. Although such
an assignment would provide students with invaluable hands-on
learning, conventionalwisdom is that this is too difficult for students
to do in an introductory OS course [3, 15, 17, 27].

A common approach is to use Linux for programming projects,
but make suboptimal tradeoffs to mitigate the complexity of a real
OS. Some OS courses do kernel programming projects for other OS
topics, but forgo implementing an FS [5, 11, 24] or only do user-level
FS projects [29, 30] or systems programming [23]. Students end up
having a lesser understanding of how FSes work because of the lack
of hands-on FS kernel programming experience. Alternatively, other
OS courses do FS kernel programming, but only develop pseudo FSes
that provide no persistent storage, or make minor modifications
to an existing disk-based FS that do not involve core FS functional-
ity [17, 22]. Students end up with only a limited understanding of
the core persistent storage functionality of FSes. Another approach
is to build an FS in the context of a pedagogical OS, which may have
missing functionality for students to complete. This may avoid the
complexity of real OSes, but does not expose students tomany of the
real-world issues that arise inpractice in implementingFSes. Further-
more, since they are not used for running real systems, pedagogical
OSes tend to become obsolete, especially as hardware evolves [22].

To address these educational challenges, we introduce ezFS1, an
easy-to-implement Linux FS for students to develop so they can learn
how file operations really work. It is simple enough for students in
an introductory OS course to implement in a short period of time.
ezFS provides students hands-on experience with Linux, not just a
toy pedagogical OS. It teaches students how to implement file op-
erations involving files stored on persistent storage, as opposed to
just learning about pseudo FSes or tangentially related functions
unrelated to core FS functionality. ezFS teaches students the inter-
nals of how standard FS operations work, including creating and
deleting files and directories and running programs. It can support
files of arbitrary size so that it can be used with the same binaries
and images that are stored on widely used Linux FSes.

Contrary to conventional wisdom, our insight is that modern
commodity OSes such as Linux provide FS and block storage inter-
faces that can simplify FS implementation while providing students
with hands-on experience building a disk-based FS in a real OS. ezFS
leverages Linux’s Virtual File System (VFS) infrastructure and its
generic functions to simplify implementing FS operations. ezFS also
1ezFS is short for both easy FS and the Emma Zijian FS.

https://doi.org/10.1145/3641554.3701884
https://doi.org/10.1145/3641554.3701884
https://doi.org/10.1145/3641554.3701884


SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Emma Nieh, Zijian Zhang, and Jason Nieh

takes advantage of Linux’s functions that make it easy to access disk
storage and interface with its in-memory page cache. ezFS further
enables students to learn by example from the available source code
of many existing Linux FSes.

We have successfully used ezFS as a programming assignment
in an introductory OS course for hundreds of college students at
Columbia University. We also developed an ezFS autograder that
leverages standard FS interfaces to automatically grade assignments
so that it is easy to scale its use for teaching a large course. We
surveyed over two hundred students to gather their experiences
with ezFS. ezFS was no more difficult to complete than most other
OS programming assignments, including previous FS assignments
that did not provide students with the opportunity to implement
a disk-based FS. It is simpler to implement than almost all existing
FSes inmainline Linux, including pseudo FSes. Despite its simplicity,
the assignment significantly enhanced students’ understanding of
how FSes work in real OSes.

2 DESIGN
Any disk-based FS requires an on-disk format to represent its FS
metadataanddata inpersistent storage,which is then translated toan
in-memory representationwhile theFS is inuse. LinuxFSesmakeuse
of its VFS interface, which is a software layerwithin the Linux kernel
that provides a unified interface to interact with FSes. Linux FSes
have an on-disk representation that is composed of an array of disk
blocks storing metadata and data, and must in turn support three
in-memory VFS data structures listed in Table 1, the superblock,
inode, and dentry. The basic operation of an FS will read the on-
disk FS-specific representations into FS-specific data structures in
memory, populate the respective in-memory VFS data structures,
update the in-memory data structures as needed, then eventually
write themback to disk for persistent storage. Linuxprovides a buffer
abstraction which is used by block I/O interfaces to read and write
persistent storage as a linear array of blocks, also listed in Table 1.

ezFS uses an FS structure to make it as simple as possible to inter-
act with the VFS and the Linux memory subsystem. It simplifies the
use of bufferswith 4KBdisk blocks thatmatch the default granularity
of memory pages for the most popular CPU architectures, including
both x86 and Arm, enabling a one-to-one mapping of disk blocks
to memory pages. It makes it easy to manage the superblock and
inodes by having on-disk FS structures that mirror these in-memory
objects. It has a simple representation of the entries in a directory,
which makes it easy to populate the in-memory dentry.

ezFS’s on-disk FS layout consists of two blocks of FS metadata
and an arbitrary number of blocks of FS data. The first block is its
superblock, which includes two free space bit vectors, one to track
which inodes are free and the other to track which data blocks are
free. An inode or data block is in use if its corresponding location
in the respective bit vector is set to one. The second block consists
of an array of inodes. Since all inodes are stored in a single 4KB disk
block, this limits the number of inodes in the FS to roughly 40 if we
assume each inode is roughly 100B, which is sufficient for a small
FS. The rest of the FS consists of data blocks. Each data block can
contain either regular file data or the contents of a directory. In the
case of the latter, the block is simply an array of directory entries,
each of which is 128B in size.

