Extensive form games <«  "finest description"

l

Strategic form games

l

Coalition form games <« "coarsest description"

Coalition form games: data consists of a mapping that
assigns to each coalition a payoff or set of payoffs that
are attainable through some joint course of action. The
analysis is typically axiomatic and solution concepts in-
clude core, stable sets, nucleolus, Shapley value

Strategic form games: data consists of a set of players,
an action sets and payoff functions. Solution concepts in-
clude rationalizability, dominant strategy solutions, Nash
equilibrium and its many refinements

Extensive form games: data consists of a directed graph
that describes the temporal order of play, the actions
and information that are available when a player moves,
payoffs, etc. Solution concepts include all strategic form
concepts plus concepts like subgame perfection and se-
quentiality.



Strategic form games (SFG):
Players: N = {1,..,n}
Strategies: A, # O

Payoffs: (a1,..,an) € A1 X---XAp — g;(aq,..,an) €
R

Some Notation:
A=A X --- X Ap,
A—i = XG4,

If a € A, then a_; denotes the "projection" of a onto
A—i7 le., a_; — (CL])]#Z

If a_; € A_;, then (a_;,b;) = (a1,..,b;,..,an) €

If a € A, then (a_;,a;) = a



Nash equilibrium: A strategy profile (a3, ..,ay,) € Ais
a Nash equilibrium for the SFG if

a; € arg max g;(a”,,a;) for each i € N.
a;€A;

Dominant Strategy equilibrum: : A strategy a; € A;
is a dominant strategy for i if
a; € arg max g;(a_;, a;
i gaiEAigZ( i» ;)

for eacha_; € A_;.

A strategy profile (a3, .., a;,) € Ais a dominant strategy
equilibrium for the SFG if a is a dominant strategy for
each i, i.e,,
*
a;, € arg max g;\a_;, a;
i gafLEAZ' gi(a—;, a;)

for each ¢ € N and each a_; € A_j;.



Every DS equilibrium is a Nash quilibrium but the con-
verse is false.

N = {1,2}
Ay = {T, B}
Ay = {L,R}
L R
TI11 [-11
B [1,-1]00

(a1,ap) = (7T, L) is a Nash equilibrium; neither T nor L
is a dominant strategy.

(a1,a2) = (B, R) is a Nash equilibrium; both B and R
are dominant strategies.

Important Question: Is (7', L) more "robust" than (B, R)?

Answer: Not clear



Main Existence Result:

The classic finite-dimensional existence result goes back
to the work of Nash and the proof relies on fixed point
theory.

Theorem: Suppose that

(i) each A; is a nonempty, convex, compact subset of
R™

ii) each function a — g;(a) is continuous on A
1

(ii) each function a; — g;(a_;,a;) is quasiconcave on
A; for each a_; € A_;.

Then the SFG has an equilibrium.

This result includes the existence of mixed strategy equi-
libria in finite games as a special case.



Adding incomplete information: The General Inter-
dependent Values Model

Players: N = {1,..,n}
Actions: A; # O

Types: Ti (T = Tl X e X Tn,T—z' = xj;ész) :
assume finite only for simplicity of presentation

Common prior: P € Ap := probability measures de-
fined on T" with P(t) >0 forallt € T

Payoffs: (a,t) € A x T — g;(alt)) € R
Strategy for player i: o, : T; — A;

Notation: o_;(t_;) := (0(t;));i



Ex-post payoff to player ¢ of type t; € 1; who chooses
action a; when opponents with type profile t_; choose
the strategy profile o_; = (o) :

Ui(o_i(t—;), aslt—s, t;) == gi(o1(t1), --» ags .., on(tn)|t—s, ;)

The basic soluition for games with incomplete information

was proposed by Harsanyi:

Bayes-Nash equilibrium: (Harsanyi) A strategy pro-
file (03,..,07,) € Ais a Bayes-Nash equilibrium for the
asymmetric information game with private values if

of(t;) € arg max > Ui(oZ,;(t—;), ailt i, ;) P(t_it;)

a;€EA; t_.cT

for each 2 € N and each t; € T;.



Ex Post Nash equilibrium: A strategy profile (o7, .., 0},) €
A is an ex-post Nash equilibrium if
o; (t;) € arg max U;(oZ;(t—;), ailt—;, t;)
aiEAZ-

forallte N ,t;€eT;andt_;, €T, .

Ex Post Dominant Strategy equilibrium: A strategy
profile &; is an ex-post dominant strategy for player i if
7i(t;) € arg max Uj(a_;, alt 4, t;)

a;€A;

for each t; € T; and each a_; € A_j;.

