
An Efficient Implementation of Reactivity for Modeling Hardware in the Scenic Design Environment
Stan Liao� Steve Tjiang� Rajesh Guptay
�Advanced Technology Group, Synopsys, Inc.

yDept. of Information and Computer Science, UC Irvine.

Abstract—Reactivity is one of the key features of hardware
description languages. We present an efficient implementation
of reactivity in the Scenic framework that allows the system
designer to model hardware blocks. Scenic allows the designer
to use C++ to model mixed hardware–software systems with
a C++ compiler and a small library and without the need of
a complex event-driven run-time kernel often found embedded
in hardware description languages (HDL) such as VHDL and
Verilog. Moreover, Scenic hardware descriptions can be easily
mapped to HDL and synthesized into hardware implementa-
tions using commercially available tools.

In this paper we present Scenic’s implementation of con-
currency (signals and processes) and reactivity (waiting and
watching). When C++ is used as an HDL, context-switching
overhead can become a significant performance issue during
simulation. We introduce the notion of delayed expression
objects, or lambdas, to reduce context-switching. Examples
and experimental results are presented to show the utility and
simulation efficiency using the Scenic framework.

I. INTRODUCTION

The high level of integration afforded by advances in pro-
cessing technology has brought new challenges in the design
of digital systems. Higher integration has spurred a trend to in-
tegrate entire complex systems—consisting of a heterogeneous
mixture of hardware and software components—into system-
on-a-chip designs [5] [6] [7] [17] [19]. The trend challenges
CAD-tool developers to provide tools that can support the de-
sign of such hardware–software systems. Several researchers
(e.g., [7] [9] [12] [17]) have proposed various methodologies
for the hardware–software co-design of digital systems. Com-
mercial tools have addressed some of the issues in co-design
such as hardware–software co-simulation [9] [15].

One of the most pressing issues in hardware–software co-
design is that of design entry—the lack of a single language in
which to describe both hardware and software components. A
single language would facilitate seamless hardware–software
co-simulation. Moreover, a single language would facilitate
the step-by-step refinement of a system design down to its
components.

Today, a system designer would write system-level models
in a high-level programming language such as C or C++. The
designer can estimate system performance and verify functional
correctness of the designs using commonly available software
compilers. However, to implement the design using synthesis,
the designer must manually translate those parts of the model
that will become hardware into a synthesizable subset of a hard-

Permission to make digital/hard copy of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title
of the publication and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 97, Anaheim, California c
 1997 ACM 0-89791-920-3/97/06 ..$3.50

ware description language (HDL), such as Verilog or VHDL.
This process is often tedious and error-prone.

Scenic simplifies the process by supplying a single language
framework—based on C++—in which the designer describes
both hardware and software components. It delegates the com-
plexities of handling hardware semantics to a library of class
and methods, thereby facilitating the development of hardware
descriptions from existing algorithmic code. In Scenic, we
stipulate only that hardware components be synchronous, a
weak limitation since most hardware designs are synchronous.
We use C++’s facilities to implement hardware-modeling fea-
tures that can be automatically mapped into synthesizable HDL.
Designers can thus continue to use widely available standard
compilers and debuggers to verify their designs, and to use
commercially available synthesis tools to implement their hard-
ware.

A typical design flow in the Scenic framework begins with
an untimed description in C++, using a library of new data types
useful for modeling hardware. The description can be compiled
and simulated for functional correctness. Then, the design
may be refined by adding interface specificaiton and timing
information, and again the timed description can be compiled
with a standard C++ compiler, simulated, and debugged.

This paper concerns the implementation of reactivity, a key
feature useful for describing hardware. In Section II we dis-
cuss requirements in modeling reactivity and its effects. In
Section III we describe our implementation of reactivity in the
Scenic environment using delayed expression objects. We have
written models for moderately complex systems and success-
fully verified them with modest amount of effort, and we show
the advantages of usingdelayed expression objects. Section IV
concludes the paper by summarizing the results and plans for
future work.

