
Extensive form games  "�nest description"
#

Strategic form games
#

Coalition form games  "coarsest description"

Coalition form games: data consists of a mapping that
assigns to each coalition a payo¤ or set of payo¤s that
are attainable through some joint course of action. The
analysis is typically axiomatic and solution concepts in-
clude core, stable sets, nucleolus, Shapley value

Strategic form games: data consists of a set of players,
an action sets and payo¤ functions. Solution concepts in-
clude rationalizability, dominant strategy solutions, Nash
equilibrium and its many re�nements

Extensive form games: data consists of a directed graph
that describes the temporal order of play, the actions
and information that are available when a player moves,
payo¤s, etc. Solution concepts include all strategic form
concepts plus concepts like subgame perfection and se-
quentiality.



Strategic form games (SFG):

Players: N = f1; ::; ng

Strategies: Ai 6= ?

Payo¤s: (a1; ::; an) 2 A1�� � ��An 7! gi(a1; ::; an) 2
R

Some Notation:

A=A1 � � � � �An

A�i = �j 6=iAj

If a 2 A; then a�i denotes the "projection" of a onto
A�i; i.e., a�i = (aj)j 6=i

If a�i 2 A�i; then (a�i; bi) := (a1; ::; bi; ::; an) 2
A1 � � � � �An

If a 2 A; then (a�i; ai) = a



Nash equilibrium: A strategy pro�le (a�1; ::; a
�
n) 2 A is

a Nash equilibrium for the SFG if

a�i 2 arg max
ai2Ai

gi(a
�
�i; ai) for each i 2 N:

Dominant Strategy equilibrum: : A strategy âi 2 Ai
is a dominant strategy for i if

âi 2 arg max
ai2Ai

gi(a�i; ai)

for each a�i 2 A�i:

A strategy pro�le (a�1; ::; a
�
n) 2 A is a dominant strategy

equilibrium for the SFG if a�i is a dominant strategy for
each i, i.e.,

a�i 2 arg max
ai2Ai

gi(a�i; ai)

for each i 2 N and each a�i 2 A�i:



Every DS equilibrium is a Nash quilibrium but the con-
verse is false.

N = f1; 2g

A1 = fT;Bg

A2 = fL;Rg

L R
T 1,1 -1,1
B 1,-1 0,0

(a1; a2) = (T;L) is a Nash equilibrium; neither T nor L
is a dominant strategy.

(a1; a2) = (B;R) is a Nash equilibrium; both B and R
are dominant strategies.

Important Question: Is (T;L)more "robust" than (B;R)?

Answer: Not clear



Main Existence Result:

The classic �nite-dimensional existence result goes back
to the work of Nash and the proof relies on �xed point
theory.

Theorem: Suppose that

(i) each Ai is a nonempty, convex, compact subset of
Rmi

(ii) each function a 7! gi(a) is continuous on A

(ii) each function ai 7! gi(a�i; ai) is quasiconcave on
Ai for each a�i 2 A�i:

Then the SFG has an equilibrium.

This result includes the existence of mixed strategy equi-
libria in �nite games as a special case.



Adding incomplete information: The General Inter-
dependent Values Model

Players: N = f1; ::; ng

Actions: Ai 6= ?

Types: Ti (T � T1 � � � � � Tn; T�i = �j 6=iTj) ,
assume �nite only for simplicity of presentation

Common prior: P 2 �T := probability measures de-
�ned on T with P (t) > 0 for all t 2 T

Payo¤s: (a; t) 2 A� T 7! gi(ajt)) 2 R

Strategy for player i: �i : Ti ! Ai

Notation: ��i(t�i) := (�j(tj))j 6=i



Ex-post payo¤ to player i of type ti 2 Ti who chooses
action ai when opponents with type pro�le t�i choose
the strategy pro�le ��i = (�j)j 6=i :

Ui(��i(t�i); aijt�i; ti) := gi(�1(t1); ::; ai; ::; �n(tn)jt�i; ti)

The basic soluition for games with incomplete information
was proposed by Harsanyi:

Bayes-Nash equilibrium: (Harsanyi) A strategy pro-
�le (��1; ::; �

�
n) 2 A is a Bayes-Nash equilibrium for the

asymmetric information game with private values if

��i (ti) 2 arg max
ai2Ai

X
t�i2T�i

Ui(�
�
�i(t�i); aijt�i; ti)P (t�ijti)

for each i 2 N and each ti 2 Ti:



Ex Post Nash equilibrium: A strategy pro�le (��1; ::; �
�
n) 2

A is an ex-post Nash equilibrium if

��i (ti) 2 arg max
ai2Ai

Ui(�
�
�i(t�i); aijt�i; ti)

for all i 2 N , ti 2 Ti and t�i 2 T�i .

Ex Post Dominant Strategy equilibrium: A strategy
pro�le �i is an ex-post dominant strategy for player i if

�i(ti) 2 arg max
ai2Ai

Ui(a�i; aijt�i; ti)

for each ti 2 Ti and each a�i 2 A�i:

A strategy pro�le (��1; ::; �
�
n) 2 A is an ex-post dominant

strategy equilibrium for the asymmetric information game
with private values if ��i is a dominant strategy for each
i, i.e., if

��i (ti) 2 arg max
ai2Ai

Ui(a�i; aijt�i; ti)

for all i 2 N; ti 2 Ti; t�i 2 T�i; and a�i 2 A�i:



From the de�nitions, we have the following taxonomy;

Ex Post DS equilibrium

) Ex Post Nash equilibrium

) Bayes�Nash equilibrium



The Basic Implementation Problem:

economic agents: N = f1; ::; ng

types of agent i: Ti (�nite)

common prior: P 2 ��T := probability measures de-
�ned on T with P (t) > 0 for all t 2 T

set of social alternatives: C

valuation function of agent i : private values

vi : C � Ti ! R+

where vi(c; ti) denotes payo¤ to an agent i of type ti
when the social outcome is c 2 C.

valuation function of agent i : interdependent val-
ues

vi : C � T ! R+

where vi(c; t) denotes payo¤ to an agent i given type
pro�le t when the social outcome is c 2 C.



Choice Problems and Mechanisms:

social choice problem: a collection (v1; ::; vn; P ) where
P 2 �T :

outcome function: a mapping q : T ! C that speci�es
an outcome in C for each pro�le of announced types.

direct mechanism: a collection (q; x1; ::; xn) where

q : T ! C

is an outcome function and

xi : T ! R

is a transfer function.



De�nition: Let (v1; ::; vn; P ) be a social choice problem.

An outcome function is outcome e¢ cient if for each t 2
T;

q(t) 2 argmax
c2C

X
j2N

vj(c; t).

A payment system (x1; ::; xn) is feasible if for each t 2
T;

X
j2N

xj(t) � 0 .



Individual rationality

Let (v1; ::; vn; P ) be a social choice problem.

A mechanism (q; (xi)) is ex post individually rational for
agent i if

Ui(t�i; tijti) � 0 for all (t�i; ti) 2 T:

A mechanism (q; (xi)) is interim individually rational for
agent i ifX
t�i2T�i

Ui(t�i; tijti)P (t�ijti) � 0 for all ti 2 Ti:

Obviously, ex post IR implies interim IR.



Incentive compatibility: The problem

In a world of complete information in which a benign
decision maker knows the actual pro�le of types, then
"implementation" of an e¢ cient social outcome is simple:

Step 1: Given t 2 T; compute q(t) 2 argmaxc2C
P
j2N vj(c; t)

Step 2: De�ne xi(t) = �vi(q(t); t) (you pay exactly
your valuation)

Step 3: By repeating steps 1 and 2 for each t 2 T; you
have constructed a mechanism (q; (xi)) that is feasible,
outcome e¢ cient and even ex post individually rational

Now suppose that the benign decision maker does not
know the actual type pro�le but tells the agents that,
upon hearing their announcements, he will choose a social
outcome and monetary transfers according to the mech-
anism (q; (xi)) constructed above. Will agents truthfully
report their types? Typically, the answer is typically "no"
for this particular mechanism.