Abstraction Description
superblock Object representing metadata of the overall FS
inode Object representingmetadata of an individual file or directory
dentry Object mapping filename to its inode, cached by dentry cache
buffer Object representing disk block in memory, data in page cache

Table 1: Linux VFS and block I/O abstractions.

Each inode contains an index of the data blocks that are part of the
file. For simplicity, ezFS has a small two-entry index in each inode,
which can be used to flexibly support different schemes to trackmul-
tiple data blocks per file. For example, ezFS can support directories
of up to two blocks in size if each index entry references a single data
block containing directory entries. Directories can be simplified to
just use one index entry ifwe restrict directories to a single data block.
This is still sufficient for a directory to have up to 32 files if each ezFS
directory entry is 128B and 4KB data blocks are used. To support files
with more than two data blocks, ezFS can use an indexed allocation
scheme in which the two entries refer to a direct and indirect block.
The former references a single data block for the file while the latter
references a block that contains references to other data blocks. File
size is limited by the number of block addresses that can be stored in
an indirect block; a file can be up to 2MB in size with 4KB data blocks
and 64-bit block addresses. To support even larger files, ezFS can use
a contiguous allocation scheme,which allows an arbitrarynumber of
data blocks per file. Since the data blocks for a file are assumed to be
contiguous, the two indexentriesonlyneed to store theblocknumber
of the first data block and the number of data blocks for the file.

To help students understand how ezFS operates, we provide a
header file with the ezFS-specific data structures for FS metadata,
namely the superblock, inode, and directory entry, and structure the
ezFS programming project in multiple parts. The first part teaches
students how to format a disk to use ezFS and provides themwith
the source code for a simple ezFS disk formatting utility program
that lays out the ezFS FS structures on a disk. Subsequent parts teach
students how to implement ezFS, with each part requiring the im-
plementation of some FS operation. The order of parts build on one
another such that students can leverage the functionality of previous
parts to check the correctness of subsequent parts. ezFS is also imple-
mented as a kernel module to make the assignment debug-friendly.
This enables students to quickly update the FS implementation by
unloading then loading the ezFS module again without needing to
recompile or reboot the kernel.

2.1 Manually creating an FS
The first part of the assignment gives students an understanding
of the on-disk ezFS layout and how it works. We provide students
with an ezFS formatting utility program and its source code which
they can use to format a disk to use ezFS. Students execute dd and
losetup commands to make a file accessible as a block device by
creating a disk imagefile and assigning it to a loopdevice. Thismakes
it easy to use a file on the default FS as a storage device on which to
install ezFS. Students format the loop device using the formatting
utility, which sets up the superblock, inodes, and a hello world text
file on the FS. We provide students a compiled ezFS kernel module,
sans its source code, so they can then mount and use the formatted
FS to see its resulting behavior, which is to show its root directory
with a single hello world text file. Figure 1 shows some of the code



ezFS: A Pedagogical Linux File System SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

int main(int argc , char *argv [])
{
ssize_t ret , len;
struct ezfs_inode inode;
struct ezfs_dir_entry de;
char *hello_contents = "Hello world!\n";
int fd = open(argv[1], O_RDWR);

...
inode.nlink = 1;
inode.mode = S_IFREG | 0666;
inode.data_block_number = EZFS_ROOT_DATABLOCK_NUM + 1;
inode.file_size = strlen(hello_contents);
inode.nblocks = 1;
ret = write(fd, &inode , sizeof(inode));

...
strncpy(de.filename , "hello.txt", sizeof(de.filename));
de.active = 1;
de.inode_no = EZFS_ROOT_INODE_NUM + 1;
ret = write(fd, &de, sizeof(de));

...
ret = write(fd, hello_contents , strlen(hello_contents));

...
}

Figure 1: Adding hello world text file in formatting utility.

provided to the students that adds the hello world text file to the FS,
showing them how to fill in the metadata for an inode and directory
entry and write it to disk along with the file contents.

