
 1

Chapter 3

Language Reference Manual

3.1 Introduction

This manual describes the Espresso! language. Espresso! programs must be written in Unicode
on a UNIX platform.

3.2 Program Structure

An Espresso! program consists of zero or more ‘cards’:

card myCard {

 statements;

 user-defined functions;
}

A card can be defined as a window or layout of an applet. Each card will consist of a group of
statements and/or user-defined functions.

Cards are an abstraction to help the programmer visualize the concept of an applet. Cards may
be nested. Only one card may be displayed in a window at a time, and are stored as a stack.
Statements and user-defined functions are described in the proceding sections.

3.3 Lexical Conventions

3.3.1 Tokens

There are classes of tokens: identifiers, keywords, string literals, operators, and other separators.
Spaces, tabs, newlines and comments separate tokens but are otherwise ignored.

3.3.2 Comments

The characters /* indicate the start of a comment, which terminates with the characters */.
Nesting of comments is not supported, nor is commenting within other tokens.

3.3.3 Identifiers

 2

An identifier is a sequence of letters and digits. The first character must be a letter. Any
successive character may be either a letter (uppercase or lowercase), digit (0..9), or the
underscore ‘_’ character.

Identifiers are case sensitive, for instance “ABC” is different from “abc”. An identifier can
be arbitrarily long. Espresso! places no explicit limit on identifier length, however they cannot
exceed the available memory of the machine where the program is being developed.

3.3.4 Keywords

The following identifiers are reserved for use as keywords, and may not be used otherwise:

card while do if elseif
else break number string print
method return true false paint
setBackground setDimension repaint TEXT TYPE
JUSTIFICATION LENGTH WIDTH COLOR POLYVNUM
AFOCIX AFOCIY BFOCIX BFOCIY FGCOLOR
BGCOLOR SIZE ACTION SOURCE UNIQUE

3.3.5 Numbers

A number consists of a string of digits with an optional sign ‘-‘ and an optional decimal point
‘.’. All built-in mathematical operations performed on numbers assume base-10 format.

3.3.6 Strings

A string is a sequence of characters enclosed by double quotes: “string”. A double quote inside
the string is indicated by two consecutive double quotes. The second double quote is ignored in
the final token.

3.3.7 Other tokens

• Spatial delimiters:

() { } [] ; : , .

• Mathematical operators:

+ - * / %
• Boolean operators:

> < ! == >= <= !=

 3

• Assignment operators:

= += -= *= /= %=

3.3.8 Types

This language has minimal types to ensure simplicity and ease of use while resembling Java type
syntax. Memory does not need to be explicitly allocated for typed variables and they can be
created at anytime throughout the program. Implemented types are as follows:

• number : 64 bit IEEE floating point format
• string : arbitrarily long array of Unicode characters
• object : see table 3.2.1 for object types and descriptions
• method : user-defined function that must have a return value and may have zero or

more parameters. The scope of the function is limited to the card in which it is
defined. See section 3.6 for more details and default parameter values.

Object Description
TextBoxes An array of 1 or more boxes where

strings are displayed and/or modified.
Buttons An array of 1 or more buttons with

titles and built in ActionListener
capabilities.

ChkBoxes An array of 1 or more check boxes
with built in ActionListener
capabilities.

Images An array of 1 or more images that can
be imported into the applet from .jpeg
or .gif files.

Shapes An array of 1 or more geometric
shapes. Polygons are defined by their
vertices and ellipses are defined by
their radii and foci.

List A static list of strings that can be
displayed in a pulldown menu within
the applet.

ScrlBar A scroll bar displayed on the right
and/or bottom edge of the applet.

Menus A pulldown menu from the title bar of
the applet with user-defined options

Sound A sound that can play while the applet
is running

Figure 3.2.1: Object Types and Descriptions

 4

3.4 Expressions

3.4.1 Primary Expressions

Primary expressions consist of identifiers, numbers, and strings; boolean operators,
logical operators, mathematical operators, and assignment operators.

Expressions are used in assignments to create and modify variables and objects. They are
used in loops as test cases for further actions and method calls.

3.4.2 Identifiers

An identifier or name can refer to a variety of things. Methods, variables, and objects are
labeled with identifiers. Any identifier is limited to the scope in which it is defined,
following Java scooping conventions.

Identifiers are strings beginning with an ALPHA character (letters a-z, A-Z, or _) and
containing an unspecified length string of alpha-numeric characters and the underscore
character.

An identifier cannot have the same spelling as a keyword or Boolean literal. Identifiers
are case sensitive; two identifiers are the same only if they have the same string of ASCII
values.