Incentive Compatibility: Private Values

Abusing notation, let

vi(c; t) = vi(c; ti)

A direct mechanism (q; (xi)) induces a game of incom-
plete information in which the agents are the players. In
this game, Ai = Ti and a strategy is a map �i : Ti ! Ti;

i.e., agent i reports �i(ti) to the decision maker when his
true type is ti:

The ex post payo¤ to agent i when i reports t0i and true
type pro�le is (t�i; ti) and the other agents use reporting
strategies ��i is

Ui(��i(t�i); t
0
ijt�i; ti)

= vi(q(��i(t�i); t
0
i); ti) + xi(��i(t�i); t

0
i):

If �j(tj) = tj for all j; then this ex post payo¤ is simply

Ui(t�i; t
0
ijt�i; ti)

= vi(q(t�i; t
0
i); ti) + xi(t�i; t

0
i):



The goal of implementation theory: given a social
choice rule q, �nd transfers (xi) so that the associated
direct mechanism (q; (xi)) induces a game of incomplete
information in which truthful reporting is an equilibrium,
i.e., �� is an equilibrium where ��i (ti) = ti for all i.

Remarks:

� Note the inde�nite article: we wish to construct a mech-
anism in which truthful reporting is an equilibrium. It will
almost never be the unique equilibrium.

� We have several notions of equilibrium corresponding
to varying degrees of robustness. These are discussed on
the next slide.



De�nition: Let (v1; ::; vn; P ) be a social choice problem
with private values.

A mechanism (q; (xi)) is:

interim incentive compatible if truthful reporting is a
Bayes-Nash equilibrium: for each i 2 N and all ti; t0i 2
Ti X

t�i2T�i
Ui(t�i; t

0
ijti)P (t�ijti)

�
X

t�i2T�i
Ui(t�i; tijti)P (t�ijti)

ex post incentive compatible if truthful reporting is an ex
post Nash equilibrium: for all i 2 N , all ti; t0i 2 Ti and
all t�i 2 T�i,

Ui(t�i; t
0
ijti) � Ui(t�i; tijti):



Let q be an outcome e¢ cient social choice function. The
Vickrey-Clark-Groves (pivotal) transfers are de�ned as
follows:

�
q
i (t) =

X
j2Nni

vj(q(t); tj)�max
c2C

264 X
j2Nni

vj(c; tj)

375
for each t 2 T: The resulting mechanism (q; (�qi )) is the
VCG mechanism with private valuations.

Remarks:

� Agents are assessed the cost that they impose on the
remaining agents.

� It is straightforward to show that the VCG mechanism
is ex post individually rational and feasible.

� Furthermore, the VCG mechanism is ex post incentive
compatible: in the private values model, truthful report-
ing is an ex post Nash equilibrium. In the private values
model, a dominant strategy. In fact, truthful reporting is
actually an ex post DS equilibrium.



Special case of VCG Mechanisms: Second price auc-
tions with private values

If i receives the object, his value is the nonnegative num-
ber wi(ti) .

In this framework,

q(t) = (q1(t); ::; qn(t))

where each qi(t) � 0 and q1(t) + � � �+ qn(t) � 1 and

vi(q(t�i; t
0
i); ti) + xi(t�i; t

0
i)

= qi(t�i; t
0
i)wi(ti) + xi(t�i; t

0
i):

Finally, outcome e¢ ciency means that

X
i2N

qi(t)wi(ti) = max
i2N
fwi(t)g:



Let

w�(t) := max
i
ŵi(ti)

I(t) = fi 2 N jŵi(ti) = w�(ti)g

and, again for simplicity of presentation, suppose that
jI(t)j = 1: If

q�i (t) = 1 if I(t) = fig
= 0 if I(t) 6= fig

then q� is outcome e¢ cient. De�ning

w��i(t�i) := max
j:j 6=i
fwj(tj)g

then the VCG transfers associated with q� are given by

��i (t) = �w��i(t�i) if I(t) = fig
= 0 if I(t) 6= fig:



Why does the second price auction induce truthful
announcements in the private values case?