Students can review the formatting utility source code to see how
it generates an FS with the resulting behavior, including the exact
values that arewritten to the fields of the superblock, the fields of the
inodes for therootdirectoryand thehelloworld textfile, thedirectory
entry in the root directory for thehelloworld textfile, and thefile con-
tents of the helloworld text file.We ask the students to extend the for-
matting utility to add other files to the FS. Students use the provided
ezFS data structures to add small files, big files, and subdirectories.
They then check that all required ezFS informationwaswritten prop-
erly by mounting the FS and using the reference ezFS kernel module
to see if the mounted FS has the correct hierarchy of directories, file
metadata, and file contents. Students gain an understanding of how
to manually create files and directories in the FS via the formatting
utility before attempting to implement the functionality in the FS.

2.2 Initializing andmounting the FS
Once students understand how to manually add files to their FS via
the formatting utility, they create their ownmodule implementing
the FS operations so it can use the FS created by the formatting utility.
Thefirst step is to initialize andmount the FS,which involveswriting
the functions that are called to load and unload the kernel module,
to register and unregister the FS, and to mount and unmount the FS.
We provide suggestions to the students to reference existing Linux
FS implementations, including ramFS [18] and BFS [12].

Initialization is trivial to implement, but mount and umount re-
quire students to gain some understanding of the basic VFS generic
objects, including the data structures for the in-memory representa-
tion of superblocks and inodes and the current Linux VFS interface
functions including init_fs_context and get_tree. Students also
need to learn the basic block storage interface functions sb_bread
and brelse, which provide simple ways to read disk blocks by block
number into the page cache and reference them as buffers, then
release themwhen they are no longer needed. These functionsmake
it straightforward to read data fromdisk into the cache andflush data
in the cache to disk. They are essential for accessing FS metadata
from disk. Students then use sb_breadwhen the FS is mounted to
read the on-disk superblock and root directory inode metadata , and

const struct file_operations ezfs_file_ops = {
.read_iter = generic_file_read_iter , ...

};

const struct address_space_operations ezfs_aops = {
.read_folio = ezfs_read_folio , ...

};

int ezfs_read_folio(struct file *f, struct folio *folio)
{
return block_read_full_folio(folio , ezfs_get_block);

}

int ezfs_get_block(struct inode *inode , sector_t block ,
struct buffer_head *bh_result , int create)

{
struct ezfs_inode *ezfs_inode = inode ->i_private;
int ez_n_blk = inode ->i_blocks / 8;
int phys = ezfs_inode ->data_block_number + block;
if (ez_n_blk && block < ez_n_blk) {
map_bh(bh_result , inode ->i_sb , phys);
return 0;

}
...
}

Figure 2: Implementation to read regular files.

brelse to release resources when the FS is unmounted. This part is
complete once the FS can be mounted and unmounted successfully
without errors.

2.3 Listing the contents of directories
The next step is to list the contents of directories so students can see
the files in the FS. All of the root directory’s in-memory data struc-
tures have already been initialized so all that is required to list its con-
tents is to implement the function iterate_shared. This involves
reading the inode of the directory to identify the block number of the
datablockcontaining thedirectoryentries, usingsb_bread toget the
data block itself, reading each directory entry from the block and in-
vokingdir_emit to output its filename.The required functionality is
complete once ls -l correctly lists the contents of the root directory.

For subdirectories which have not yet been accessed, students
need to further implement a lookup function to identify and initialize
the inode for a directory when it is accessed. When a directory is ac-
cessed, the generic VFS lookup function is called, which in turn calls
the ezFS-specific lookup function that students need to implement.
This lookup function takes as its arguments the inode of the parent
directory and the semi-initialized dentry of the directory. Students
need to implement the code tofind the correspondingdirectory entry
in the parent directory’s data block to identify the inode number of
interest, retrieve the inode from disk using sb_bread, allocate and
initialize an in-memory VFS inode using the metadata from the on-
disk inode, and finally link the VFS inode to the dentry. At this point,
the dentry is complete and the workflow to list the contents of the
directoryflowsback toiterate_shared again. This part is complete
once ls -l can correctly list the contents of any subdirectories.

2.4 Reading regular files
The next step is to support reading regular files. The simplest and
recommended approach is to leverage existing generic functions
to implement the read_iter function, which is called on the read
system call, specifically the generic_file_read_iter function as
shown in Figure 2. This function already supports complex read
ahead logic so that file blocks can be cached in memory by the time
they are needed to avoid blocking on I/O.



SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Emma Nieh, Zijian Zhang, and Jason Nieh

Generic FS functions are unaware of FS-specific functionality
to determine what data blocks are associated with a file, so they
invoke address space functions which implement FS-specific func-
tionality to map a logical block of a file to a page of memory caching
the contents of an actual disk block. generic_file_read_iterwill
invoke read_folio to read a file. Students need to implement an
ezFS-specific read_folio, which simply involves calling the Linux
function block_read_full_folio. This function requires imple-
menting an ezFS-specific function ezfs_get_blockwith the core
functionality needed. This function needs to create a mapping from
the logical block number of the file being requested to the actual disk
block number based on the metadata in the respective inode. This
mapping is straightfoward to compute based on the information in
the inode. For example, with a contiguous allocation scheme, the
mapping is just the logical block number plus the starting disk block
number in the inode. ezFS’s use of disk blocks with the same size as
memory pages also simplifies this mapping. After the mapping is
returned by read_folio, theVFSwill then read the actual disk block
and cache it inmemory in thepage cache. Figure 2 shows that reading
existing files only requires students to implement a few lines of code
overall, and students can easily learn much of this basic structure
from looking at the source code for other FSes that come with Linux,
such as BFS. Once this part is complete, students will have a fully
readable FS. Students can use cat to check if the contents of files are
the same aswhat theywrote into the disk using the formatting utility.

2.5 Writing existing files
The next step is to support writing existing files. The recommended
approach is to use the existing functiongeneric_file_write_iter
to implement the write_iter functionwhich is called on the write
system call. generic_file_write_iter takes care of most of the
logic, including determining the logical block number of interest,
copying the data to be written from userspace, and updating meta-
data such as the size of the file.

Writing files requires implementing write_begin, an FS-specific
functionwhichneeds to provide themapping froma logical file block
number to an actual disk block number, similar to read_folio. The
VFS will then cache the contents of the disk block if it is not already
in the page cache and perform the actual write. Depending on the
allocation scheme used, a challenge that students need to address
when writing as opposed to reading a file is when writing increases
the file size and requires a new data block. For example, assuming
a contiguous allocation scheme, if the data block following the last
existing data block of the file is already in use, the implementation
has to move the existing blocks to another position that can accom-
modate the new file size to maintain contiguous allocation of data
blocks. This part is completed when students can write arbitrary
content of various sizes to existing files and truncate existing files,
resulting in an FS that is both readable and writable.

2.6 Create and delete files and directories
The next step is to support creating and deleting files and directories,
which involves implementing create and unlink file operations
for files and mkdir and rmdir for directories. Creating a file involves
getting the data block number of the parent directory from its inode,
iterating through its arrayofdirectoryentries in thedatablock tofind

an unused entry, iterating through the free space vector for inodes
to find an unused inode, creating and initializing a new in-memory
VFS inode with the respective inode number and connecting the
inode to the dentry, getting the filename from the dentry, filling in
the unused directory entry with the filename and inode number,
and updating the metadata in the superblock. The logic of mkdir is
similar to creating a file. The only difference is that, although the
directory is empty, it still needs one data block. Therefore, besides
finding an available inode, it also needs to find an empty data block.

Deleting a file involves getting the data block number of the par-
ent directory from its inode, iterating through its array of directory
entries in the data block to find the file to be deleted, invalidating the
directory entry, and decreasing the link count for the inode by one.
The logic of rmdir is similar, but students must implement checks to
make sure that the directory is empty and also update the link count
of the parent directory. When an inode’s link count drops to zero,
the VFS will call evict_inode to reclaim the inode.

Students are expected to do lots of create and delete operations
to test robustness. ezFS’s design of one block for all inodes and use
of potentially one-block directories requires students to properly
check FS limits, as the number of files in any directory and in ezFS
overall are both limited to maximums that are easily testable.

2.7 Compile and run executable files
The last part of the assignment involves supporting compiling and
running executable files. Students can look at the source code for the
exec system call to see that this requires support for the mmap oper-
ation, which is trivial as it just involves calling the generic function
generic_file_mmap. All FS-specific functions that the generic func-
tion calls are already implemented in earlier parts of the assignment.
The FS can now be used to compile and execute programs.

2.8 Autograder
To simplify grading, we designed an ezFS autograder, leveraging
the ezFS kernel module design and the well-defined functionality of
different parts of the assignment that are straightforward to check.
Students only need to ensure the name attribute of their FS is myezfs
for identification purposes and use a provided template Makefile
to generate the kernel module so that its name is well known. The
autograder takes a fewminutes to grade each submission. It loads
the module, sets up a loop device with a preformatted disk image,
then runs various commands and checks the result. For example, the
autograder tests the correctness of creating a regular file as follows:
(1) Run touch [newfile] then ls to check if [newfile] is listed.
(2) Run touch to create multiple files in a directory, check if it fails

when the number of files exceeds the limit per directory.
(3) Run touch to create multiple files in multiple directories, check

if it fails when the number of inodes exceeds the global limit.