3.4.3 Spatial Delimiters

The special delimiters in Espresso! are fairly intuitive. See details and descriptions in
table 3.4.1 below.

Delimiter(s) Name(s) Description/Usage
() Parentheses Used around parameter lists in a method call or object

declaration.
{ } Braces Used in algorithmic loops or to facilitate scoping.
[] Brackets Used to in array declarations or assignments
; Semicolon Must be at the end of each statement in the card
: Range Used to represent a range of numbers (ex. 1:10)
, Comma Used to separate parameters in a parameter list.
. Dot Used to indicate decimal number notation (ex. 5.7) and in

modify object statements to denote parameters of an object
(ex. MyButton.color)

Table 3.4.1: Spatial Delimiters Description and Usage

3.4.4 Boolean Operators

 5

Boolean expressions are composed of identifiers, numbers or strings. Boolean operators
evaluate to 0 or 1 (for details see table 3.4.2 below).

The values that are compared by the Boolean operators must be numbers or strings, or
variables that represent a numerical or string value.

When evaluating string comparisons strings with a higher alphabetical precedence
evaluate higher. For example, the character ‘A’ has a higher value than ‘Z’. Uppercase
letters take a higher precedence than their counterpart lowercase letters, but take a lower
precedence than any character that is alphabetically before. For example ‘B’ has a higher
precedence than ‘b’, but a lower precedence than ‘a’. Symbols take the lowest
precedence and are ranked in order of their Unicode values.

Symbol Operator Name Usage Description
> Greater than A > B Returns 1 A is greater than B, and zero

otherwise.
< Less than A < B Returns 1 if A is less than B, and zero

otherwise.
>= Greater than or

equal to
A >= B Returns 1 A is greater than B or if their values

are equivalent, and zero otherwise.
<= Less than or equal

to
A <= B Returns 1 A is less than B or if their values are

equivalent, and zero otherwise.
== Equal to A == B Returns 1 only if A and B are equivalent.

Returns zero otherwise.
!= Not equal to A != B Returns 1 only if A and B are not equivalent.

Returns zero otherwise.

Table 3.4.2: Boolean Operators and Usage (A and B above are identifiers representing literals, numbers,
or strings)

3.4.5 Mathematical Operators

Espresso! supports six basic mathematical operations, in order of precedence: exponents and
modular arithmetic, multiplication and division, addition and subtraction.

Mathematical Operators are found in expressions that contain numbers and are formed from
ASCII characters. The grammar ensures that the precedence levels will be maintained. Balanced
parentheses may be used to explicitly state the order in which an expression must be evaluated.
The most internal statements with parentheses will be evaluated first.

Typically the result of a mathematical operation is assigned to a variable or used in a Boolean
expression. See table 3.4.3 below for operator details.

 6

Operator Description Usage Precedence Level
(1 being highest)

^ Exponent A ^ B 1
% Modulo A % B 1
* Multiplication A * B 2
/ Division A / B 2
+ Addition A + B 3
- Subtraction A - B 3

Table 3.4.3: Mathematical Operators and Usage (A and B above are identifiers representing numbers)

3.4.6 Logical Operators

Logical operators take Boolean expressions as operators. There are three logical operators :
NOT, AND, and OR, denoted ‘!’ , “&&”; and “||” respectively.

NOT has the highest precedence among the operators, and OR has the lowest. Logical operators
are used in expressions only in loops (if, do, while) and not in assignment statements.
Expressions involving logical operators evaluate to 0 or 1.

Expressions involving logical operators are greedy. For example, if the first Boolean expression
A in (A && B) evaluates to false, the value of B will not be considered. Likewise if A evaluates
to true in (A || B), the value of B will not be considered. !A will evaluate to 1 if A is 0, and will
evaluate to 0 if A is not equal to 0.

3.4.7 Assigment Operators

Assignment Operators are found in “assignment” statements. The ‘=’ operator is used to create
or replace a variable. The other assignment operators are used to modify existing variables.
These operators are used in statements shorthand for those that contain the primary assignment
operator as well as a mathematic operation.

For example:

A += B; is equivalent to A = A + B;

See table 3.4.4 below for operator details.

