
 
 

 

  

Abed Tony BenBrahim 

ba2305@columbia.edu 

 

JTemplate 
Language Reference Manual 

 

 



 1 

Table of Contents 
1 Introduction ............................................................................................................................. 4 

2 Lexical Convention ................................................................................................................... 4 

2.1 Character set and whitespace ......................................................................................... 4 

2.2 Comments ....................................................................................................................... 4 

2.3 Identifiers ........................................................................................................................ 4 

2.4 Values .............................................................................................................................. 5 

2.4.1 Integer ..................................................................................................................... 5 

2.4.2 Floating Point Number ............................................................................................ 5 

2.4.3 String ........................................................................................................................ 5 

2.4.4 Boolean .................................................................................................................... 6 

2.4.5 Function ................................................................................................................... 6 

2.4.6 Array ........................................................................................................................ 7 

2.4.7 Map .......................................................................................................................... 7 

2.4.8 NaN .......................................................................................................................... 7 

2.4.9 Void .......................................................................................................................... 7 

3 Expressions .............................................................................................................................. 8 

3.1 Values .............................................................................................................................. 8 

3.2 Variables and ‘left hand side’ expressions ...................................................................... 8 

3.3 Arithmetic expressions .................................................................................................... 8 

3.3.1 Binary arithmetic expressions ................................................................................. 8 

3.3.2 Unary arithmetic expressions .................................................................................. 9 

3.4 Comparison expressions .................................................................................................. 9 

3.4.1 Binary comparison expressions ............................................................................... 9 

3.4.2 Ternary comparison expressions ........................................................................... 10 

3.5 Logical expressions ........................................................................................................ 10 

3.6 Declaration and assignment expressions ...................................................................... 10 

3.6.1 Declarations ........................................................................................................... 10 

3.6.2 Assignment ............................................................................................................ 11 

3.6.3 Combined arithmetic operation and assignment expressions .............................. 11 

3.7 Index expressions .......................................................................................................... 12 

3.8 Member expressions ..................................................................................................... 13 



 2 

3.9 Function Calls ................................................................................................................ 13 

3.9.1 Function Invocation ............................................................................................... 13 

3.9.2 Partial application .................................................................................................. 14 

3.10 Grouping ........................................................................................................................ 14 

3.11 Operator precedence .................................................................................................... 14 

4 Statements ............................................................................................................................ 15 

4.1 Statement Blocks ........................................................................................................... 15 

4.2 Expressions .................................................................................................................... 16 

4.3 Iteration statements ...................................................................................................... 16 

4.3.1 for  loops ............................................................................................................. 16 

4.3.2 while  loops ........................................................................................................ 17 

4.3.3 foreach  loops .................................................................................................... 17 

4.3.4 Altering loop statements control flow .................................................................. 18 

4.4 Conditional statements ................................................................................................. 19 

4.4.1 if  statement ........................................................................................................ 19 

4.4.2 switch  statement .............................................................................................. 20 

4.5 exception handling & recovery statements .................................................................. 21 

4.5.1 throw statement ................................................................................................ 21 

4.5.2 try/catch block ............................................................................................... 21 

4.5.3 try/finally block ...................................................................................................... 22 

4.6 Importing definitions ..................................................................................................... 23 

4.7 Template statements .................................................................................................... 24 

4.7.1 template statement ............................................................................................... 24 

4.7.2 instructions statement .......................................................................................... 25 

4.7.3 Replacement Methodology ................................................................................... 27 

5 Scope ..................................................................................................................................... 28 

5.1 Program level scope ...................................................................................................... 28 

5.2 Statement block scope .................................................................................................. 28 

5.3 Function scope .............................................................................................................. 29 

6 Object Oriented Constructs ................................................................................................... 29 

6.1 Prototypes ..................................................................................................................... 29 



 3 

6.1.1 Semantics for non map types ................................................................................ 29 

6.1.2 Semantics for map types ....................................................................................... 30 

6.2 Supporting multiple levels of inheritance ..................................................................... 32 

6.3 Implementing constructors ........................................................................................... 33 

7 Built in Library........................................................................................................................ 35 

7.1 Built in variables ............................................................................................................ 35 

7.1.1 Command line arguments ..................................................................................... 35 

7.1.2 Environment variables ........................................................................................... 35 

7.2 System Library ............................................................................................................... 35 

7.3 String Library ................................................................................................................. 36 

7.4 I/O Library ...................................................................................................................... 37 

 

  



 4 

1 Introduction 
Jtemplate is a dynamically typed language meant to facilitate the generation of text from 

template definitions.  Jtemplate’s support for prototypal inheritance, functions as first class 

values and a basic library permits the development of robust applications. While Jtemplate 

bears a strong resemblance to ECMAScript, there are number of significant differences that 

should be noted. Stronger type checking (for example, addition of a function and an integer, 

valid in ECMAScript, is not valid in Jtemplate) , mandatory declaration of variables before they 

are used, the different implementation of prototypal inheritance and singular implementation 

of varargs and partial function application, as well as improvements in scope visibility make 

Jtemplate quite distinct from ECMAScript. 

2 Lexical Convention 

2.1 Character set and whitespace 
Programs in Jtemplate are written using the ASCII character set. Whitespace characters serve to 

separate language elements, except within strings and comments, and consist of spaces, tabs, 

carriage returns and newlines. 

2.2 Comments 

Multiline comments begin with the first character sequence /* and end with the first character 

sequence */ that is encountered. 