3 EXPERIENCES
We have used ezFS for three years as the FS programming project
for a one semester introductory OS course at Columbia University.
Course enrollments range fromseventy toover ahundred students in
a given semester, amix of advanced undergraduate and graduate stu-
dents. Six programming projects were assigned for the course, with
the first being an individual non-kernel programming assignment



ezFS: A Pedagogical Linux File System SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

Figure 3: Student learning. Figure 4: Assignment difficulty. Figure 5: Student submissions. Figure 6: FS project solutions.

and the remaining five being kernel programming assignments. Ker-
nel programming assignments were done in teams of mostly three
students and sometimes two students. Student teams had twoweeks
to complete each assignment, including the FS assignment. Students
ran Linux virtual machines [4] using VMware [21] on their own
computers to complete the assignments, then uploaded theirwork to
GitHub for grading. We used ezFS across courses that used different
Linux kernel versions, upgrading to a newer kernel version each
semester. Despite major changes to the Linux VFS infrastructure in
between updates, including the introduction of folios in the Linux
5.16 kernel, onlyminor updateswere required to ezFS towork across
kernel versions, a testament to its clean and simple design.

During three separate semester offerings of the course taught by
different faculty members, we asked students to complete a brief
survey at the end of the course to help answer various research ques-
tions (RQs). Each semester survey asked students how difficult each
programming assignment was including the ezFS assignment and
howmany hours they spent on the ezFS assignment. The latter two
semester surveys also asked students howmuch they learned from
each programming assignment including the ezFS assignment and a
Likert scale question on whether "the ezFS assignment significantly
improved my understanding of FSs." Learning was rated on a scale
of 1 to 6, with larger numbers indicating students learnedmore. Sim-
ilarly, difficulty was rated on a scale of 1 to 6, with larger numbers
beingmore difficult. 216 out of 265 students completed the surveys in
total. The Likert scale was 1 to 5, with 5 indicating strong agreement.
RQ1: How much do students learn about FSes from ezFS?
Students strongly agreed that the ezFS assignment significantly im-
proved their understanding of FSes, with an average Likert scale
rating of 4.6 out of 5. This was also reflected in student comments
in the survey: "best hw among all assignments," "one of the most fun
programming projects I’ve completed," "very enjoyable," "appropri-
ate level of challenge," "super cool to learnhow to implement our own
FS," "enjoyed this aspect of workingwith an FS and learning in depth
how they work," "learned a lot about FSes through this assignment,"
and "assignment has truly givenme a comprehensive understanding
of FS operations and their implementations." Students think the ezFS
assignment is a bit like stages of a game and are excited as their baby
FS "grows up" after each part. There is a sense of accomplishment
when they pass the final part, making the FS able to run executables.

We also used the learning rating from the surveys to compare ezFS
against other programming assignments. Figure 3 shows the average
learning ratingof all theprogrammingassignments for theOScourse,
including ezFS (assignment 6), with variance indicated by error bars.
Figure 3 shows that students rated ezFS thehighest among all the pro-
gramming assignments in terms of howmuch they learned from the
assignment. Except for the ezFS assignment, the other assignments

closely resemble those given in previous semesters. The first two
assignments mostly get students comfortable with the basics of sys-
tems and kernel programming bywriting a shell and baremetal hello
world program, and a system call to dump process tree information.
The latter four assignments each required students to implement
some kernel functionality to understand a key component of the
OS kernel, including CPU scheduling, memory management, and
the FS. Given the more basic nature of the first two assignments,
it is not surprising that students learned more from the latter four
assignments. Students learned the most from the two assignments
that leveraged Linux infrastructure to build an entire OS subsystem
themselves, namely an FS (ezFS) and a scheduler (assignment 4).
RQ2: Can ezFS be implemented with reasonable effort? Fig-
ure 4 shows the average difficulty rating for each programming
assignment, including the ezFS assignment (assignment 6), with
variance indicated by error bars. Except for the first two more basic
assignments, ezFS was the easiest of the programming assignments.
Together, Figures 3 and 4 show that ezFS provides significantly more
learning for students than all other assignments while being easier
to implement than most other assignments. ezFS is easier than most
other assignments for several reasons, including that it is structured
in stages, leverages existing Linux VFS functions, has simple Linux
FSes to learn from, and canbemore self-contained as a kernelmodule
that does not keep the system from booting even if it is not working.
The results indicate that ezFS achieves its goal of providing hands-on
kernel development experience for learning about FSes in a manner
that is no more difficult, and in many cases easier than, what is re-
quired to learn about other OS kernel components. With students
spending an average of 15 hours per week on the two-week ezFS
assignment plus attending lectures for 2.5 hours per week, the total
hours requiredwas in linewithwhatwas expected for a 3 unit course.