Operator Description/Name Expanded equivalent

example
= Assign value on the right to

the identifier on the left
N/A

+= “plus-equals” A += B ↔ A = A + B
-= “minus-equals” A -= B ↔ A = A - B

 7

*= “times-equals” A *= B ↔ A = A * B
/= “div-equals” A /= B ↔ A = A / B
%= “mod-equals” A %= B ↔ A = A %B

Table 3.4.4: Assignment Operators and Descriptions (A and B above are identifiers representing numbers)

3.5 Statements

Statements are composed of keywords, expressions and delimiters. They create the functionality
of the language. Statements in Espresso! consist of while and do loops, if statements, break
statements, declarations, assignments, method calls, print statements, modify object statements,
and paint statements. Nesting of loops is allowed and encouraged in the language. Scoping
within the statements is consistent with standard Java scoping conventions. In this section, values
in <> represent required fields, and values in bold represent required keywords and punctuation.

3.5.1 While Statement

The while statement, denoted while_stmt, must be of the form:

while (<expression>)
{

<statement >
}

This statement is constructed like a standard while loop in Java. While the expression in the
parentheses evaluates to true or 1, the statement in the braces will be executed.

3.5.2 Do Statement

The do statement, denoted do_stmt, must be of the form:

do (<identifier>, <number>) {
 <statement>
}

This loop will execute the statement inside the braces the given number of times, storing in
identifier the number for that iteration. If number is >= 0, the statement will never execute.

3.5.3 If Statement

The if statement, denoted if_stmt, must be of the form:

if (<expression>) {
 <statement>
}
[elseif (expression) {
 statement

 8

}] (0 or more times)
else {
 statement
}] (0 or 1 time)

The statements, expressions, and delimiters in italics are optional. The if part of the statement is
required. There may be zero or more “else if” phrases of the statement, and there may be zero or
one “else” phrases of the statement.

3.5.4 Break Statement

The break statement, of the form: break; will break out of the current do, while, or if statement.

3.5.5 Declaration

A declaration assigns a value or set of values to an identifier of a certain type. Espresso! is
strongly typed in that an identifier declared as one type cannot be modified to represent a value
of a different type. There are several forms of acceptable declarations:

• Number declaration:

number <identifier> = <number or identifier> ;

• number array declaration:

number [<number or identifier>] <identifier> = <number or identifier or range
of numbers>

• string declaration:

string <identifier> = <string or identifier> ;

• string array declaration:

string [<number or identifier>] <identifier> = <string or number or identifier
or range of numbers> ;

This declaration will instantiate all the fields in the array to the string, number, identifier,
or range on the right of the assignment. If a range is used, for example

string[5] myArray = 1:5

each string in myArray will have the values 1, 2, 3, 4, and 5, respectively.

• object declaration:

<object> <identifier> = <object description> ;

o an object description, denoted object_desc is in the following form:

 9

(<parameter list>)

o a parameter list is specific to each kind of object described above.

• object array declaration:

<object> <identifier> [<number or identifier>] = <object array description> ;

o an object array description, denoted object_array_desc is in the following
form:

<object> (<identifier or number or string or range of numbers>)

This declaration will not set the parameters of each object in the array. In order to change
the parameters from the defaults, this statement must be used in conjunction with the
array assignment statement described in 3.5.6.

3.5.6 Assignment

Assignments are in one of the following forms:

<identifier> <assignment operator> <mdas operator> ;

<identifier> [<number or identifier>] <assignment operator> <mdas operator> ;

The first form is associated with a single declaration of an number, string, or object. The second
form is associated with an array of numbers, strings, or objects. An mdas operator is an element
of the grammar that involves one or more identifiers, numbers, and strings that may include the
mathematical operators. mdas stands for the end of the standard mathematical precedence
acronym PEMDAS because only the operators multiply, divide, add, subtract and mod may be
involved. Assigments are used to modify or replace the value denoted by a previously defined
identifier.

3.5.7 Method Call

Methods are user-defined functions that, given some parameters, perform a useful operation. A
method is defined with the keyword ‘method’, followed by the function identifier or name,
followed by a parenthesized parameter list (which may be empty), followed by the function body
in braces. The body of the method should consist of 0 or more statements, followed by a return
statement. A return statement consists of the keyword ‘return’, followed optionally by the
expression which is to be returned.

For example:

method <identifier> (<parameter list>) { <method body> }

 10

While methods can be used to modify existing variables, an identifier may also be assigned to
the method call in a declaration. This will assign the value returned by the method to the
identifier.
For example:

number x = myMethod(parameter1, parameter2);

3.5.8 Print Statement

The print() function takes one or more parameters and prints them one by one to standard output.
The parameter type may be string, number, or object. It is in the following form:

print <one or more strings> ;

3.5.9 Paint Statements

There are three kinds of paint statements: paint, repaint, and setBackground.