A strategy profile (07, .., 0},) € Alisan ex-post dominant
strategy equilibrium for the asymmetric information game
with private values if o is a dominant strategy for each
I, i.e., if

o; (t;) € arg max Ui(a_i, ai|t—;,t;)

foralle e N, t, €eT;,t_; €T _;,and a_; € A_;.



From the definitions, we have the following taxonomy;

Ex Post DS equilibrium
= Ex Post Nash equilibrium
— Bayes — Nash equilibrium



The Basic Implementation Problem:
economic agents: N = {1,..,n}
types of agent i: T; (finite)

common prior: P € A7, := probability measures de-
fined on T' with P(t) >0 forallt €T

set of social alternatives: C
valuation function of agent i : private values

’UZ':CXTZ'—>R_|_

where v;(c,t;) denotes payoff to an agent i of type t;
when the social outcome is c € C.

valuation function of agent i : interdependent val-
ues

’UiZCXT—>R_|_

where v;(c,t) denotes payoff to an agent i given type
profile ¢ when the social outcome is ¢ € C.



Choice Problems and Mechanisms:

social choice problem: a collection (v1, .., vn, P) where
P e Arp.

outcome function: a mapping q : 1" — C' that specifies
an outcome in C' for each profile of announced types.

direct mechanism: a collection (q, z1, .., xn) where

q: 1T — C

Is an outcome function and

QZZT—>R

is a transfer function.



Definition: Let (v1, .., vn, P) be a social choice problem.

An outcome function is outcome efficient if for each t €
T,

t) € argma (c:1).
a(t) € argmax 3 vj(ci1)
jeN

A payment system (x1,..,zn) is feasible if for each t €

T,

JEN



Individual rationality

Let (v1, .., vn, P) be a social choice problem.

A mechanism (q, (z;)) is ex post individually rational for

agent i if

U;(t—;, t;|t;) > 0 for all (¢t_;,t;) € T.

A mechanism (q, (x;)) is interim individually rational for

agent 1 if

Z U;(t—;, t;|[t;)P(t—;|t;) > 0 for all t; € T;.
t_;€T_;

Obviously, ex post IR implies interim IR.



Incentive compatibility: The problem

In a world of complete information in which a benign
decision maker knows the actual profile of types, then
"implementation" of an efficient social outcome is simple:

Step 1: Givent € T, compute q(t) € argmax.cc > jen vj(cit)

Step 2: Define x;(t) = —v;(q(t);t) (you pay exactly
your valuation)

Step 3: By repeating steps 1 and 2 for each t € T, you
have constructed a mechanism (g, (z;)) that is feasible,
outcome efficient and even ex post individually rational

Now suppose that the benign decision maker does not
know the actual type profile but tells the agents that,
upon hearing their announcements, he will choose a social
outcome and monetary transfers according to the mech-
anism (q, (x;)) constructed above. Will agents truthfully
report their types? Typically, the answer is typically "no"
for this particular mechanism.



Incentive Compatibility: Private Values

Abusing notation, let

vi(c,t) = vi(e, t;)

A direct mechanism (q, (x;)) induces a game of incom-
plete information in which the agents are the players. In
this game, A; = T} and a strategyisamap o, : 1; — T,
i.e., agent ¢ reports o;(t;) to the decision maker when his
true type is t;.

The ex post payoff to agent ¢+ when ¢ reports t; and true
type profile is (t_;, t;) and the other agents use reporting
strategies o_; Is

Ui(o—i(t—s), tilt—s, t;)
= vi(q(o_i(t—q), t;)its) + xi(o_i(t—3), t7)-

If o(t;) = t; for all j, then this ex post payoff is simply
Ui(t—i, tilt—i, ti)
= viq(t_s, t;)i ts) + it s, t7).



The goal of implementation theory: given a social
choice rule g, find transfers (x;) so that the associated
direct mechanism (g, (x;)) induces a game of incomplete
information in which truthful reporting is an equilibrium,
i.e., o is an equilibrium where o7 (t;) = t; for all 3.

Remarks:

e Note the indefinite article: we wish to construct a mech-
anism in which truthful reporting is an equilibrium. It will
almost never be the unique equilibrium.

e We have several notions of equilibrium corresponding
to varying degrees of robustness. These are discussed on
the next slide.