Single line comments begin with the character sequence // and end at the end of the line 

Example: 

/* 

 * This is a multiline comment 

 */ 

let i=1; // this is single line comment  

 

2.3 Identifiers 

Identifiers begin with an uppercase or lowercase letter, an underscore (_) or a dollar sign ($) 

symbol. Following the first character, identifiers may optionally contain any number of 

uppercase or lowercase letters, digits 0 through 9, underscores or dollar signs.  The following 

reserved keywords may not be used as identifiers: 

break case catch continue default else false finally for foreach 

function import in instructions let NaN once return use switch 

throw true try template var Void when while  

Identifiers in Jtemplate are case sensitive. The identifiers foo,  Foo and FOO represent three 

different identifiers 



 5 

2.4 Values 

A value in Jtemplate assumes one of the following types:  integer, float, string, Boolean, 

function, array, map, NaN or Void. 

2.4.1 Integer 

Integers are composed one or more digits, to form a whole number. A single optional minus (-) 

sign may precede the integer to negate its value. Integers may be in the range of -1073741824 

to 1073741823 inclusive 

2.4.2 Floating Point Number 

Jtemplate supports IEEE-754 like double precision floating point numbers. Floating point 

numbers consist of: 

 An optional minus sign (-) that negates the value 

 A significand consisting of either or the sequence of both of : 

o An integer  

o A decimal point (.) followed by an integer, representing the fractional part 

 An optional exponent part consisting of the character e, followed by an optional + or – 

sign, followed by an integer 

Either the exponent or fractional part of the significand (or both) must be specified to form 

a valid floating point number. The following are examples of valid floating point numbers: 

0.123 1.23 148.23e-32 1.e+12 1e+12 

Jtemplate differs from IEEE-754 in its treatment of NaN, infinity and –inifinity, which are all 

converted to the non float value NaN when they occur (Section 2.4.8). 

2.4.3 String 

Strings represent a sequence of ASCII characters.  Strings start with either a single quote or 

double quote delimiter, and are terminated by the first non escaped matching delimiter. Strings 

may span several lines, and any newline spanned becomes part of the string. Non printable 

characters or string delimiters may be embedded in a  string by using the following escape 

sequences: 

\b  backspace 
\n  Newline 
\r  carriage return 
\t  Tab 
\’ single quote 
\”  double quote 
\\  Backslash 

 



 6 

The following are examples of valid strings 

'a string' 

'a multiline 

string' 

"another string" 

2.4.4 Boolean  

Boolean values represent the logical values true and false. Boolean values consist of the two 

values true and false. 

2.4.5 Function 

A function represents a group of statements that can be invoked with an optional list of 

arguments and returns a value upon completion. Functions are defined with the function 

keyword, followed by a parenthesized list of zero or more identifiers, followed by a statement 

block: 

function (arglist) statement_block  

arglist is a comma separated list of zero or more identifiers.  

statement_block begins with an opening brace ({), ends with a closing brace (}), and contains 

zero or more statements. Statements are fully described in section 4.1. 

Example: 

function(){statements*}            a function with no arguments 

function(x,y){statements*}    a function with two arguments, x and y 

The last identifier may optionally be followed by three periods, to indicate that the function 

accepts any number of values for the last argument, all of which will be placed in an array with 

the same name as the identifier. 

Example: 

function println(items...){statement*}   a function with any number of 

arguments (including none). When this function is invoked, any parameters will be passed in 

array items.  

function printat(x,y,strings...){statement*} a function with at least two 

arguments x and y, and optionally any number of arguments that will be placed in an array 

named strings. For example, if this function is invoked with five arguments, the first will be 

bound to x, the second to y, the third, fourth and fifth will be added to an array bound to the 

identifier strings. 



 7 

2.4.6 Array 

An array represents an ordered list of values. Array values begin a left bracket ([), contain a 

comma delimited list of zero or more expressions (described in section 3), and end with a right 

bracket (]). 

Example: 

[1,2,3] an array with 3 integer values 
[] an empty array 
[1,1.2,'abc',function(x,y){return x+y;}] an array with an integer, float, string 

and function value 

 

2.4.7 Map 

A map represents a container where a collection of values can each be associated with a key. 

Map values begin with an opening brace ({), contain a list of zero or more properties, and end 

with a closing brace (}). A property consist of an identifier, followed by a colon (:), followed by 

a value. 

Example: 

{} An empty map 
{x:10,y:120,name:'test'} A map where x is associated to the integer 10, 

y to the integer 120 and name to the string 
‘test’  

{add:function(x,y){return x+y;}, 

subtract:function(x,y){return x-

y;},x:10} 

 

A map with two functions, one mapped to the 

key add and one mapped to the key 
subtract, and an integer 10 mapped to the 
key x 

 

Note than unlike other values which can be used anywhere where an expression can be used, 

the value for an empty map ({}) can only be used to the right of an assignment or declaration 

statement (Section 3.5), as function call arguments (Section 3.8), as property values in maps and 

as array elements. 

2.4.8 NaN 

NaN is the type of values that indicate that a value is not a number. There is a single eponymous 

value for this type, NaN. An example use of NaN is in a function that converts a float to an 

integer, to indicate that the passed in value could not be converted to a float. NaN is also used 

in floating point operations to indicate that the result is invalid, such as when dividing by zero. 

2.4.9 Void 

Void is the type of values that indicate the absence of a value. There is a single eponymous value 

for this type, Void.  Void is the value returned from functions that do not explicitly return a 

value, and may also be used in other contexts to indicate the absence of a value. 