II. REQUIREMENTS FOR MODELING HARDWARE

Specifically, we can model a hardware system as a reactive
system: a system in continuous interaction with its environ-
ment. That is, we think of and express (in HDL) hardware
as a set of nonterminating processes that react continuously to
events in their environment [2]. Kurshan [13] first introduced
the concept of reactive behavior, and the concept has since been
used in the area of process-control and real-time systems [1],
[4]. A notable language based on the notion of reactivity is the
synchronous language Esterel [4]. The concept of reactivity
appears in Verilog and VHDL as signals and events (a change
in a signal’s value) as well as the ability to recognize and re-
spond to events. All existing HDLs incorporate reactivity in
using an event-driven model. Reactivity is sufficient to de-
scribe most hardware systems at various levels of abstraction:
from algorithms to gate-level circuits.

However, the use of HDLs in system modeling, architectural
evaluations and hardware–software co-design has been mixed
at best. One reason for this disappointing result has been the
overhead of event processing. Another reason is that HDLs

often do not have the facilities to describe software in an effi-
cient and natural way. HDLs typically have poor facilities to
describe data structures. They do not integrate seamlessly to
existing software libraries.

In Scenic, we approach hardware description by starting
with C++, a programming language familiar to most designers
when they write software, and unburdened by event processing
overhead. The framework uses the object-oriented facilities of
C++—subtyping and templates—to implement reactivity in a
manner natural to hardware designers, and to assist designer
in modeling data-types (e.g., standard logic of VHDL) and
structural elements for hardware (e.g., ports and port maps).

A. Modeling Reactivity

In Scenic, we provide a class library in C++ to support
reactivity. Reactivity support requires the following:

Concurrency or Parallelism. Hardware is inherently paral-
lel. Concurrency in operations can be modeled using support
for program threads and co-routines in the form of libraries. We
encapsulate concurrency in an object or class definition. We
can then build non-terminating hardware processes by using
the subtyping and virtual-function facilities of C++.

Signals and Events. Hardware processes require signals and
events to communicate. We use templates to provide the con-
cept of signals on which events will be detected. Although
thread/concurrency libraries for C++ provide other communi-
cation primitives such as semaphores and critical regions, such
primitives are better suited for software because they usually
assume that processes have easy access to each other’s states—
in other words, it is possible to refer to a process’ internal
variables. This assumption is ill-suited for hardware modeling
and synthesis.

Waiting and Watching. Hardware processes interact through
events and signals. Thus they need the ability to wait or watch
for a particular condition or event. Waiting refers to a block-
ing action (as in “wait until (expression)”) that can be
associated with an event. Watching refers to a non-blocking
action that runs in parallel with a specified behavior (as in “do
p watching s”). This construct is used typically to handle
preemptions [3]; the semantics is such that regardless of the
state of execution of p, whenever s occurs, p is terminated.

B. Modeling Structures and Data Types

In addition to describing behaviors, the ability to describe
structures is essential to hardware modeling. A structural de-
scription consists of component instances and their intercon-
nection as in a net-list. Two central notions in modeling struc-
tures are those of ports and port maps. Scenic models ports
using C++ references to signals; signals, in turn, are entities
to which ports are mapped. Port mapping takes place at object
instantiation time, and the constructor of each process object is
responsible for binding signal arguments to the object’s ports.
An example will be shown in Figure 2.

Another practical feature of HDLs is the use of multiple-
valued logic for representing unknown or don’t-care val-
ues. Scenic provides the same feature by defining a new
aggregate type std_ulogic and overloading the logic op-
erators. A complete implementation of std_ulogic and
std_ulogic_vector, as well as bitvector-based signed

and unsigned arithmetic, is an integral part of the Scenic envi-
ronment.

C. Simulation of Reactive Systems
This section provides some background on the Scenic im-

plementation of reactivity by outlining two of the methods to
execute models of reactive systems: event-driven and process-
driven. Both methods implement processes as either co-
routines or threads.

Event-driven simulation remains the primary means of exe-
cuting a model of a reactive system. Traditional event-driven
simulators such as those used to implement HDLs maintain
a notion of simulated time as well as tracking every write to
signals; signal writes can be scheduled to occur at a future
simulation time. A write that changes the value of a signal
generates an event that can resume waiting processes or divert
the control-flow of watching processes. An event-driven simu-
lator requires a complicated scheduler that maintains time and
lists of pending signal writes, as well as lists of waiting and
watching processes for each signal.