Figure5quantifies thedifficultyof ezFS in termsofhowmany lines
of code (LoC) students implemented for the programming assign-
ment as measured using cloc [9] on their submitted code. Code that
was provided to students as part of each assignment was excluded.
Although a LoCmetric may not directly correlate with difficulty, it
provides a quantitative measure of howmuch code the students had
to write for the assignment. We only included student submissions
that received a grade above the median grade for the assignment, to
avoid skewing the LoC statistics with submissions of lower quality
FS functionality. The student submissions on average contained less
than 900 LoC, with roughly 140 LoC for the formatting utility and
750 LoC for ezFS kernel module itself. Substantial portions of the
code are easy to write. For example, the formatting utility involves
relatively simple user-level programming, and approximately 150
LoC for the kernel module are for just registering and mounting the



SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Emma Nieh, Zijian Zhang, and Jason Nieh

FS, much of which can be copied from existing Linux FSes. Consid-
ering the fact that the assignment was completed in teams of three
students, on average each student had to write less than 300 LoC,
which is quite manageable for a two-week assignment. For com-
parison, the ezFS assignment solutions only involve implementing
about 600 LoC for ezFS itself and another 130 LoC for the formatting
utility. The solutions encapsulate common code in helper functions
called by multiple functions for creating and deleting files and di-
rectories, whereas most student submissions have more redundant
code, resulting from copying the same code to multiple functions.
RQ3: How difficult is implementing ezFS compared to other
FSes? Figure 6 quantifies the difficulty of ezFS versus FS assignments
assigned in seven previous semesters of the OS course in terms of
LoC in the solutions for each assignment. ezFS was assigned with
contiguous allocation in 2022, and indexed allocation in 2023 and
2024. Its code complexity is within the range of previous FS project
assignments, yet none of the previous projects enabled students to
implement a disk-based FS. Previous projectswere either implement-
ing pseudo FSes, or adding inode metadata to the default Linux ext4
FS such as GPS location data, the former requiring more complex
functionality. For example, themost complex assignment in terms of
LoC was from 2021, which involved implementing a pseudo FS that
exports kernel information about physical page usage for currently
running processes. Unlike ezFS, these previous assignments did not
involve any disk-based functionality and omitted key FS operations
such as creating files and directories. In contrast, ezFS teaches stu-
dents the fundamentals of how an FS really works to manage and
access data on persistent storage, the main purpose of most FSes.

We also measured the code complexity of ezFS versus existing
FSes in Linux. Of the 79 FSes in themainline Linux kernel version 6.1,
only six FSes have less code than ezFS, all of which are either pseudo
FSes (Ramfs) or lack generic FS functionality (Devpts, Tracefs, Ex-
portfs, Openpromfs, and QNX4fs). Linux FSes of similar size to ezFS
lack all of ezFS’s functionality for creating, writing, and executing
files or directories. For example, QNX4fs [14] only supports reading
QNX4 FSes; it cannot create or write files or directories. Other Linux
disk-based FSes range from twice as much code, in the case of BFS,
to orders of magnitude more code than ezFS for FSes such as ext4,
the default Linux FS. Other Linux pseudo FSes are also substantially
larger than ezFS. ezFS provides disk-based FS functionality with
minimal complexity compared to other Linux FSes.

4 RELATEDWORK
Using kernel-level programming projects to teachOS courses has be-
come common place at universities [11]. Linux is widely used in this
context given its open-source nature, available development tools,
learning opportunities in a real production OS, ability to leverage
real code examples from real developers for students to learn from
by example, and ease of maintenance [1, 8, 16, 17, 21]. Many previ-
ous Linux-based FS projects do not enable students to implement a
disk-based FS due to complexity [17, 22], resulting in students miss-
ing out on hands-on learning about key concepts and abstractions
for FSes [20]. ezFS solves this problem and can be easily adopted,
especially in existing Linux-based kernel programming courses. Its
approach of having students first manually create an FS by modify-
ing a formatting utility programwas inspired by PantryFS [10], an

FS assignment with single block files which was previously used at
Columbia for a different section of the OS course.

Linux provides example FSes, although they cannot be directly
used for hands-on implementation experience. We encourage stu-
dents to reference Ramfs and BFS. Ramfs is "most useful not as a
real filesystem, but as an example of how virtual filesystems can be
written" [18]. It is similar to ezFS in code size, but operates entirely in
memory and provides no persistent storage. BFS [12] is a disk-based
FS for a boot loader that uses contiguous allocation, but does not
support directories, shrinking files, or sparse files, uses outdated VFS
interfaces, and yet requires twice as much code as ezFS.

Pedagogical OSes have also been developed [2, 6, 7, 13, 19, 25].
Programming projects in this context often involve completingmiss-
ing functionality in theOS. These pedagogicalOSes typically already
have an FS, but lack the well-developed FS and block storage inter-
faces of real production OSes [26] for developing other FSes. As a
result, projects typically focus on enhance existing FS functional-
ity, such as increasing the maximum file size or adding symbolic
links [7]. In contrast, ezFS affords students the opportunity to build
an entire FS. Keeping pedagogical OSes from becoming outdated as
hardware and production OSes continue to evolve remains difficult;
for example, MINIX was last updated more than five years ago [13].
The MINIX FS has been ported to Linux, but has more than three
times as much code as ezFS. ezFS avoids MINIX’s complexity and
maintenance challenges to make it easier to learn about FSes.