 8 

3 Expressions 
Values can be combined with operators and other expressions to form expressions. 

3.1 Values 

Values are expressions, and may be used interchangeably with expressions where expressions 

are indicated in the rest of this manual, noting the exception for empty maps described in 

section 2.8. 

3.2 Variables and ‘left hand side’ expressions 

 Left hand expressions are locations where values can be stored. Left hand expressions can be 

variables identified by an identifier, members of maps (Section 3.8) or array members (Section 

3.7). The following are examples of left hand side expressions: 

 

 

 

3.3 Arithmetic expressions 

3.3.1 Binary arithmetic expressions 

Arithmetic expressions operate on two expressions with an operator to create a new value. The 

format of an operation is   expression operator expression  where operator is one of 

+ addition 
- subtraction 
* multiplication 
/ division 
% modulo 

 

The resulting value of evaluating an arithmetic expression depends on the type of the 

expressions and the operator, as shown in the table below (without regard to the ordering of 

the expressions): 

Value 1 type Value 2 type Operator Result 

integer Integer + - * / % integer result of operation 

float float + - * / float result of operation 

float integer 

string any type + only concatenation of first value to second 
value, with non string values 
converted to strings 

 

foo A variable named foo 
foo.x member x  of map foo 
bar[10] The eleventh element of array bar 



 9 

Any combination of value types and operators not listed above, such as adding two Booleans, 

results in a runtime error. 

3.3.2 Unary arithmetic expressions 

The minus (-) operator, when prefixing an expression, serves to negate the expression it 

precedes. The minus operator can only be applied to expressions that evaluate to integer or 

float values. 

Example:           -1            -a 

3.4 Comparison expressions 

3.4.1 Binary comparison expressions 

Binary comparison expressions compare two expressions with a comparison operator, and 

evaluate to a Boolean value indicating whether the comparison is true or false. The format of a 

comparison expression is: 

expression operator expression 

 where operator is one of: 

< Less than 

<= Less than or equal 

== Equal 

!= Not equal 

> Greater than 

>= Greater than or equal 

 

Allowable comparison expression types, operator and their result are as follows 

Value 1 type Value 2 type Operator Result 

Integer Integer Any Comparison of integer values 

Float Float Any Comparison of float values 

Float Integer 

String any type == and != 
only 

comparison of first value to second 
value, with non string values 
converted to strings 

Both types are Booleans, maps, arrays, 
functions, NaN or void 

== and != 
only 

comparison of first value to second 
value, observing the semantics of 
equality described below. 

Different types not listed above == and != 
only 

Always returns false 



 10 

 

There are special semantics of equality for maps, arrays and functions: 

 Arrays  a and b are equal if a and b have the same number of elements, and if for each 

index i in 0<=i<length, a[i]=b[i] 

 Maps a and b are equal if a and b have the same keys, and if for each key k, a[k]=b[k] 

 Functions a and b are equal if a and b have the same formal arguments, with the same 

name at the same position in the argument list, and have the same list of statements. 

3.4.2 Ternary comparison expressions 

Ternary expressions consist of an expression which when evaluated yields a Boolean value, 

causing one of two expressions to be evaluated: 

Boolean-expression ? expression_if_true : expression_if_false 

Example 

 

a<10 ? 'small' : 'large' //evaluates to the string 'small' if a<10 

 // or 'large' if a>=10 

3.5  Logical expressions 

Logical expressions operate on two Boolean expressions with an operator, or on a single 

expression with a unary operator, to produce a single Boolean value. The format of a logical 

expression is: 

expression and expression true if both expressions evaluate to true, false otherwise 

expression or expression true if either expression evaluates to true, false otherwise 

not expression true if expression evaluates to false, false otherwise 

 
Attempting to apply logical operators to expressions that are not of Boolean type results in a 

runtime error. 

3.6 Declaration and assignment expressions 

3.6.1 Declarations 

Declarations bind a value and its type to a left hand side expression.  Declarations consist of the 

keyword let (or its synonym var, a tribute to JTemplate’s ECMAScript legacy), followed by a left 

hand side exception, followed by the equals sign, followed by an expression: 

let lhs_expression = value 

or 

var lhs_expression = value 



 11 

Example: 

let x=1;       // binds identifier x to 1 

let a=[1,2,3]; //binds identifier a to the array value [1,2,3] 

let a[2]='abc'; // rebinds the third element of a to string ‘abc’ 

 

Declaration expressions evaluate to the value of the expression on the right hand side of the 

equals sign, so that one can chain declarations. 

Example: 

let x=let y=let z=0;  // declare x y and z as integers  

                      // initialized to 0 

3.6.2 Assignment 

Assignment changes the value of a previous declared left hand side expression. Once a left hand 

side expression has been declared,  it is bound to a type and can only be assigned a value of the 

same type, unless it is re-declared with another value of a different type. 

Example: 

let a=[1,2,3]; //binds a to the array value [1,2,3] 

a[2]=10 + a[2]; // assigns 12 to the third element of a 

 

Attempting to assign a value to a left hand side expression that has not been previously 

declared, or attempting  to assign a value of a type different than the type of the left hand side 

expression, results in runtime error. 

Assignment expressions evaluate to the value of the expression on the right hand side of the 

equals sign, so that one can chain assignments. 

Example: 

x=y=z=0;  //set x y and z to 0 

3.6.3 Combined arithmetic operation and assignment expressions 

Combined arithmetic operation and assignment expressions perform an operation then assign a 

result to the left hand side expressions. These expressions exist in both binary and unary form. 