In process-driven simulation, processes check for signal
changes and conditions on which they are waiting or watching.
In the extreme, this can reduce to busy-waiting, an expensive
proposition. For synchronous systems, it is often sufficient to
perform the checks during clock changes. Some cycle-based
simulators use this approach [8]. The process-driven approach,
however, may incur many context-switch operations.

Event-driven simulators best suit hardware models in which
each process is small with only a few inputs and event activ-
ity is low—there are few events per unit of simulated time.
For such models, an event-driven approach avoids unnecessary
computation. For example, an event-driven simulator would
avoid evaluating a gate if its inputs has not changed. When
event-activity is high or when processes are large with lots of
inputs (more inputs means the probability that all inputs re-
main unchanged is low), the overhead in the scheduler may
overwhelm the savings from avoided computations.

In system and behavioral models where large processes read
and write many signals, the cycle-based simulation offer higher
speed. For this reason, microprocessor designers usually build
a C-model and simulate using their own cycle-based simulator
[8] [18]. As we have intended Scenic for use for system-
level or behavioral modeling, Scenic implements a cycle-based
simulator. Unfortunately, we have little control over context-
switching costs in C++ and these costs can quickly become a
bottleneck.

For this reason, Scenic uses a hybrid of event-driven and
process-driven approaches. Scenic retains a simple scheduler
that tracks only clock signals but the checks on signal changes
and condition have shifted from processes to the scheduler to
reduce context-switching overhead. In the following section
we discuss the issues in maintaining simulation efficiency.

III. IMPLEMENTATION OF SCENIC AND SIMULATION RESULTS

The Scenic environment consists of a library of classes and
methods that support hardware modeling. Since a complete
description of the library is out of the scope of this paper, we
focus on our implementation of processes and reactivity.

Fig. 1 shows a high-level view of clocks and processes in
the Scenic environment. A hardware model consist of a set of

wait
wakeup

wait wait

clk1 clk2

proc1 proc2 proc3

wakeup

signals

Fig. 1. Clocks and processes at a glance. Processes are suspended
by transferring control to its clock (via a wait message), and are
continued when the clock issues wakeup. Processes communicate
through signals.

class Counter : public sc_process {
const sc_signal<std_ulogic>& enable;
sc_signal<std_ulogic>& iszero;
int count;

public:
Counter(sc_clock_edge& EDGE,

const sc_signal<std_ulogic>& ENABLE,
sc_signal<std_ulogic>& ISZERO)

: sc_process(EDGE), enable(ENABLE),
iszero(ISZERO)

{
count = 15; // initialization

}
void entry();

};

(a)

enable

iszero

clock

ENABLE

EDGE

ISZERO

(b)
Fig. 2. (a) Declaration of the Counter class in C++. (b) The

corresponding structure.

processes. Each process is mapped to a thread with its own
stack space (execution state). Currently, we use a nonpreemp-
tive thread (co-routine) package [10] for mapping sequential
processes. Events generated by each process is synchronized
by an associated clock. Each event is identified as a delayed
signal assignment, and the associated action is passed onto the
clock processes. A process synchronizes with its clock by is-
suing to it a wait message. The clock processes are responsible
for performing the actions (signal updates) at the end of the
cycle and for waking up the processes thereafter.

A. Describing Process Behaviors

A process class is declared by publicly deriving, or sub-
typing, from the library base class sc_process, thereby in-
heriting the fundamental capabilities of a process that are de-
fined in the Scenic library. An example is shown in Fig. 2.
The constructor for Counter takes as arguments a clock and
the signals that comprise its interface. The initializers in the
constructor passes on the clock for base-class initialization
(sc_process(EDGE)), and binds the port names to inter-
nal signal names. The behavior of the user-defined process
is separately specified in the member function entry(), as
shown in Fig. 3.

The examples demonstrate the use of two basic features of

void Counter::entry()
{

if (enable.read() == ’1’) {
if (count == 0) {

write(iszero, ’1’);
count = 15;

}
else {

write(iszero, ’0’);
count--;

}
}
next();

}

Fig. 3. Body of the Counter process.

int main()
{

sc_signal<std_ulogic> enable;
sc_signal<std_ulogic> iszero;
sc_clock clk;
Counter counter(clk.pos(), enable, iszero);
sc_clock::press_start_button(1000);

}

Fig. 4. Instantiating a process and starting the simulation

the Scenic library: write() andnext(). Callingwrite()
places an event on the clock’s list of actions. For instance,
write(iszero, ’1’) schedules an update for the signal
iszero, for the next clock edge. The statement next()
synchronizes the process with the next clock edge. Note that
the function entry() behaves as a VHDL process; that is, its
body is repeatedly executed, even though there is no explicit
enclosing loop.

