Luca Piccolboni

Ph.D. Student in
Computer Science
Columbia University



<lastname>@cs.columbia.edu

Education

  • Ph.D. in Computer Science, 2022
    - Security, Computer Architecture
    - Advisor: Professor Luca Carloni
    Columbia University, New York, NY
  • M.Phil. in Computer Science, 2020
    Columbia University, New York, NY
  • M.S. in Computer Science, 2015
    University of Verona, Verona, Italy
  • B.S. in Computer Science, 2013
    University of Verona, Verona, Italy

Publications

  • MasterMind: Many-Accelerator SoC Architecture for Real-Time Brain-Computer Interfaces, G. Eichler, L. Piccolboni, D. Giri, and L. P. Carloni, in Proc. of the IEEE International Conference on Computer Design (ICCD), 2021.
    PDF
  • HARDROID: Transparent Integration of Crypto Accelerators in Android, L. Piccolboni, G. Di Guglielmo, S. Sethumadhavan, and L. P. Carloni, in Proc. of the IEEE High Performance Extreme Computing Conference (HPEC), 2021.
    PDF
  • Scaling Up Hardware Accelerator Verification using A-QED with Functional Decomposition, S. Chattopadhyay, F. Lonsing, L. Piccolboni, D. Soni, P. Wei, X. Zhang, Y. Zhou, L. P. Carloni, D. Chen, J. Cong, R. Karri, Z. Zhang, C. Trippel, C. Barrett, and S. Mitra, in Proc. of the IEEE Formal Methods in Computer-Aided Design (FMCAD), 2021.
    PDF
  • CRYLOGGER: Detecting Crypto Misuses Dynamically, L. Piccolboni, G. Di Guglielmo, L. P. Carloni, and S. Sethumadhavan, in Proc. of the IEEE Symposium on Security and Privacy (S&P), 2021.
    PDF - GitHub
  • Agile SoC Development with Open ESP, P. Mantovani, D. Giri, G. Di Guglielmo, L. Piccolboni, J. Zuckerman, E. G. Cota, M. Petracca, C. Pilato, and L. P. Carloni, in Proc. of the ACM/IEEE International Conference on Computer-Aided Design (ICCAD), 2020.
    PDF
  • Mangrove: an Inference-based Dynamic Invariant Mining for GPU Architectures, N. Bombieri, F. Busato, A. Danese, L. Piccolboni, and G. Pravadelli, in IEEE Transactions on Computers (TCOMP), 2020.
    PDF
  • KAIROS: Incremental Verification in High-Level Synthesis through Latency-Insensitive Design, L. Piccolboni, G. Di Guglielmo, and L. P. Carloni, in Proc. of the IEEE Formal Methods in Computer-Aided Design (FMCAD), 2019.
    PDF - Slides
  • Teaching Heterogeneous Computing with System-Level Design Methods, L. P. Carloni, E. G. Cota, G. Di Guglielmo, D. Giri, J. Kwon, P. Mantovani, L. Piccolboni, and M. Petracca, in Proc. of the ACM Workshop on Computer Architecture Education (WCAE), 2019.
    PDF
  • PAGURUS: Low-Overhead Dynamic Information Flow Tracking on Loosely Coupled Accelerators, L. Piccolboni, G. Di Guglielmo, and L. P. Carloni, in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), Proc. of ACM/IEEE CODES+ISSS, 2018.
    PDF - Slides - Poster
  • COSMOS: Coordination of High-Level Synthesis and Memory Optimization for Hardware Accelerators, L. Piccolboni, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, in ACM Transactions on Embedded Computing Systems (TECS), Proc. of ACM/IEEE CODES+ISSS, 2017.
    PDF - Slides - Poster
  • Efficient Control-Flow Subgraph Matching for Detecting Hardware Trojans in RTL Models, L. Piccolboni, A. Menon, and G. Pravadelli, in ACM Transactions on Embedded Computing Systems (TECS), Proc. of ACM/IEEE CODES+ISSS, 2017.
    PDF - Slides - Poster
  • Broadening the Exploration of the Accelerator Design Space in Embedded Scalable Platforms, L. Piccolboni, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, in Proc. of the IEEE High Performance Extreme Computing Conference (HPEC), 2017.
    PDF - Slides
  • A Homogeneous Framework for AMS Languages Instrumentation, Abstraction and Simulation, E. Fraccaroli, L. Piccolboni, and F. Fummi, in Proc. of the IEEE European Test Symposium (ETS), 2017.
    PDF
  • Stimuli Generation through Invariant Mining for Black-Box Verification, L. Piccolboni, and G. Pravadelli, in Proc. of the IEEE International Conference on Very Large Scale Integration (VLSI-SoC), 2016.
    PDF
  • Exploiting GPU Architectures for Dynamic Invariant Mining, N. Bombieri, F. Busato, A. Danese, L. Piccolboni, and G. Pravadelli, in Proc. of the IEEE International Conference on Computer Design (ICCD), 2015.
    PDF
  • A Parallelizable Approach for Mining Likely Invariants, A. Danese, L. Piccolboni, and G. Pravadelli, in Proc. of the ACM/IEEE International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2015.
    PDF
  • Simplified Stimuli Generation for Scenario and Assertion Based Verification, L. Piccolboni, and G. Pravadelli, in Proc. of the IEEE Latin American Test Workshop (LATW), 2014.
    PDF

Internships

  • Ph.D. Hardware Engineer Intern, Summer 2020
    Microsoft Azure, New York, NY
  • Ph.D. Hardware Engineer Intern, Summer 2019
    Microsoft Azure, Redmond, WA

Awards