Suppose that (t�i; ti) the true type pro�le and t0i is i�s
announcement. If i is the winner when he is honest (i.e.,
I(t�i; ti) = fig); then honesty yields a payo¤ of

wi(ti)� w��i(t�i) � 0:

However, a lie (i.e., t0i 6= ti)) results in one of two pos-
sibilities: either I(t�i; t0i) = fig in which case his payo¤
remains

wi(ti)� w��i(t�i)

or i is a loser and his payo¤ is 0.

What about interdependent values?



Incentive Compatibility: Interdependent Values

De�nition: Let (v1; ::; vn; P ) be a social choice problem.
A mechanism (q; (xi)) is:

interim incentive compatible if truthful revelation is a
Bayes-Nash equilibrium: for each i 2 N and all ti; t0i 2
Ti X

t�i2T�i
Ui(t�i; t

0
ijti)P (t�i; t�ijti)

�
X

t�i2T�i
Ui(t�i; tijt�i; ti)P (t�ijti)

ex post (Nash) incentive compatible if truthful revelation
is an ex post Nash equilibrium: for all i 2 N , all ti; t0i 2
Ti and all t�i 2 T�i,

Ui(t�i; t
0
ijti) � Ui(t�i; tijti):



A "super robust notion of incentive compatibility is pos-
sible. From the previous slide, recall that a mechanism
(q; (xi)) is:

ex post (Nash) incentive compatible if truthful revelation
is an ex post Nash equilibrium: for all i 2 N , all ti; t0i 2
Ti and all t�i 2 T�i,

Ui(t�i; t
0
ijti) � Ui(t�i; tijti):

A mechanism (q; (xi)) is ex post DS incentive compatible
if truthful revelation is an ex post DS equilibrium: for all
i 2 N , all ti; t0i 2 Ti and all t�i; s�i 2 T�i,

vi(q(s�i; t
0
i); t�i; ti) + xi(s�i; t

0
i)

� vi(q(s�i; ti); t�i; ti) + xi(s�i; ti):



Remarks:

� ex post DS incentive compatible ) ex post (Nash)
incentive compatible ) interim incentive compatible

� ex post DS incentive compatibility is simply too strong
to be useful

� good news: in the private values special case, ex post
DS incentive compatibility and ex post (Nash) incentive
compatibility coincide and reduce to the previous de�ni-
tion of DS incentive compatibility provided above for the
private values case.



What about extending the VCG mechanism to the case
of interdependent values?

Let q be an outcome e¢ cient social choice function.

The Generalized Vickrey-Clark-Groves (pivotal) transfers
are de�ned as follows: for each t 2 T;

�
q
i (t) =

X
j2Nni

vj(q(t); t)�max
c2C

264 X
j2Nni

vj(c; t)

375

The resulting mechanism (q; (�
q
i )) is the GVCG mech-

anism with interdependent valuations.



Remarks:

� Agents are again assessed the cost that they impose on
the remaining agents.

� It is straightforward to show that the GVCG mechanism
is ex post individually rational and feasible.

� If vi depends only on ti, then the GVCG mechanism
reduces to the classical VCG mechanism for private value
problems

� In general, however, the GVCG mechanism will not even
satisfy interim IC.

Question: Are there any circumstances under which the
GVCG mechanism will be ex post IC?

Answer: Yes



An application of Implementation Theory with In-
terdependent Valuations: Cybersecurity

Agents: N = set of nodes/users of a computer network

Node i�s type: ti is a measure of i�s "vulnerability", e.g.,
i�s location in the network, i�s attractiveness to attackers,
i�s current level of security resource

qi = quantity of resource allocated to security at node i

vi(qi; t) = i�s willingness to pay for qi units of the secu-
rity resource given vulnerability pro�le t = (t1; ::; tn)

Not unreasonable assumptions:

@vi
@x

� 0

@vi
@ti

� 0

@vi
@tj

� 0; j 6= i

@vi
@ti

� @vi
@tj

; j 6= i



Suppose that

(q1(t); ::; qn(tn)) 2 arg min
(c1;::;cn)2C

X
i

vi(ci; t1; ::; tn)

Now �nd a system of transfers x = (x1; ::; xn) so that
(q; x) is IC and IR. For this implementation problem with
interdep valuations, we can de�ne the GVCG mechanism
but it has desirable incentive properties only in special
circumstances.