3.6.3.1 Binary form 

The format of a binary combined arithmetic operation and assignment expression is  

lhs_expression operator = expression 

where lhs_expression is valid left hand side expression. The lhs_expression and the expression 

are evaluated with the operator using the same semantics described in section 3.3, with the 

result assigned to the lhs_exception. The expression evaluates to the result of the assignment. 



 12 

Example: 

a+=2  // equivalent to a=a+2 

3.6.3.2 Unary form 

Unary combined arithmetic operation and assignment expressions increment or decrement a 

left hand side expression, assigning the result to the left hand side expression. These 

expressions exist in both postfix and prefix forms, which affect the value evaluated by the 

expression: 

Syntax Operation Evaluates to 
++ lhs_expression Increment lhs_expression lhs_expression after 

it has been incremented 
lhs_expression ++ Increment lhs_expression lhs_expression 

before it has been 
incremented 

-- lhs_expression Decrement lhs_expression lhs_expression after 
it has been decremented 

lhs_expression -- Decrement lhs_expression lhs_expression 
before  it has been 
incremented 

 

Example: 

let a=0 

let b = ++a   // both a and b are 1 

let b = a++   // a is 2, b is 1, a's value before it was incremented 

a++           // a is 3 

++a           // a is 4 

Note that the prefix form is more efficient and should be used in favor of the postfix form when 

there is no semantic difference, as in the last two examples above. 

3.7 Index expressions 

Index expressions are used to access a member of an array or a map value, or an expression that 

evaluates to an array or a map. Index expressions begin with an expression, followed by an 

opening bracket ([), contain an expression and end with a closing bracket (]): 

expression [expression] 

When applied to a map expression, the index can evaluate to a string or integer. When applied 

to an array, the index must evaluate to an integer. In both cases, the index must exist in the map 

or array when the index expression is used on the right hand side of an expression or when used 

on the left side of an assignment. 



 13 

Example: 

let arr=[1,2,'abc']; //define array arr 

let b=arr[0];        // declare b and initialize  

   // with the first element of arr 

let c=1; 

b=arr[c];    //assign the second element of arr to b 

 

let m={a:124,point:{x:10,y: 120}};  // define map m 

let p=m['a'];                       // initialize p with member a of m 

let name='x'; 

let q=m['point'][name];             // initialize q with member x of 

                                    // map point in map m 

3.8 Member expressions 

Member expressions are used to access a member of a map value, or an expression that 

evaluates to a map value . Member expressions begin with an expression, followed by a  period 

(.)  followed by an identifier 

expression.expression 

Example: 

let m={a:124,point:{x:10,y: 120}};  // define map m 

let p=m.a;                        // initialize p with member a of m 

let q=m.point.x;              // initialize q with member x of  

// map point in map m 

3.9 Function Calls 

3.9.1 Function Invocation 

Function calls cause the statements in a previously defined function value to be executed, first 

initializing the function value’s formal parameters with the arguments passed in to the function 

call. The format of a function call is an expression that evaluates to a function value, followed by 

an opening parenthesis, a comma separated list of zero or more expressions, followed by a 

closing parenthesis: 

expression ( expression_list ) 

Example: 

let sum=function(a,b){return a+b; }; // declare a function  

let a=sum(1,2);                  // assign 1 to a, 2 to b then  

        // evaluate the statements in sum 

println('Hello',' ','World');    //  calls function assigned to println 

                                 //   defined as function(items...){} 

function(a,b){return a*b;}(10,20)// calling a function definition 

Calling a function with fewer or more arguments than are required results in a runtime error. 



 14 

Function calls evaluate to the value returned by a return statement (Section 4.3.4.3), or to 

Void if a return statement is not executed before leaving the function body. 

3.9.2 Partial application 

Partial application, also known as currying, allows a new function to be defined from an existing 

function, binding some of the curried function’s parameters to existing values and leaving others 

unbound. Partial application in JTemplate is invoked by calling the function to be curried, and 

indicating which parameters should remain unbound by preceding them with an at symbol (@). 

The result is a new function with the unbound parameters as the new parameters. For example, 

consider the function declaration of sum below: 

let sum=function(a,b){return a+b; }; 

We create a new function increment from sum by leaving one the variables unbound and 

binding the other one to 1. We can then invoke increment with one parameter. 

let increment = sum(@value,1); 

let b=increment(10); 

Partial application can also operate on varagrs. Consider the function println defined as 

let println=function(values...){ library_code }; 

We create a new function print2 that assigns the first element of values to the string '>' 

let print2=println('>',@values...); 

The print2 function has the signature function(values...) and when invoked, the first 

element of values will contain '>' and the succeeding elements will contain any additional 

parameters passed in the values vararg. As a result, any line that is printed by the print2 

function will be prefixed with the ‘>’ character. 

 

3.10 Grouping 

Expressions can be grouped with parentheses to control the order of evaluation. 

Example: 

(2+3)*10 // evaluates to 50 

2+(3*10)    // evaluates to 32 

3.11 Operator precedence 

When expressing are not grouped as shown in section 3.10, Jtemplate uses operator precedence 

rules to determine the order in which operations are performed. For example, in the expression  

2+3*10, the interpreter needs a rule to decide whether to evaluate the multiplication or 

addition first. 