B. Instantiating Processes
In the Scenic environment, a process is instantiated just as

any object is instantiated in C++, by defining a variable of
the appropriate process class and supplying arguments to the
constructor. In Fig. 4, we create the signals enable and
iszero, a clock, followed by instantiation of a process of
type Counter, and then we begin the simulation for 1000
cycles. In this example, the pos() method is used to obtain
the positive edge associated with the clock. (Of course, this
code fragment serves only as an illustration and does not do
anything useful since there is no stimulus.)

It is important to note that the declaration and definition of
a process class defines a behavior, whereas defining a vari-
able of a particular class creates an instance. Therefore, we
can conceivably create several instances of the same process
class without duplicating code or explicitly passing objects as
arguments. Object-oriented languages such as C++ offer a less
cumbersome way to create instances than procedural languages.

C. Reactivity: Waiting and Watching
We now describe our implementation of reactivity—waiting

and watching. We introduce the notion of delay-evaluated ex-
pressions, and then present two implementations that explore
the trade-offs in expressiveness and efficiency. We then de-
scribe how delay-evaluated expressions are used in conjunction
with the C++ exception handling mechanisms to implement
watching.

Waiting. A waiting process suspends itself until some event
occurs. For example, a process may, after its initialization, wait
for a signal start to be asserted before starting its operation.
In VHDL one can write:

wait until start = ’1’;

Using this wait for a synchronous digital circuit requires that
signalstart be sampled at a clock edge. This is accomplished
as follows:

loop
wait until clk’event and clk = ’1’;
exit when start = ’1’;

end loop

The analogous expression in Scenic is:

do { next(); } while (start.read() != ’1’);

While this achieves the desired effect, it is not very efficient in
practice. Every call to next() causes a context switch to the
next process in the clock’s process-list or to the clock, and in
some machines context switches can be expensive.

The context switches to and from the current process serve
only to evaluate the expression E on which the process is wait-
ing. If the evaluation of E can occur outside of the current
process, we can avoid many unnecessary context switches, be-
cause instead of unconditionally switching back to the process
to evaluate E, our decision to switch is now based on the value
of E—only when E evaluates to true in the current cycle do
we switch.

To permit other processes to evaluate the expression E, a
process must have a way of making E known externally. There-
fore, E must be delay-evaluated, because if we were to write the
expression as shown above, it would be evaluated immediately
and we would be left with a value not an expression. The key
here is to create an object that encapsulates the expression to be
evaluated and which provides a method eval() that allows
anyone with a handle to the object to force its evaluation. We
call such delay-evaluated expressions lambda expressions or
simply lambdas (so named because the semantics resemble the
�-abstraction operation in �-calculus [16]). We present two
different implementations of lambdas.

Static Lambda Creation. One way to implement lambdas is
to use a closure [16] that consists of a function and a set of
arguments serving as the function’s environment of evaluation.
For example, we use the following function to represent the
condition we set out to wait on.

bool signal_is_1(sc_signal<std_ulogic>& s)
{

return (s.read() == ’1’);
}

A lambda is created simply by supplying a pointer to the func-
tion and the signal start which will be passed to the function
when the evaluation is forced:

sc_lambda start_is_1(signal_is_1, start);

where sc_lambda is the library class that represents a lambda
object. Then, in the body of the process, we can write:

wait_until(start_is_1);

to pass to the clock process the static lambda object
start_is_1. At each edge the clock process evaluates the

lambda by invoking the method eval(), which effects the
application of the function part (signal_is_1) to the argu-
ment part (start). The suspended process is waken up only
if the result is true.

Dynamic Lambda Creation. A serious disadvantage of static
lambda creation is that the designer has to write the function
representing the lambda and explicitly instantiate the lambda
object. This is certainly unintuitive and error-prone. We sim-
plify the creation of lambdas by allowing the designer to write:

wait_until(start == ’1’);

This takes advantage of C++’s ability to overload operators.
Here we overload the operator == such that, when a signal ap-
pears in the expression, a lambda object is created. In this case,
no user-defined function such as signal_is_1 is involved;
the lambda object is represented as an expression tree. Eval-
uation of the lambda object consists of interpreting the tree at
run-time. Thus, dynamic lambda objects are less efficient than
static ones; the loss is not too significant, however, because
most expression trees are very small.