A more realistic cybersecurity model

Given a security resource allocation (q1; ::; qn) and a vul-
nerability pro�le (t1; ::; tn), let

G(q1; ::; qn; t1; ::; tn)

denote the expected monetary value of the damage in-
curred by the network if a node is attacked.

Example: Given (q1; ::; qn) and (t1; ::; tn), the network
administrator knows/estimates that a malevolent agent
will attack node i with prob �i(q1; ::; qn; t1; ::; tn)

If node i is attacked, then wi(qi; t1; ::; tn) = expected
value of network damage incurred.

In this case,

G(q1; ::; qn; t1; ::; tn)

=
X
i

�i(q1; ::; qn; t1; ::; tn)wi(qi; t1; ::; tn)



As a further specialization, suppose that

�i(q1; ::; qn; t1; ::; tn) = �i(qi; t1; ::; tn)

and

vi(qi; t) = ��i(qi; t1; ::; tn)wi(qi; t1; ::; tn):

Then the incentives of the users and the system adminis-
trator are "aligned" but this is not a realistic assumption.



Reasonable assumptions:

ti 7! �i(q1; ::; qn; t1; ::; tn) is increasing

tj 7! �i(q1; ::; qn; t1; ::; tn) is decreasing, j 6= i
qi 7! �i(q1; ::; qn; t1; ::; tn) is decreasing

qi 7! wi(qi; t�i; ti) is decreasing

ti 7! wi(qi; t�i; ti) is increasing

If

q(t) 2 argmin
q
G(q1; ::; qn; t1; ::; tn)

then we want to �nd a system of transfers x = (x1; ::; xn)
so that (q; x) is IC and IR.

For this implementation problem with interdependent val-
uations, the GVCG mechanism is generally irrelevant even
in the case of private values in which vi(x; t) = vi(x; ti)!!

So we need transfers di¤erent from the VCG/GVCG if we
want to implement the outcome function q.



The "typical" mechanism design with a continuum
of types: The case of independent private values

Types: ti 2 Ti = [ai; bi]

Probabilistic structure: fi := density function for the
distribution of agent i�s type

t = (t1; ::; tn) 2 T 7! f(t) = f1(t1) � � � f1(t1)

t�i 2 T�i 7! f�i(t�i) =
Y
j 6=i

fj(tj)

maximize
Z
T
H(x(t); q(t); t)f(t)dt

ti 2 argmax
t0i

Z
T�i

h
vi(q(t�i; t

0
i); ti)� xi(t�i; t0i)

i
f�i(t�i)dt�i for all i; tiZ

T�i
[vi(q(t�i; ti); ti)� xi(t�i; ti)] f�i(t�i)dt�i for all i; ti



Example: The Optimal Auction Design Problem (My-
erson, MOR, 1980)

An outcome is pro�le of probabilities denoted q(t) =
(q1(t); ::; qn(t)) and i�s ex post expected payo¤ is:

vi(q(t�i; t
0
i); ti)�xi(t�i; t0i) = qi(t�i; t0i)ti�xi(t�i; t0i)

The seller then chooses a mechanism (q; x) that solves
Problem A:

maximize
Z
T

24X
i

xi(t)

35 f(t)dt
ti 2 argmax

t0i

Z
T�i

h
qi(t�i; t

0
i)wi(ti)� xi(t�i; t0i)

i
f�i(t�i)dt�i for all i; tiZ

T�i

h
qi(t�i; t

0
i)wi(ti)� xi(t�i; ti)

i
f�i(t�i)dt�i for all i; ti

qi(t) � 0 and q1(t) + � � �+ qn(t) � 1



Example: The Optimal Combinatorial Auction De-
sign Problem (Ulku, 2009)

Let 
 denote a �nite set of objects. An outcome is pro�le
of subsets of 
 denoted

S(t) = (S1(t); ::; Sn(t))

and i�s ex post expected payo¤ is:

vi(S(t�i; t
0
i); ti)� xi(t�i; t0i)