Definition: Let (vq, .., vn, P) be a social choice problem

with private values.
A mechanism (g, (x;)) is:

interim incentive compatible if truthful reporting is a
Bayes-Nash equilibrium: for each ¢ € N and all t;,t, €
1;

o Ui(t—i, t]t) P(t—ilt;)

t_;eT_;
< Y Ui(t—g, tilty) P(t—4]t;)
t_;€T_,;

ex post incentive compatible if truthful reporting is an ex
post Nash equilibrium: for all ¢ € N, all ¢;,¢, € T; and
all t_; € T_Z',

U;(t—;, tilts) < Ui(t—;, tilts).



Let ¢ be an outcome efficient social choice function. The
Vickrey-Clark-Groves (pivotal) transfers are defined as
follows:

ag(t): Z v;(q(t); t;) — max Z vi(city)

JEN\i ced JEN\i

for each ¢ € T. The resulting mechanism (g, (o)) is the
VCG mechanism with private valuations.

Remarks:

e Agents are assessed the cost that they impose on the
remaining agents.

e It is straightforward to show that the VCG mechanism
is ex post individually rational and feasible.

e Furthermore, the VCG mechanism is ex post incentive
compatible: in the private values model, truthful report-
ing is an ex post Nash equilibrium. In the private values
model, a dominant strategy. In fact, truthful reporting is
actually an ex post DS equilibrium.



Special case of VCG Mechanisms: Second price auc-
tions with private values

If 2 receives the object, his value is the nonnegative num-
ber w;(t;) .

In this framework,

q(t) = (q1(t), .-, gn(2))

where each g;(t) > 0 and q1(t) +--- 4+ gn(t) < 1 and

vi(q(t_s, t5)i t;) + zi(t_s, t7)
= qi(t_s, t)wi(t;) + zi(t_s, 7).

Finally, outcome efficiency means that

> qi(t)wi(t;) = %%({wi(t)}-

1€N



Let

w™(t) := max;(t;)
1

I(t) = {i € N|w;(t;) = w*(t;)}

and, again for simplicity of presentation, suppose that
11(t)| =1.If

gi (t) = L1if I(t) = {i}
— 0if I(t) £ {3}

then g* is outcome efficient. Defining
w* (t_;) := max{w;(t;
" i(t-0) 1= max{u;(t)))
then the VCG transfers associated with ¢* are given by

aj(t) = —wi;(t_y)if I(t) = {i}
— 0if I(t) # {i}.



Why does the second price auction induce truthful
announcements in the private values case?

Suppose that (t_;,t;) the true type profile and t] is i's

announcement. If i is the winner when he is honest (i.e.,

I(t_;,t;) = {¢}), then honesty yields a payoff of
w;(t;) — w*_,,;(t_i) > 0.

However, a lie (i.e., t; # t;)) results in one of two pos-
sibilities: either I(t_;,t:) = {¢} in which case his payoff

remains
w;(t;) — w”;(t—;)

or ¢ is a loser and his payoff is 0.

What about interdependent values?



Incentive Compatibility: Interdependent Values

Definition: Let (v1, .., vn, P) be a social choice problem.
A mechanism (g, (x;)) is:

interim incentive compatible if truthful revelation is a
Bayes-Nash equilibrium: for each ¢ € N and all t;,t, €
1;

> Ui(t—g, tht) P(t—j, t_;]t;)

t_;e€T_;
< > Uity tilt—s, ti) P(t—st;)
t_;eT_;

ex post (Nash) incentive compatible if truthful revelation
is an ex post Nash equilibrium: for all 2 € N, all t;, ¢t i €
T; and all t_; € T_;,

Uilt—i, £1t;) < Uit s, tilts).



A "super robust notion of incentive compatibility is pos-

sible. From the previous slide, recall that a mechanism

(¢, () is:

ex post (Nash) incentive compatible if truthful revelation
is an ex post Nash equilibrium: for all © € N, all t;, th- S
T; and all t_; € T,

U;(t—;, tilts) < Ui(t—;, tilts).

A mechanism (q, (x;)) is ex post DS incentive compatible
if truthful revelation is an ex post DS equilibrium: for all
1 € N, all ti,t;; el;andallt_;,,s_; €T,

vi(q(s_i, to)it_s, t;) + zi(s_4, t5)
< wi(g(s—i, t)it—i, t;) + (s, t;)-



Remarks:

e ex post DS incentive compatible = ex post (Nash)
incentive compatible = interim incentive compatible

e ex post DS incentive compatibility is simply too strong
to be useful

e good news: in the private values special case, ex post
DS incentive compatibility and ex post (Nash) incentive
compatibility coincide and reduce to the previous defini-
tion of DS incentive compatibility provided above for the
private values case.



What about extending the VCG mechanism to the case
of interdependent values?