The reader must have noticed that we have previously writ-
ten(start.read() == ’1’), but here we write(start
== ’1’) instead. The difference is important and the designer
must bear it in mind: in the former we evaluate the expression
immediately, but in the latter a lambda is created and passed as
argument to wait_until().

Watching. As we have seen in Section II-A, another important
property of reactive systems is the capability to react to pre-
emptions or interrupts [3]. One of the most commonly used
preemption in hardware design is the use of reset, which, re-
gardless of the present state of the system, always brings the
system to the reset state. It is the system’s responsibility to
watch for preemptions at all times.

It is one area where the ability of existing HDLs such as
VHDL and Verilog to model interrupts is severely lacking.
For instance, even assuming that all signals (including those
carrying preemption) external to process are synchronized at
clock boundaries, VHDL requires the designer to test for such
signals at every clock boundary:

wait until clk’event and clk = ’1’;
exit reset_loop when reset = ’1’;

where reset_loop is the outermost loop that encloses the
reset sequence and the main loop. If pre-synthesis and post-
synthesis simulations are to yield the same results, then these
statements are required. This is tolerable if reset were the
only preemption that is being watched. However, as we add
more preemptions for the process to watch for, the code can
become quite unwieldy. Furthermore, if we explicitly check
for preemptions on every clock boundary, we would not be
able to take advantage of the delayed evaluation of lambda
expressions, since the preemptive conditions may occur at any
time, in particular before the lambda evaluates to true. We
agree with Berry et al. that support for preemption should be
orthogonal with respect to other constructs [3].

We have found an elegant way to solve this problem using
the C++ exception handling mechanism, namely try, catch,
and throw. In Scenic, each process has a watch-list, to which
lambda expressions are added during object instantiation. All

Counter::Counter()
{

watching(reset == ’1’);
watching(pwr_dn == ’1’);
watching(test == ’1’);

}
(a)

void Counter::entry()
{

try {
/* BODY OF PROCESS */

} catch (sc_user&) {
if (reset.read() == ’1’)

/* DO RESET */
else {

if (pwr_dn.read() == ’1’)
/* DO POWER DOWN */

if (test.read() == ’1’)
/* DO TEST */

}
}

} (b)

Fig. 5. In Scenic, preemptions to watch for are registered in the
constructor, and the handling is accomplished using try/catch.
(a) Preemptions are registered in the constructor. (b) Preemption
handling is carried out in the catch block.

the lambdas on the watch-list will be evaluated on every clock
edge. For instance, the statement in the user-defined constructor

watching(reset == ’1’);

creates a lambda corresponding to the condition that signal
reset is raised, and registers this condition with the watch-list.
Fig. 5 shows an example with several preemptive conditions.

The member function entry() uses the try/catch con-
struct to implement the handling of preemptions. A C++
exception of type sc_user is thrown from the next() or
wait_until() functions. These functions receive a notice
from the clock process when one or more of the lambdas in the
watch-list evaluate to true, and instead of returning normally,
they throw an exception which is caught by the catch block.
The code within the catch block handles the preemptions.

Note that only one type of exception, namely sc_user,
is thrown. This design decision allows maximum flexibility
for the handlers when two or more preemptions occur during
the same clock cycle. For example, the user may decide to
prioritize the preemptions or to take special actions for various
combinations of preemptions. In Fig. 5, the handlers are written
such that:

� reset has the highest priority and is handled exclusive
of the other two conditions;

� pwr_dn has a higher priority than test but they are not
exclusive; in other words, if both signals are raised in the
same cycle, the actions for pwr_dnwill be executed first,
and then those for test.