• paint is in one of the following forms:

paint (<identifier or string or object>);

paint (<identifier or string or object> , <number> , <number>) ;

The paint statement takes one or three parameters. The first should be the identifier of
the string, number or object which is to be painted to the current card. The next two
parameters should be the x and y coordinates corresponding to the position at which to
paint. If left out, the default position will be (0, 0). The grid coordinates are structured
such that (0, 0) is in the upper left hand corner of the card, with increasing x values to the
right, and increasing y values downward.

• The repaint statement, in the form: repaint; redraws the current card, updating any

variables which have changed in value or position.

• The setBackground statement sets or resets the background of the current card. It
takes one color argument to which the background is to be set in the following form:

setBackground (<string>) ;

3.5.10 Modify Object Statement

The modify object statement is used to change the parameters of an existing object, or to initially
change the parameters of an array of objects from the default values. It is in the following form:

<identifier> . [parameter (optional)] = <identifier> ;

 11

If no parameter is specified, the entire object is changed. The parameter must match an
acceptable element of that object’s parameter list. For A list of the parameters and their defaults
for each object, see section 3.6.

3.5.11 Set Dimension Satement

The setDimension statement sets or resets the dimensions of the current card. It takes two
number arguments: width and height. It is in the following form:

SetDimension (<number> , <number>) ;

A call to setDimension will also trigger a call to repaint() in order to ensure that all elements are
placed properly within the card.

3.6 Object Construction

3.6.1 Object Parameter Values

Table 3.6.1 below includes the name of the parameters for each kind of object, as well as their
default values. Assignment and declaration of objects must either include no parameters (in
which case all values will be set at the default), or all parameters. An object modification must
use the correct keyword after the dot operator that corresponds to a valid parameter name for the
object type labeled with the given identifier.

Object Type Parameter Keyword Default Acceptable values
TextBoxes WIDTH 200 Any positive number
 HEIGHT 30 Any positive number
 BGCOLOR White See section 3.6.2
 FGCOLOR Black See section 3.6.2
 JUSTIFICATION Center Left, Right, Center
 SIZE 0 -2, -1, 0, 1, 2
 TEXT Empty String or Identifier
Buttons WIDTH 200 Any positive number
 HEIGHT 30 Any positive number
 BGCOLOR White See section 3.6.2
 FGCOLOR Black See section 3.6.2
 JUSTIFICATION Center Left, Right, Center
 SIZE 0 -2, -1, 0, 1, 2
 ACTION None None, Card Name (will link to card),

Sound, Button (will change to new
button)

 TEXT Empty String or Identifier
ChkBoxes SIZE 0 -2, -1, 0, 1, 2
 TEXT Empty String or Identifier
 UNIQUE True True or False (relevant only for an

 12

array of checkboxes, indicates whether
only one checkbox can be highlighted
at a time)

Images SOURCE Empty Source of .jpeg or .gif file
 WIDTH 50 Any positive number
 HEIGHT 50 Any positive number
Shapes AFOCIX 0 X coordinate of the first foci of an

elipse or the center of a circle
 AFOCIY 0 Y coordinate of the first foci of an

elipse or the center of a circle
 BFOCIX 0 X coordinate of the second foci of an

elipse
 BFOCIY 0 Y coordinate of the second foci of an

elipse
 POLYVNUM 4 Number of vertices a polynomial will

have – this creates an array of vertex
objects that have an x and y coordinate.

 POLYV[i]X 0 Will set the x coordinate of the i’th
vertex. There are POLYVNUM spots
in the vertex array that can be filled in.

 POLYV[i]Y 0 Will set the y coordinate of the i’th
vertex. There are POLYVNUM spots
in the vertex array that can be filled in.

 COLOR White Fill color see section 3.6.2
List LENGTH 2 Length of the list. Creates an array of

strings of size LENGTH.
 COLOR Black Text color see section 3.6.2
 SIZE 0 -2, -1, 0, 1, 2
 TEXT Empty Strings or identifiers
ScrlBar JUSTIFICATION Right right or bottom
Menus LENGTH 2 Length of the list. Creates an array of

strings of size LENGTH
 TEXT Empty Move, exit, open
Sound TYPE Bell Bell, thud, beep, buzz, file

Table 3.6.1 : Object Parameter default and acceptable values.

3.6.2 Colors

 Espresso! supports a number of pre-defined colors:

Color RGB in Hexadecimal
BLACK 000000
DARK_GRAY 616161
GRAY 808080

 13

LIGHT_GRAY C0C0C0
RED FF0000
PINK DB7093
ORANGE FF8429
YELLOW FFFF00
GREEN 32CD32
CYAN 00FFFF
BLUE 0000FF
WHITE FFFFFF

Table 3.6.2 : Colors and their hexadecimal values.