Let ¢ be an outcome efficient social choice function.

The Generalized Vickrey-Clark-Groves (pivotal) transfers
are defined as follows: for each t € T,

ad(t)y= Y wvi(q®);t) — max > wvi(at)

JEN\i | JEN\I

The resulting mechanism (g, (o)) is the GVCG mech-
anism with interdependent valuations.



Remarks:

e Agents are again assessed the cost that they impose on
the remaining agents.

e It is straightforward to show that the GVCG mechanism
Is ex post individually rational and feasible.

e If v; depends only on t;, then the GVCG mechanism
reduces to the classical VCG mechanism for private value

problems

e In general, however, the GVCG mechanism will not even
satisfy interim IC.

Question: Are there any circumstances under which the
GVCG mechanism will be ex post 1C?

Answer: Yes



An application of Implementation Theory with In-
terdependent Valuations: Cybersecurity

Agents: N = set of nodes/users of a computer network

Node i's type: t; is a measure of i's "vulnerability", e.g.,
I's location in the network, i's attractiveness to attackers,
I's current level of security resource

q; = quantity of resource allocated to security at node 2

v;i(q;,t) = i's willingness to pay for g; units of the secu-
rity resource given vulnerability profile t = (¢1,..,tn)

Not unreasonable assumptions:

Ov;

ox
0v;

ot;
0vi
ot j
0vi
ot;

>

>

AV,

A,

0

0

0,j #1

c%z- . .
8—tj’]7éz



Suppose that

(q1(%), .-» gn(tn)) € arg min Z vi(ci, t1, -, tn)
(Cl,..,cn)EC i

Now find a system of transfers x = (x1,..,xn) so that
(g, z) is IC and IR. For this implementation problem with
interdep valuations, we can define the GVCG mechanism
but it has desirable incentive properties only in special

circumstances.



A more realistic cybersecurity model

Given a security resource allocation (g1, .., gn) and a vul-
nerability profile (¢1,..,tn), let

G(Ql) * qnatla *) tn)

denote the expected monetary value of the damage in-
curred by the network if a node is attacked.

Example: Given (q1,..,qn) and (t1,..,tn), the network
administrator knows/estimates that a malevolent agent
will attack node ¢ with prob m;(q1, .-, qn, t1, .-, tn)

If node 7 is attacked, then w;(q;,%1,..,tn) = expected
value of network damage incurred.

In this case,

G(q:l_, cey Qn,tl, cey tn)
— Zﬂ-i(Q17 -y dn, t17 L) tn)wZ(Q’w t17 ©* tn)

1



As a further specialization, suppose that

7T'L'(Q17 *) qnatb 7tn) — ﬂ-i(Qi7t17 * tn)

and

vi(qi,t) = —mi(q, t1, - tn)wi(qs, t1, -, tn).

Then the incentives of the users and the system adminis-
trator are "aligned" but this is not a realistic assumption.



Reasonable assumptions:

t; — m;i(q1,--,qn,t1,-.,tn) is increasing

t;j — mi(q1, - qn,t1,..,tn) is decreasing, j # i

g — mi(q1,--,qn,1t1,.-,tn) is decreasing
q; — w;(q;,t_;,t;) is decreasing
t; — w;i(q;,t_;, t;) is increasing

q(t) € arg mqin G(q1, -, Gn, t1, - tn)

then we want to find a system of transfers x = (1, .., n)
so that (¢, x) is IC and IR.

For this implementation problem with interdependent val-
uations, the GVCG mechanism is generally irrelevant even
in the case of private values in which v;(z, t) = v;(x, t;)!!

So we need transfers different from the VCG/GVCG if we
want to implement the outcome function gq.



The "typical" mechanism design with a continuum
of types: The case of independent private values

Types: t; € T; = [CLZ', bz]

Probabilistic structure: f; := density function for the
distribution of agent i's type

t=(t1,-.tn) €T f(t) = f1(t1) - f1(t1)

t_ieT_;— fi(t—i) =[] Fi(¢5)
JFi

maximize /T H(x(t), q(t), t) f(£)dt

wila(t—i 1)) ti) — wi(t—i, 1)) | Fi(t—i)dt_,

t; € ar max/
i g v,

/T - vila(t—s, 8)i 1) — wi(t—s, )] f-i(t—i)di—; for all i, ¢;

—1



Example: The Optimal Auction Design Problem (My-
erson, MOR, 1980)