 15 

Expressions are evaluated using the operator precedence rules listed below, with the highest 

precedence listed at the top: 

Expression Operators Section 

Member expressions, index expressions .  [] 3.7, 3.8 

Function calls () ()[] (). 3.9 

Postfix expression ++ -- 3.6.3.2 

Prefix expression ++ -- 3.6.3.2 

Negation - 3.3.2 

Logical Not ! 3.5 

Multiplication/Division/Modulo * / % 3.3.1 

Addition/Subtraction + - 3.3.1 

Comparison < <= > >= == != 3.4.1 

Logical operator &&   || 3.5 

Ternary comparison ?: 3.4.2 

Assignment/Declaration = 3.6 

Arithmetic assignment *= /= %= 3.6.3 

Arithmetic assignment += -= 3.6.3 

 

When operators with the same precedence are encountered, they are evaluated from left to 

right, except for negation, logical not , arithmetic assignment, assignment and declaration which 

evaluates from right to left. 

Example: 

println(7-2-2);//associates to the left, equivalent to (7-2)-2 

let a=let b=1; //associates to the right, equivalent to let a=(let b=1) 

println(a-=b-=2); //associates to the right, equivalent to a-=(b-=2) 

4 Statements 
A program is composed of zero or more statements, all of which are described in this section. 

4.1 Statement Blocks 

A statement block is a group of statements with an inner scope (Scope is discussed in section 5). 

A statement block starts with an opening brace ({) , contain zero or more statements, and end 

with a closing brace(}). 

Example 

{      // a statement block 

 let a=1; 

 let b=2; 

} 

{}      // an empty statement block 



 16 

4.2 Expressions 

Expressions can be used as statements, when they are suffixed with a semicolon: 

expression ; 

Example: 

let a=1;     //this expression assigns 1 to a 

1+2;    //this expression has no side effect 

;            //an empty expression, again with no side effect 

 

Any expression can be used as a statement, except for the empty map ({}), as noted in section 

2.3.7. Expressions which do not cause a value to be assigned  or evaluate a value that is used by 

a subsequent statement, such as second and third expression in the example above have no side 

effect and serve no purpose. 

4.3 Iteration statements 

An iteration statement causes a statement or statement block to be executed repeatedly until a 

condition has been met. 

4.3.1 for  loops 

For loops consist of an optional initializer expression, an optional conditional expression, and an 

optional counting expression, arranged as follows: 

for ( initializer_expression? ; conditional_expression?; counting_expression? ) 

 statement_or_statement_block 

Execution of a for statement proceeds as follows: 

1. The initializer expression is evaluated, if is present. 

2. The conditional expression is evaluated if it is present. If it is not present, the missing 

expression is substituted with true. If the expression evaluates to false, the for loop 

statement  is completed and execution proceeds to the next statement.  

3. If the expression evaluates to true, the statement or statement block is executed one 

time. 

4. The counting expression is evaluated, if it is present 

5. Execution proceeds to step 2. 

This control flow can be interrupted by a break, continue and return statements, as described in 

section 4.3.4, and by exceptions, as described in section 4.5. 

Example: 

for(var i=0; i<10; ++i){ 

 println('Hello'); 

 println('World!'); 

} 



 17 

4.3.2 while  loops 

While  statements consist of a conditional expression and a statement or statement block 

arranged as follows: 

while (conditional_expression) 

 statement_or_statement_block 

Execution of a while statement proceeds as follows: 

1. The conditional expression is evaluated. If it evaluates to false, the while loop 

statement is completed and execution proceeds to the next statement.  

2. If the expression evaluates to true, the statement or statement block is executed one 

time. 

3. Execution proceeds to step 1. 

This control flow can be interrupted by a break, continue and return statements, as described in 

section 4.3.4, and by exceptions, as described in section 4.5. 

Example: 

let i=0; 

while(i<10){ 

 println('Hello'); 

 println('World!'); 

 ++i; 

} 

4.3.3 foreach  loops 

foreach statements execute a statement or statement block once for each element in an 

expression that evaluates to a map or an array. The syntax of a foreach statement is: 

foreach (element in collection) statement_or_statement_block 

where element is a left  hand side expression, collection is an expression that evaluates to a map 

or array type.  

If the collection expression evaluates to an array, the element expression is assigned with 

successive elements of the array, starting with the first element and proceeding in sequence, 

before each execution of the associated statement or statement block. Execution of the 

statement ends after execution of the statement or statement block for the last element of the 

array. 

If the collection expression evaluates to a map, the element expression is assigned with 

successive property values  of the map, presented in no particular order, before each execution 

of the associated statement or statement block. Execution of the statement ends after 

execution of the statement or statement block for the last value in the map. 



 18 

Attempting to execute a foreach statement with an expression that cannot be assigned or 

with a type that is not a collection results in a runtime error. The control flow for a foreach 

statement can be interrupted by a break, continue and return statements, as described in 

section 4.3.4, and by exceptions, as described in section 4.5. 

Example: 

let a=[1,'abc',2]; 

foreach(el in a) println(el); 

let b={a:1,b:'xyz'}; 

foreach (el in b) println(el); 

Output: 

1 

abc 

2 

xyz 

1 

4.3.4 Altering loop statements control flow   

The iteration in the loop statements described earlier in this section can be interrupted or 

modified by the following instructions. 

4.3.4.1 break  statement 

The break statement causes the loop statement to terminate immediately. Execution resumes 

at the statement following the loop statement. 

Example: This “inifinite” loop exists after 10 iterations. 

let i=0; 

for (;;){ 

 ++i; 

 if (i==10) break; 

} 

Using a break statement outside of a loop statement or switch statement (Section 4.4.2) 

results in a runtime error. 

4.3.4.2 continue  statement 

The continue statement causes execution to be skipped for all statements in a statement block 

following the invocation of continue, and causes the loop statement to proceed to the next 

iteration. 