Filesystem in Userspace (FUSE) [28] makes it possible to create
FSes without writing kernel code. It is primarily used for implement-
ing virtual FSes as opposed to disk-based FSes. FiST [31, 32] uses FS
stacking to simplify kernel programming, but is only designed for
implementing virtual FSes. While these approaches can simplify im-
plementing FSes, they are limited in providing hands-on kernel-level
programming experience and teaching students about FS-related
kernel internals that are a crucial part of learning about OSes.

5 CONCLUSIONS
ezFS provides hands-on learning for students to learn about FSes in a
real OS, yet, at about 600 LoC, is simple enough for students to imple-
ment in an introductory OS course. Its simple design stems in part
from its two-block FSmetadata representation, yet supports flexibly-
sized files to store realistic file content. Students gain experience
and understanding implementing common file operations involving
persistent storage, and can do so with modest effort by leveraging
Linux FS and block storage interfaces and generic VFS functions.
The ezFS assignment is structured to guide students in building a
Linux FS step by step, enabling files to be readable, writable, then
executable. We have taught hundreds of students using ezFS in an
introductory OS course. Students found the assignment helpful to
learn about FSes in the context of a real OS with reasonable effort,
and learnedmorewith less difficulty than other other existing kernel
programming assignments for the course. It also taught students
more about how FSes really work than FS assignments used in prior
versions of the course, without introducing greater code complexity.

6 ACKNOWLEDGMENTS
This work was supported in part by NSF grants CNS-2052947, CCF-
2124080, and CNS-2247370.



ezFS: A Pedagogical Linux File System SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

REFERENCES
[1] Jeremy Andrus and Jason Nieh. 2012. Teaching Operating Systems Using

Android. In Proceedings of the 43rd ACMTechnical Symposium on Computer Science
Education (SIGCSE 2012). Raleigh, NC, 613–618.

[2] Benjamin Atkin and Emin Gün Sirer. 2002. PortOS: An Educational Operating
System for the Post-PC Environment. In Proceedings of the 33rd ACM Technical
Symposium on Computer Science Education (SIGCSE 2002). New York, NY, 116–120.

[3] Angela Demke Brown. 2022. Personal Communication (Teaching OS at University
of Toronto).

[4] Edouard Bugnion, Jason Nieh, and Dan Tsafrir. 2017. Hardware and Software
Support for Virtualization. Morgan and Claypool Publishers.

[5] MarkClaypool,DavidFinkel, andCraigWills. 2001. AnOpenSourceLaboratory for
Operating Systems Projects. In Proceedings of the 6th Conference on Innovation and
Technology in Computer Science Education (ITiCSE 2001). Canterbury, UK, 145–148.

[6] Douglas Comer. 2015. Operating System Design: The XINU Approach. Chapman
and Hall/CRC.

[7] Russ Cox, Frans Kaashoek, and Robert Morris. 2020. xv6: a simple, Unix-like
teaching operating system. https://pdos.csail.mit.edu/6.S081/2020/xv6/book-
riscv-rev1.pdf.

[8] Christoffer Dall and Jason Nieh. 2014. Teaching Operating Systems Using Code
Review. In Proceedings of the 45th ACM Technical Symposium on Computer Science
Education (SIGCSE 2014). Atlanta, GA, 549–554.

[9] Albert Danial. 2022. cloc. https://github.com/AlDanial/cloc.
[10] Mitchell Gouzenko, Kevin Chen, Xijiao Li, Hans Montero, and Tal Zussman. 2023.

PantryFS. https://cs4118.github.io/pantryfs/.
[11] Rob K Hess and Paul Paulson. 2010. Linux Kernel Projects for an Undergraduate

Operating Systems Course. In Proceedings of the 41st ACM Technical Symposium
on Computer Science Education (SIGCSE 2010). Milwaukee, WI, 485–489.

[12] Martin Hinner. 1999. Boot File System. http://martin.hinner.info/fs/bfs/.
[13] ThomHolwerda. 2023. MINIX is dead. https://www.osnews.com/story/136174/

minix-is-dead/. OSnews (June 2023).
[14] Black Berry Inc. 2023. QNX 4 filesystem. https://www.qnx.com/developers/docs/

6.6.0.update/index.html#com.qnx.doc.neutrino.sys_arch/topic/fsys_QNXFSYS.
html.

[15] OrranKrieger. 2022. PersonalCommunication (TeachingOSatBostonUniversity).
[16] Oren Laadan, Jason Nieh, and Nicolas Viennot. 2010. Teaching Operating Systems

Using Virtual Appliances and Distributed Version Control. In Proceedings of the
41st ACM Technical Symposium on Computer Science Education (SIGCSE 2010).