An outcome is profile of probabilities denoted ¢(t) =
(q1(t), -, gn(t)) and i's ex post expected payoff is:

vi(q(t—s, t)i ts) =i (b—is t5) = qi(t—s, th)ti— i (t_;, &

The seller then chooses a mechanism (g, x) that solves
Problem A:

maximize /T {Z mi(t)] F(t)dt

t; € arg m;X/T | [%;(t—z', t)w;(t;) — 2i(t—s, té)} foi(t—s)dt_,
1

—1

/T [qz'(t—i, t)wi(t;) — xi(t—;, tz-)] fi(t_;)dt_; for all 4,¢;

qi(t) = 0 and q1(t) +--- +qn(t) < 1



Example: The Optimal Combinatorial Auction De-
sign Problem (Ulku, 2009)

Let €2 denote a finite set of objects. An outcome is profile
of subsets of €2 denoted

S(t) = (51(2), -, Sn(t))

and i's ex post expected payoff is:

vi(S(t_i, t;)i t;) — mi(t_;, t7)

The seller then chooses a mechanism (.S, z) that solves

maximize /T {Z xi(t)] £(t)dt

t; € arg m;X/ [Uz‘(S(t—z’, t;)iti) — (s, tf@)] foi(t—i)dt—

T_;

/T [vi(s(t—ia ti)it;) — zi(t_i, tz)} f_i(t_;)dt_; for all 7,¢;

)

S,L-(_t) NS;(t) =3,i# jand S1(t)U---USp(t) CQ



Example of a combinatorial auction design problem:
Click Auctions

Q = {1,...,m} be the set of ad positions that will be
displayed by an internet search engine after a keyword
search ranked from top to bottom.

k € Q — «y interpreted as the number of user clicks on
the ad displayed at that position.

Suppose that the positions 1, .., m are ranked according
to "clicks per unit time" so that a1 > - -+ > aymn.

Let N = {1,...,n} be the set of potential advertisers.

The value of position k£ to advertiser ¢ of type t; who is
assigned position k is defined as g;(ay,t) where k < j

implies g;(ag,t;) > gi(ay, t;).
Possible valuations for sets of positions:
vi(S,t;) = max{gi(o,ti)}

vi(S,t) = > gilog, t;)

keS



An "atypical"” mechanism design with a continuum
of types: Cybersecurity

Agents: N = set of nodes/users of a computer network

Node i's type: t; is a measure of i's "vulnerability", e.g.,
I's location in the network, i's attractiveness to attackers,
I's current level of security resource

q; = quantity of resource allocated to security at node 2

vi(z,t) = ¢'s willingness to pay for x units of the security
resource given vulnerability profile t = (¢1,..,tn)

G(q1, -, qn, t1, .-, tn) = expected monetary value of the
damage incurred by the network given security resource
allocation (q1, .., gn) and vulnerability profile (1, ..,tn).



Model 1: Suppose that 0 < 6 < 1.

minimize/T [0G(q(t),t) + (1 — 0)C(q(t))] f(t)dt
IC,IR
> zi(t) > C(g(t)) for all t

Model 2: Suppose that 0 < o < 1.

minimize /T Cq(t)) f(t)dt
IC, IR
G(q(t),t) < aforall t

> zi(t) > C(g(t)) for all t



How do we solve the "basic" optimal auction design prob-
lem? Myerson proved the following fundamental result:

Theorem: If ¢* solves the problem

maximize/T Z (ti ! ;ZZ(;Z)> qi(ti)] f(t)dt s.t.

qi(t) > 0 and q1(¢) + -+ qn(t) <1
t; — /T q;(t_;, t;) f—i(t—;)dt_; is nondecreasing for all 7, t;

and if

L
q; (t_s,y)dy

SHORYHOUE

aj

then (q¢*, x*) solves Problem A.



An observation: If ¢* solves Problem B

maximize/T Z <t,,; 1 ;ZZ(;Z)> qi(ti)] f(t)dt s.t.

qi(t) > 0 and q1(t) +--- +qn(t) <1

and if
t; — /T q; (t_;,t;)f—;(t_;)dt_; is nondecreasing for all i, t;
i

then ¢* solves Problem A.



Problem B is simple to solve. Choose t € T'.

If max; {ti — 1}}&(;@)} <0, let gf(t) = 0 for all t.

If max; {ti — 1}}&(;@)} > 0, let

1— Fz'(tz')}

i*(t) € arg max {ti ")

and let

Gix(1)(t) = 1.
Of course, this simple solution may not solve the real
mechanism design problem unless we know that

t; — /T q; (t_;,t;)f—;(t_;)dt_; is nondecreasing for all i, ¢;
i