Example: Only even numbers are printed 

for(var i=0;i<10;++i){ 

 if (i%2==1) continue; 

 println(i); 

} 



 19 

 

Using a continue statement outside of a loop statement results in a runtime error. 
 

4.3.4.3 return  statements 

The return statement, used exclusively inside a function definition’s function body, causes 

the execution of a function call to stop and immediately evaluate to the expression specified 

by the return statement. The syntax of a return statement is 

return expression? ; 

where the expression is optional. If the expression is not specified, return returns Void. 

Example: 

let sum=function(x,y){return x+y;} 

 

let foo=function(){ 

 let x=10; 

 for (var i=0;i<10;++i){ 

  x+=i; 

  if (x>10) return i; 

 } 

} 

 

Invoking return outside of a function body results in a runtime error. 

4.4 Conditional statements 

A conditional statement conditionally executes a statement or statement block based on the 

evaluation of an expression. 

4.4.1 if  statement 

The if statement executes one of two statements or statement blocks based on the evaluation 

of a conditional expression. An if statement starts with the if keyword followed by a 

parenthesized conditional expression, followed by a statement or statement block, and 

optionally followed by the else keyword and another statement or statement block: 

if (cond-expression) statement_or statement_block 

if (cond-expression) statement_or statement_block else statement_or statement_block 

An if statement’s conditional expression is evaluated, and if it evaluates to true, the 

succeeding statement or statement block is executed. If it evaluates to false, and an else 

clause is present, the statement or statement block following the else keyword is executed. If 

the expression does not evaluate to a Boolean expression, a runtime error occurs. 



 20 

Example: prints a is equal to b 

let a=let b=10; 

if (a>b) 

 println('a is greater than b'); 

else 

 if (a<b) 

  println('a is smaller than b'); 

 else 

  println('a is equal to b'); 

4.4.2 switch  statement 

The switch statement executes statements following a case label containing an expression that 

is equal to an expression being compared. A switch statement consists of the switch 

keyword, followed by a parenthesized expression, followed by a statement block. The statement 

block consists of the statements described in this section, and special case statements, 

consisting of the case keyword followed by an expression followed by a colon, or the 

default keyword followed by a colon: 

switch(expression){ 

 case case_expression: 

  statements 

 case case_expression: 

  statements 
 default: 

  statements 
} 

When a switch statement is executed, the expression is first evaluated. Then the statement 

block is executed, by looking for the first case statement where the evaluation of the 

associated case expression is equal to the switch value, using the rules of equality defined in 

section 3.4.1. The special default case statement, if encountered, matches any value. If a 

matching case statement is encountered, all statements following the case statement are 

executed, until the end of the statement block (any case statement encountered is not 

evaluated), or until a break or return instruction interrupts the flow of control. 

Example: 

let arith=function(x,op,y){ 

 switch(op){ 

 case '+':  

  println(x,op,y,' is ',x+y); 

  break; 

 case '*':  

  println(x,op,y,' is ',x*y); 

  break; 

 default: 

  println('Only addition and multiplication are supported'); 

 } 

}; 



 21 

Note that using a case statement outside of a switch statement results in a parsing error. 

4.5 exception handling & recovery statements 

Exception handling and recovery statements provide a structured way to deal with errors. 

4.5.1 throw statement 

The throw statement interrupts the normal flow of control by raising an error. Following the 

execution of a throw statement, execution of the program terminates, or if the throw 

statement is executed inside a try/catch block (Section 4.5.2), execution proceeds to the 

catch clause of the try/catch block. A throw statement consists of the throw keyword, 

followed by an expression, followed by a semicolon: 

throw expression; 

Example: 

let safeDivide=function (x,y){ 

 if (y==0) 

  throw 'Division by 0'; 

 return x/y; 

}; 

4.5.2 try/catch block 

A try/catch block allows a statement to catch exceptions thrown by a throw statement, or 

internally by the Jtemplate interpreter. A try/catch block starts with the try keyword, 

followed by a statement block (the try block), followed by the catch keyword, followed by a 

parenthesized identifier, followed by another statement block (the catch block): 

try{ 

statements 
}catch(identifier){ 
 statements 
} 

 

A try/catch block executes by executing the statements in the try block. If an error does not 

occur, the catch block is never executed. If an exception is thrown, the exception is assigned to 

the catch block identifier and the statements in the catch block are executed. 

Example: 

Without a try/catch  block, executing the following statements result in a runtime error, 

because a Boolean cannot be added to a float. This causes the program to terminate. 

let safeAdd=function(x,y){ 

 return x+y; 

}; 

println('the result is ',safeAdd(true,1.2)); 



 22 

With a try/catch block, the error is intercepted inside the function and an alternate value 

(Void) is returned: 

let safeAdd=function(x,y){ 

 try{ 

  return x+y; 

 }catch(e){ 

  return Void; 

 } 

}; 

println('the result is ',safeAdd(true,1.2)); 

4.5.3 try/finally block 

A try/finally block ensures that a block of code always execute, even in the presence of an 

exception that would normally immediately terminate program execution.  A try/finally 

block starts with the try keyword, followed by a statement block (the try block), followed by 

the finally keyword, followed by another statement block (the finally block): 

try{ 

statements 
}finally{ 

 statements 
} 

When a try/finally block is encountered, all statements in the try block are executed. Then 

the statements in the finally block execute, even if the execution of the try block caused an 

exception to be thrown. If an exception was thrown by the try block, it is handled after the 

finally block has executed.  