Milwaukee, WI, 480–484.
[17] Oren Laadan, Jason Nieh, and Nicolas Viennot. 2011. A Structured Approach to

Linux Kernel Projects for Teaching Operating Systems. In Proceedings of the 42nd
ACM Technical Symposium on Computer Science Education (SIGCSE 2011). Dallas,
TX, 287–292.

[18] Rob Landley. 2023. Linux ramfs Documentation. https://www.kernel.org/doc/
Documentation/filesystems/ramfs-rootfs-initramfs.txt.

[19] Haifeng Liu, Xianglan Chen, and Yuchang Gong. 2007. BabyOS: A Fresh Start. In
Proceedings of the 38th ACM Technical Symposium on Computer Science Education
(SIGCSE 2007). New York, NY, 566–570.

[20] Robert Love. 2010. Linux Kernel Development. Addison-Wesley Professional.
[21] Jason Nieh and Ozgur Can Leonard. 2000. Examining VMware. Dr. Dobb’s Journal

315 (Aug. 2000), 70–76.
[22] Jason Nieh and Chris Vaill. 2005. Experiences Teaching Operating Systems Using

Virtual Platforms and Linux. In Proceedings of the 36th ACM Technical Symposium
on Computer Science Education (SIGCSE 2005). St. Louis, MO, 520–524.

[23] Gary Nutt. 2001. Kernel Projects for Linux. AddisionWesley Longman.
[24] University of Tennessee at Chattanooga. 2018. CPSC 2800 Introduction to

Operating Systems.
[25] Ben Pfaff, Anthony Romano, and G. Back. 2009. The Pintos Instructional

Operating System Kernel. In Proceedings of the 40th ACM Technical Symposium
on Computer Science Education (SIGCSE 2009). New York, NY, 453–457.

[26] Vijayan Prabhakaran. 2000. Linux File Systems: An Overview. Linux Gazette 48
(2000).

[27] Ryan Stutsman. 2022. Personal Communication (Teaching OS at University of
Utah).

[28] Miklos Szeredi. 2023. libfuse. https://github.com/libfuse/libfuse.
[29] James Wolfer. 2014. Linux Experience in the General Operating Systems Class.

In XIII International Conference on Engineering and Technology Education.
[30] Wei Xu, Xiaoyang Wang, Haoyu Mao, and Yongkun Li. 2022. The Design and

Practice of Linux Kernel Based Experiments for Operating System Course. In
Proceedings of the 4th International Conference on Advanced Information Science
and System (AISS 2022).

[31] Erez Zadok, Johan M. Andersen, Ion Badulescu, and Jason Nieh. 2001. Fast
Indexing: Support for Size-Changing Algorithms in Stackable File Systems. In
Proceedings of the 2001USENIXAnnual Technical Conference. Boston,MA, 289–304.

[32] Erez Zadok and Jason Nieh. 2000. FiST: A Language for Stackable File Systems. In
Proceedings of the 2000USENIXAnnual Technical Conference. SanDiego,CA, 55–70.

https://pdos.csail.mit.edu/6.S081/2020/xv6/book-riscv-rev1.pdf
https://pdos.csail.mit.edu/6.S081/2020/xv6/book-riscv-rev1.pdf
https://github.com/AlDanial/cloc
https://cs4118.github.io/pantryfs/
http://martin.hinner.info/fs/bfs/
https://www.osnews.com/story/136174/minix-is-dead/
https://www.osnews.com/story/136174/minix-is-dead/
https://www.qnx.com/developers/docs/6.6.0.update/index.html##com.qnx.doc.neutrino.sys_arch/topic/fsys_QNXFSYS.html
https://www.qnx.com/developers/docs/6.6.0.update/index.html##com.qnx.doc.neutrino.sys_arch/topic/fsys_QNXFSYS.html
https://www.qnx.com/developers/docs/6.6.0.update/index.html##com.qnx.doc.neutrino.sys_arch/topic/fsys_QNXFSYS.html
https://www.kernel.org/doc/Documentation/filesystems/ramfs-rootfs-initramfs.txt
https://www.kernel.org/doc/Documentation/filesystems/ramfs-rootfs-initramfs.txt
https://github.com/libfuse/libfuse

	Abstract
	1 Introduction
	2 Design
	2.1 Manually creating an FS
	2.2 Initializing and mounting the FS
	2.3 Listing the contents of directories
	2.4 Reading regular files
	2.5 Writing existing files
	2.6 Create and delete files and directories
	2.7 Compile and run executable files
	2.8 Autograder

	3 Experiences
	4 Related Work
	5 Conclusions
	6 Acknowledgments
	References