The seller then chooses a mechanism (S; x) that solves

maximize
Z
T

24X
i

xi(t)

35 f(t)dt
ti 2 argmax

t0i

Z
T�i

h
vi(S(t�i; t

0
i); ti)� xi(t�i; t0i)

i
f�i(t�i)dt�i for all i; tiZ

T�i

h
vi(S(t�i; t

0
i); ti)� xi(t�i; ti)

i
f�i(t�i)dt�i for all i; ti

Si(t) \ Sj(t) = ?; i 6= j and S1(t) [ � � � [ Sn(t) � 




Example of a combinatorial auction design problem:
Click Auctions


 = f1; :::;mg be the set of ad positions that will be
displayed by an internet search engine after a keyword
search ranked from top to bottom.

k 2 
 7! �k interpreted as the number of user clicks on
the ad displayed at that position.

Suppose that the positions 1; ::;m are ranked according
to "clicks per unit time" so that �1 > � � � > �m:

Let N = f1; :::; ng be the set of potential advertisers.

The value of position k to advertiser i of type ti who is
assigned position k is de�ned as gi(�k; t) where k < j
implies gi(�k; ti) > gi(�j; ti):

Possible valuations for sets of positions:

vi(S; ti) = max
k2S
fgi(�k; ti)g

vi(S; ti) =
X
k2S

gi(�k; ti)



An "atypical" mechanism design with a continuum
of types: Cybersecurity

Agents: N = set of nodes/users of a computer network

Node i�s type: ti is a measure of i�s "vulnerability", e.g.,
i�s location in the network, i�s attractiveness to attackers,
i�s current level of security resource

qi = quantity of resource allocated to security at node i

vi(x; t) = i�s willingness to pay for x units of the security
resource given vulnerability pro�le t = (t1; ::; tn)

G(q1; ::; qn; t1; ::; tn) = expected monetary value of the
damage incurred by the network given security resource
allocation (q1; ::; qn) and vulnerability pro�le (t1; ::; tn).



Model 1: Suppose that 0 < � � 1:

minimize
Z
T
[�G(q(t); t) + (1� �)C(q(t))] f(t)dt

IC; IRX
i

xi(t) � C(q(t)) for all t

Model 2: Suppose that 0 < � < 1:

minimize
Z
T
C(q(t))f(t)dt

IC; IR

G(q(t); t) � � for all tX
i

xi(t) � C(q(t)) for all t



How do we solve the "basic" optimal auction design prob-
lem? Myerson proved the following fundamental result:

Theorem: If q� solves the problem

maximize
Z
T

24X
i

 
ti �

1� Fi(ti)
fi(ti)

!
qi(ti)

35 f(t)dt s.t.
qi(t) � 0 and q1(t) + � � �+ qn(t) � 1

ti 7!
Z
T�i

qi(t�i; ti)f�i(t�i)dt�i is nondecreasing for all i; ti

and if

x�i (t) = q
�
i (t)ti �

Z ti
ai
q�i (t�i; y)dy

then (q�; x�) solves Problem A.



An observation: If q� solves Problem B

maximize
Z
T

24X
i

 
ti �

1� Fi(ti)
fi(ti)

!
qi(ti)

35 f(t)dt s.t.
qi(t) � 0 and q1(t) + � � �+ qn(t) � 1

and if

ti 7!
Z
T�i

q�i (t�i; ti)f�i(t�i)dt�i is nondecreasing for all i; ti

then q� solves Problem A.



Problem B is simple to solve. Choose t 2 T:

If maxi

�
ti �

1�Fi(ti)
fi(ti)

�
� 0; let q�i (t) = 0 for all t.

If maxi

�
ti �

1�Fi(ti)
fi(ti)

�
> 0; let

i�(t) 2 argmax
i

(
ti �

1� Fi(ti)
fi(ti)

)
and let

qi�(t)(t) = 1:

Of course, this simple solution may not solve the real
mechanism design problem unless we know that

ti 7!
Z
T�i

q�i (t�i; ti)f�i(t�i)dt�i is nondecreasing for all i; ti