Example: 

try{ 

 println('entering the try block'); 

 let a=1.2+true; 

}finally{ 

 println('entering the finally block'); 

} 

Output: 

entering the try block 

entering the finally block 

At line 5 in file lrm_samples.jtp: uncaught exception 

Interpreter.Interpreter.EIncompatibleTypes("float", "boolean") 

 

Note that even though an exception is thrown in the try block, the code in the finally block 

executes before execution terminates. try/finally blocks are frequently nested inside of 

try/catch blocks, to ensure that a specific  action is performed prior to handling the error. 



 23 

Example: 

try{ 

 try{ 

  println('entering the try block'); 

  let a=1.2+true; 

 }finally{ 

  println('entering the finally block'); 

 } 

}catch(e){ 

 println('Something went wrong: ',e); 

} 

 

Output: 

entering the try block 

entering the finally block 

Something went wrong: 

Interpreter.Interpreter.EIncompatibleTypes("float", "boolean") 

4.6 Importing definitions 
As a program grows larger, if may be useful to separate the program’s code into separate 

modules. It may also be useful to develop modules of functionality than can be reused in other 

projects. The import keyword enables this, by allowing declarations to be imported from 

another program file. The import  statement consists of the import keyword, followed by a 

string specifying the file’s location, followed by a semicolon: 

import 'path/to/file'; 

The path that is specified can either be relative or absolute.  When an import statement is 

encountered, the path is normalized to an absolute path. Jtemplate then determines if the file 

has previously been imported, and if it has already been loaded, execution of the statement 

terminates and execution proceeds to the next statement. If the file has not previously been 

imported, the file is loaded and executed, executing only declaration expression statements and 

import statements, ignoring all other statement types.   

Since imported files are only loaded one time, circular references are allowed. For example, 

foo.jtp can import bar.jtp, and bar.jtp can import foo.jtp, since foo.jtp will not be imported 

again. 



 24 

Example: 

myfile.jtp contains: 

let multiplicationSign=function(a,b){ 

 if (a==0 || b==0) 

  return 0; 

 else 

  if ((a>0 && b>0) || (a<0 && b<0)) 

   return 1; 

  else if ((a>0 && b<0)||(a<0 && b>0)) 

   return -1; 

}; 

 

println('This statement will not be executed when the file is 

imported'); 

sample.jtp contains: 

import 'myfile.jtp'; 

 

println('The sign is ',multiplicationSign(-19,-20)); 

myfile.jtp declares the function multiplicationSign. Any file that imports myfile.jtp can use 

the function as if it had been included in the same file. 

4.7 Template statements 

Template statements allow the generation of strings from a template definition and associated 

instructions. 

4.7.1 template statement 

A template defines a labeled block of text than can later be manipulated by processing 

instructions (Section 4.7.2). A template statement consists of the template keyword, followed 

by an identifier specifying the template name, followed by an opening bracket ({) , then zero or 

more line specifications, and closed by a closing bracket (}). A line specification consists of an 

optional identifier or integer that serves as a label for the processing instructions, followed by a 

hash sign (#) indicating the start of line, followed by text. A line specification ends when the end 

of line is reached: 

template template_name { 
 line_specification* 

} 

where line_specification is         label? #text 



 25 

Example: 

template htmlTable{ 

  #<table> 

  #<tr> 

header #<th>columnLabel</th> 

  #</tr> 

row  #<tr> 

cell  #<td>cellData</td> 

row   #</tr> 

  #</table> 

} 

 

Note that nesting can be defined by repeating the labels. In the example above, the line labeled 

cell is nested between two lines labeled row. Specifying an illegal nesting structure, such as A 

B A B, where B is nested inside A, and A is nested inside B, results in a runtime error. 

4.7.2 instructions statement 

4.7.2.1 Instruction definition 

An instruction statement defines how a template definition is turned into a string. An instruction 

statement starts with the instructions keyword, followed by the for keyword, followed 

by an identifier referencing the name of a template definition, followed by a parenthesized list 

of arguments using the same convention as for a function definition, followed by an opening 

brace ({), a list of zero or more processing instructions terminated with a semicolon, followed 

by a closing brace (}): 

instructions for template_name(arglist){ 
processing_instructions; 
} 

A processing instruction consists of a label matching a label in the template definition, followed 

by a processing condition, followed by a colon (:), followed by a comma separated list of one 

more replacement specification. 

label processing_condition : replacement_specifications 



 26 

 A processing condition takes one of the following forms: 

Processing Condition Action 
always always perform the replacements specified in the 

replacement specifications 

when (condition_expression) Perform the replacements specified in the replacement 
specification only if the condition_expression evaluates 
to true 

foreach(element in collection) Perform the replacements specified in the replacement 
specification, looping through each element of the map 
or array collection. 

foreach(element in collection) 
when (condition_expression) 

Perform the replacements specified in the replacement 
specification, looping through each element of the map 
or array collection, only if the condition_expression 
evaluates to true for the given iteration of the loop 

 

Finally a replacement condition consists of an identifier followed by an equals sign (=) followed 

by an expression. The identifier is treated as a string. The expression is evaluated, then any text 

in the labeled template line matching the identifier is string is replaced with the value of the 

expression. 

Example: an instructions statement for the template defined in 4.7.1 

instructions for htmlTable(dataMap){ 

header foreach(label in dataMap.labels): columnLabel=label; 

row foreach(dataArray in dataMap.data): ; 

cell foreach(element in dataArray): cellData=element; 

} 

 

Note that any variable defined in a replacement condition is also available to nested definitions. 

In the example above, dataArray is introduced in the row definition, then used in the nested 
cell definition. 
 

