
Luis Alonso (lra2103) COMS W4115-001
Hila Becker (hb2143) September 26, 2005
Kate McCarthy (km2102)
Isa Muqattash (imm2104)

The CEAS Language

Project Proposal

Introduction

 In the early days of the Internet it was easy to surf through interesting sites without

having to deal with clutter. Website operators posted their information with simple

formatting and a few representative images. Since then, browsing favorite websites has

become more challenging thanks to the proliferation of easy to use animation programs,

interactive images, and advertising techniques. For those who still use a dial-up connection

this means spending more time downloading and less time browsing. While those with high-

speed internet connections spend their time avoiding irrelevant information. The proposed

language, CEAS, will alleviate this problem by providing an easy to use language that will

allow the user to customize their browsing experience by removing unwanted information.

How It Works

 The CEAS language provides a programmable interface to an existing web proxy

named Crunch. Crunch is a highly customizable framework that can be used to extract data

from HTML-formatted web pages. For instance, it can be configured to show a particular

page without any images or to show just the information related to news. The CEAS

language defines a simple and rich set of commands and operators that allow the user to

leverage Crunch to enhance their browsing experience.

 An end user starts by writing a script that defines at least one website they are

interested in browsing. They then make use of simple operations to manipulate the pages

they are interested in. Finally they run their script through our interpreter which will use

Crunch to retrieve and modify the requested web pages. As a final step, the user can

choose to write the results to a local HTML file for later browsing or they can use a built-in

browsing system.

A Simple Example

 Everyday Maria comes home from work and reviews a collection of websites from her

favorite political bloggers. One day she realizes that there are more animated

advertisements and annoying images then text on the page. She wishes that her browser

was smart enough to get rid of the annoying images so she could focus on the important

commentary. Maria goes in search of just such a tool and discovers CEAS can solve her

problems.

 Though Maria is not a trained programmer, she quickly discovers that CEAS will

easily solve her problems. She writes her first script:

Page blog1;

blog1.url = “http://www.myblog.com/latestpost”;

blog1.removeImages();

display(blog1);

show();

 These four lines of code tell CEAS to build an internal representation of a webpage,

remove any images, and then display the newly formatted page using an internal browser.

A More Complicated Example

Maria is fairly pleased with her initial success. However, she misses the ability to

quickly load multiple tabs with her favorite websites as she used to do when she browsed

with Firefox. She knows that CEAS has more functionality and decides to see if she can

improve on her original script.

After doing some research she finds that she writes the following script:

 PageList pl[3];

 pl[0].url = “http://www.myblog.com/latestpost”;

 pl[1].url = ”http://www.otherblog.com/latest”;

 pl[2].url = ”http://www.newblog.com/”;

 for (int i=0; i < 3; i++)

 {

 Pl[i].removeImages();

display.addTab(pl[i]);

}

 show();

 These lines of code will allow Maria to define a list that holds three pages. She then

moves through the list, removes images on each page, and adds the page as a tab to her

display. Finally, she displays the entire environment.

Other Features

- Simple types

o Integers: used for arithmetic operations, loop control and list indexing.

o Strings: used to describe URLs and names of other Page attributes.

- Complex built-in types

o Page: a type that contains attributes to describe a web page. These attributes

include the target URL, genre name, title and preferred tab position.

o PageList: a list of Page types. Includes a length() function as well as a next()

function for iteration purposes. Elements can be assigned and accessed by

specifying their list index (i.e. pl[2] = “foo”).

- Appending “next” pages

o A user can specify a keyword (i.e. ‘next’) as an attribute to a Page type,

which is used to decide whether a link on the Page should be fetched and

appended to the bottom of the Page. More specifically, if the keyword is found

in the description of a link, the contents of the URL specified by the link are

appended to the Page type. This is a useful feature for users who read various

news sites in which the articles are spread over multiple pages.

- This language also provides functions to allow for common browser operations such

as navigating forward and back.

- Users of the language cannot create their own data types, but rather use this

language by assigning values and manipulating the built in structures. We decided to

keep the language simple to ensure that CEAS would be used for its intended

purpose. We decided on the specific functions and structures in order to give enough

control to the user to accomplish the tasks of navigating the web and extracting web

content.

- This language is platform independent and its only assumptions are that the user has

an internet connection at the time of execution in order to retrieve the requested

URLs, and a JVM.

- CEAS invokes a built-in web browser that supports tabbed browsing. This feature

makes the language more convenient and easy to use, since the user does not need

to install an external browser such as FireFox or Opera.

More About Crunch

The CEAS language makes use of a pre-existing web proxy called Crunch that

extracts content from html web pages. Crunch is a pluggable framework that employs an

extensible set of techniques for enabling and integrating heuristics concerned with “content

extraction” from HTML web pages. Crunch parses the HTML of a given document and

produces a Document Object Model tree to analyze a web page for content extraction. The

Document Object Model (http://www.w3c.org/DOM) is a standard for creating and

manipulating in-memory representations of HTML (and XML) content. By using a DOM tree,

Crunch can not only extract information from large logical units, but also manipulate smaller

units such as individual links. Crunch allows the user to select specific tags for extraction as

well as predefined extraction filters such as “news” and “shopping”, which are preconfigured

for specific website genres. See figures 3 and 4 for a glimpse of the Crunch interface.

Sample Code and Output

Here is a simple way to extract content from a news article using our language. We choose

to use the predefined extraction filters for the “news” setting provided by the language. We

regard the “news” setting as the harshest setting that extracts all contents on the page

except for the text. This setting is useful for reading news articles, when the user is only

interested in the article’s textual content. You can see the results in figure 2, while the page

in figure 1 is the original web page that would have been displayed to a user not using our

language.

Page p;

 p.url = “http://www.cnn.com/2005/WORLD/meast/09/26/mideast.ap/index.html”

p.extract(“news”);

display(p);

show();

 Figure 1: article, without CEAS Figure 2: article, with CEAS

Conclusion

The CEAS programming language makes it fast, easy, and convenient to surf the web by

automating the task of content extraction from various web pages. The syntax of CEAS is

straight-forward, which makes the language easy to read as well as write. Simple and

complex built-in data types are made available to the user, as well as functions that operate

on the complex data types. In addition, CEAS provides loop structures and methods for list

iteration. All these, combined with an embedded web browser, offer flexibility and allow the

user to customize the content and view of web documents. Although limited in their

number, the built-in structures that CEAS provides give a wide range of functionality for the

user, making CEAS the language of choice for all of your web surfing needs.

 Figure 3: Crunch Content extraction UI Figure 4: Crunch custom settings

