Foundations of Cryptography

CS668A Fall 2004 Prof. Rebecca N. Wright Syllabus 2 September, 2004

Location, etc:

Place:	Burchard 124
Time:	6:15pm–8:45pm Thursdays
Professor:	Rebecca Wright, rwright@cs.stevens.edu
Office hours:	3-5pm Tuesdays, 216 Lieb
Teaching Assisant	Sun Qi (River), sunq@cs.stevens-tech.edu
Office hours:	3-5pm Thursdays, 101 Lieb

Description:

This course provides a broad introduction to cornerstones of security (authenticity, confidentiality, message integrity, and non-repudiation) and the mechanisms to achieve them. Topics include: block and stream ciphers, public key cryptosystems, key management, certificates, public key infrastructure (PKI), digital signatures, non-repudiation, and message authentication. Various security standards and protocols such as DES, AES, PGP, and SSL are also discussed.

Prerequisites: CS/MA 503 (Discrete Mathematics for Cryptography) and either CS 600 (Data Structures and Algorithms) or CS 434 Theory of Computation, or permission of the instructor.

Textbooks:

Douglas Stinson, Cryptography: Theory and Practice, second edition, CRC Press. (Required).

Alfred Menezes, Paul van Oorschot, and Scott Vanstone, *Handbook of Applied Cryptography*, CRC Press. (Optional, available on the web at http://www.cacr.math.uwaterloo.ca/hac/.).

Syllabus:

September 2	Introduction, Classical Cryptography Reading: ch. 1
September 9	Classical Cryptography, cont'd; Information Theory Reading: ch. 2
September 16	Homework 1 due Block Ciphers Reading: ch. 3
September 23	Advanced Encryption Standard (AES)

September 30	Hash Functions Reading: ch. 4
October 7	Homework 2 due Message Authentication Codes
October 14	MIDTERM EXAM
October 21	Public Key Encryption: intro, RSA Reading: ch. 5
October 28	Public Key Encryption: Diffie-Hellman, ElGamal Reading: ch. 6
November 4	Homework 3 due Public Key Encryption: additional topics
November 11	Digital Signatures Reading: ch. 7
November 18	Digital Signatures, cont'd
November 25	THANKSGIVING RECESS: NO CLASS
December 2	Homework 4 due Key Management
December 9	Final Exam

Grading:

Homework Assignments	40%	(lowest score dropped)
Midterm Exam	25%	
Final Exam	25%	
Class Participation	10%	

Late policy:

Assignments are due at the *start* of class on their due dates. Late assignments will not be accepted. All exceptions must be cleared in advance, and will only be granted in extreme circumstances. This somewhat strict policy is intended to be balanced by the dropping of the lowest homework score.