D. Clock-Level Asynchrony: Support for Multiple and Non-
isochronous Clocks

Most real systems, though primarily synchronous, contain
some form of asynchrony, either in the form of multiple clocks,
or in signal handling even if in restricted places. In this sec-
tion we describe the modeling of multiple clocks that are non-

Example C++ lines Naı̈ve Static Dynamic

2 FSMs 103 8.3 7.4 7.5
IDCT 308 10.0 7.7 8.6
PrioQ 633 21.4 17.0 18.8

Table I. Comparison of simulation times for various examples:
naı̈ve, static lambda, and dynamic lambda implementations. CPU

times are seconds measured on an UltraSparc (Solaris 2.5).

isochronous with respect to one another [14]. In other words,
while each process is synchronous with respect to the clock that
drives it, the periods and phases of clocks need not bear any
rational relationship with one another.

To implement clock-level asynchrony, we first attach two
attributes to clocks, namely objects of type sc_clock: the
period of the clock, and the time instant at which the clock
begins running. For instance, the following declares two clocks
which respectively have periods

p
2 and

p
3 time units, and

begin running at time instants 0.0 and 0.5:

sc_clock clk1(0.0, sqrt(2.0));
sc_clock clk2(0.5, sqrt(3.0));

Each clock object is also responsible for keeping record of the
time instant when its next edge will take place. When the func-
tionsc_clock::press_start_button() is called, the
clocks are placed on a priority queue, ordered by the time of
their next edge. In a sense we are using an event queue as in
any full event-driven simulator; the difference is that the only
events in our system are clock edges, and process-level events,
synchronized on these edges, are not explicitly manipulated at
this level.

E. Simulation Results
We have written several moderately complex models, along

with test-benches, in the Scenic environment. We have com-
piled the models and the libraries with the GNU C++ compiler,
version 2.7.2. Table I shows the examples and the simulation
times for 100,000 behavioral cycles. (It is important to note
that cycles at this level do not necessarily correspond to ma-
chine cycles since the synthesis tools may expand a behavioral
cycle into several machine cycles.)

Since GNU C++ does not yet support exception handling
with code optimization, the simulation speed shown here
will be significantly faster as the quality of the compiler is
improved. Nevertheless, the results demonstrate significant
speed-up achieved by the use of lambdas.

Table I shows the simulation times for several examples. “2
FSMs” refers to two interacting finite state machines, each with
its own clock. “IDCT” is an implementation of the inverse
discrete cosine transform from [11]. Finally, “PrioQ” is an
implementation of a priority queue with inheritance for an ATM
switching controller. In this table, the naı̈ve construct refers to
the following form:

do { next(); } while (! condition);
which is a common implementation of reactivity in existing
HDLs. Using static lambdas resulted in a speed-up of about
20%. Since most lambda expressions are very small, the dif-
ference between static and dynamic lambda creation is less
pronounced.

ACTION BEHAVIORAL VHDL SCENIC

Signal
assignment dout <= ’1’; write(dout, ’1’);

Wait on
clock

wait until clk’event and clk=’1’; next();

Wait on
condition

loop
wait until clk’event and clk=’1’;
exit when din=’1’;

end loop;

wait_until(din == ’1’);

Watching
reset

wait until clk’event and clk=’1’;
exit reset_loop when reset=’1’;

watching(reset);
try { ... } catch (sc_user&)

{ if (reset.read() == ’1’) ... }

Table II. Comparison of behavioral (synthesizable) VHDL and Scenic constructs.

IV. SUMMARY AND FUTURE WORK

We have presented Scenic, an environment based on C++ for
modeling and synthesizing mixed hardware–software systems.
In designing Scenic, we have identified the key requirements
for modeling hardware, namely reactivity of types waiting and
watching. We have presented elegant and efficient methods for
implementing reactivity without altering the fundamental pro-
gramming methodology. Our implementation uses the notion
of delay-evaluated expressions that allows the clock process
to evaluate the conditions on which the suspended process is
waiting or watching, thereby reducing the number of poten-
tially context-switching operations. Furthermore, we use the
exception-handling mechanism of C++ to support preemption
in an orthogonal manner with respect to other constructs.

One of the most important goals for the design of Scenic is
synthesis: the hardware models written in the Scenic subset of
C++ should be directly synthesizable by a behavioral synthesis
system. In designing the features of the Scenic environment,
we have not only considered efficient simulation and seamless
integration of hardware and software, but also emphasized syn-
thesizability of hardware components. During the past decade
synthesis has proven effective in increasing design productiv-
ity, and direct synthesis from Scenic can significantly reduce
the amount of effort the designer has to expend to take her
design from idea to silicon.

Table II compares some VHDL constructs that are synthe-
sizable by high-level synthesis systems such as the Synopsys
Behavioral Compiler, and their counterparts in Scenic. While
Scenic is not designed to mimic VHDL, the purpose of this
comparison is to show that Scenic provides the constructs nec-
essary for synthesis, and how models written in the Scenic
environment can be synthesized. We believe that this is a sig-
nificant step in bridging the gap between high-level modeling
and hardware synthesis.

We are currently working on a C++ front-end that translates
Scenic models into an intermediate form suitable for behavioral
synthesis. Also of great usefulness is an advisor that analyzes
Scenic models and suggest coding styles that may improve
quality of results.

REFERENCES
[1] M. A. Ardis, J. A. Chaves, L. J. Jagadeesan, P. Mataga, C. Pu-

chol, M. G. Staskauskas, and J. von Olnhausen. A Framework for
Evaluating Specification Methods for Reactive Systems. IEEE
Transactions on Software Engineering, 22(6):378–389, June
1996.

[2] G. Berry. Real-time programming: General purpose or special-
purpose languages. In G. Ritter, editor, Information Processing

89, pages 11–17. Elsevier Science Publishers B.V. (North Hol-
land), 1989.

[3] G. Berry. Preemption in concurrent systems. In Proc.
FSTTCS’93, Lecture Notes in Computer Science, volume 761,
pages 72–93. Springer-Verlag, 1993.

[4] G. Berry and G. Gonthier. The Esterel synchronous program-
ming language: Design, semantics, implementation. Science Of
Computer Programming, 19(2):87–152, 1992.

[5] R. Ernst, J. Henkel, and T. Benner. Hardware-Software Cosyn-
thesis for Microcontrollers. IEEE Design & Test of Computers,
pages 64–75, December 1993.

[6] F. Balarin et al. Polis: A Design Environment for
Control-Dominated Embedded Systems. See http://www-
cad.eecs.berkeley.edu/Respep/Research/hsc/abstract.html.

[7] R. K. Gupta and G. De Micheli. A Co-Synthesis Approach to
Embedded System Design Automation. Design Automation for
Embedded Systems, 1(1-2), January 1996.

[8] C. Hansen. Hardware logic simulation by compilation. In Pro-
ceedings of the Design Automation Conference, pages 712–715,
1988.

[9] A. Kalavade and E. A. Lee. A Hardware–Software Codesign
Methodology for DSP Applications. IEEE Design & Test of
Computeres, pages 16–28, September 1993.

[10] D. Keppel. Tools and techniques for writing fast portable threads
packages. Technical Report UW-CSE-93-05-06, University of
Washington, 1993. Available at ftp://ftp.cs.washington.edu:/tr.

[11] D. Knapp. Behaviroal Synthesis: Digital System Design Using
the Synopsys Behavioral Compiler. Prentice Hall, Upper Saddle
River, NJ, 1996.

[12] S. Kumar, J. H. Aylor, B. W. Johnson, and W. A. Wulf. Object-
oriented techniques in hardware design. Computer, 27(6):64–70,
June 1994.

[13] R. P. Kurshan. Reducibility in analysis of coordination. LNCS,
103:19–39, 1987.

[14] Teresa H. Meng. Synchronization Design for Digital Systems,
chapter Synthesis of Self-Timed Circuits, pages 23–63. Kluwer
Academic Publishers, 1991.

[15] K. Olukotun and R. Helaihel. Automating architectural ex-
ploration with a fast simulator. In Notes of the Workshop on
Hardware-Software Co-design, 1993.

[16] J. E. Stoy. Denotational Semantics. MIT Press, Cambridge, MA,
1977.

[17] D. E. Thomas, J. K. Adams, and H. Schmit. A Model and
Methodology for Hardware-Software Codesign. IEEE Design
& Test of Computers, pages 6–15, September 1993.

[18] M. Tremblay, G. Maturana, A. Inoue, and L. Kohn. A fast
and flexible performance simulator for micro-architecture trade-
off analysis on UltraSPARCTM-I. In Proceedings of the Design
Automation Conference, pages 2–6, June 1995.

[19] W. Wolf. Hardware-Software Co-design of Embedded Systems.
IEEE Proceedings, 82(7):965–989, July 1994.

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