4.7.2.2 Invoking template instructions 

Template instructions are invoked in the same manner as a function call, using the same 

semantics.  For example, if people is defined as follows 

let people={labels: ['Name','Age'], data: [['John',42], ['Mary',38]] }; 

 

invoking the instructions for htmlTable with people as an argument 

let text=htmlTable(people); 

 
results in the text variable being assigned the string 

<table> 

<tr> 

<th>Name</th> 



 27 

<th>Age</th> 

</tr> 

<tr> 

<td>John</td> 

<td>42</td> 

</tr> 

<tr> 

<td>Mary</td> 

<td>38</td> 

</tr> 

</table> 

4.7.3 Replacement Methodology 

It is useful to think of the replacements as occurring in parallel rather than serially. An example 

will better serve to illustrate this point. 

Consider the input string ‘foo bar’ given in template definition, and the replacement 

specification ‘foo=x, bar=y’ given in a template instruction. If x has the value ‘bar’ and y has 

the value ‘foo’, performing the replacement serially would yield the string ‘bar bar’ after the first 

replacement and ‘foo foo’ after the second replacement. When the replacement is performed 

‘in parallel’, the first foo is replaced with bar by the first replacement and bar is replace with foo 

by the second replacement, yielding the final string ‘bar foo’. 

To accomplish this, the offset of all replacements for each replacement condition in calculated 

before any replacements are performed. If any overlapping regions are detected, a runtime 

error occurs. As each replacement occurs in order, the offsets of the subsequent replacements 

are adjusted based on whether characters where added or replaced by the previous 

replacement. 

Example: For the input string ‘foo bar foo bar’, and the replacement ‘foo=x, bar=y’, the following 

offsets are calculated, then sorted: 

 Replace starting at 0 of length 3 with value of x 

 Replace starting at 4 of length 3 with value of y 

 Replace starting at 8 of length 3 with value of x 

 Replace starting at 12 of length 3 with value of y 

If x evaluates to ‘a’, after the first replacement, the subsequent offsets will be adjusted by 2 

positions leftward, since the input string is now ‘a bar foo bar’  

 Replace starting at 2 of length 3 with value of y 

 Replace starting at 6 of length 3 with value of x 

 Replace starting at 10 of length 3 with value of y 



 28 

5  Scope 
Scope defines which variables are visible to the statement being executed. Scope is hierarchical, 

with declarations in an inner scope not visible to statements in an outer scope. Variables 

declared  in an inner scope disappear as soon as the inner scope is exited. 

5.1 Program level scope 

When a program starts, all declarations occur in the top level scope. Any function declared in a 

scope can see functions declared in the same scope, even if the definition of the second function 

occurs after the definition of the first definition. 

Example: 

let odd=function(n){ 

 return n==0? false: even(n-1); 

}; 

 

let even=function(n){ 

 return n==0? true: odd(n-1); 

}; 

 

In the mutual recursion example above, the odd function body accesses the even function, 

even though it is declared after the odd function. 

5.2  Statement block scope 
A statement block, whether alone, or following a statement such as if or foreach, starts a new 

scope. Variables declared in the statement block are not visible to statements outside the 

statement block. Variables declared in a statement block with the same name as a variable 

declared outside the statement block is a separate variable, even if the name is the same. 

Example: 

let a=1; 

print(a,' '); 

{ 

 print(a,' '); 

 let a=2; 

 print(a,' '); 

} 

println(a,' '); 

outputs 1 1 2 1 

Note that the declaration of variable a inside the statement block does not affect the originally 

defined variable a, which maintains its value of 1. 



 29 

5.3 Function scope 

JTemplate is a lexically scoped language. As such, any variable reference inside a function 

statement that does reference an argument name or a variable declared inside the function 

body resolves to a variable in the same scope as the function definition. 

Example: 

let printX=function(){println(x);}; 

 

let x=0; 

{ 

 let x=1; 

 printX(); 

} 

outputs 0, because the printX function sees the variable x defined in the same scope, not the 

value of x in the inner scope when printX was invoked. 

6 Object Oriented Constructs 
Jtemplate supports calling methods defined in map, in a manner reminiscent of an object 

oriented language. For example, the following map contains a function test, which can be 

invoked using a member expression: 

let x={a:1, test: function(){println('hello world');}}; 

x.test(); 

 

The member notation has been extended to support calling member functions for non map 

types, and implementing flexible function dispatch for map types. For example, the runtime 

library exposes many operations on string types that are invoked as if they were a member 

function of the string itself. For example, to calculate the length of a string myString, the 

following statements would be invoked: 

let myString='hello world'; 

let len=myString.length(); 

Note that a member function is invoked on a string.  

6.1 Prototypes 

6.1.1 Semantics for non map types 

When a member function is invoked on an expression, the type of the expression is first 

determined. If the expression is not a map, the function is looked up in the type’s prototype, 

which is simply a map containing functions for that type. Each type has a prototype, with zero or 

more functions, as shown below: 



 30 

Type Prototype 

Integer Integer.prototype 

Float Float.prototype 

String String.prototype 

Boolean Boolean.prototype 

Array Array.prototype 

Map Map.prototype 

Void Void.prototype 

NaN NaN.prototype 

Function Function.prototype 

 

If the function is found in the prototype, it is invoked, passing the caller as an argument named 

this. Note that this is not part of a function’s formal arguments. A type’s prototype can be 

extended at run time, providing methods that can be invoked for all expressions of that type. 

Example 1: extending the array type with a join method that concatenates all the elements as a 

string, and in this example, outputs 12abcl.2. 

let Array.prototype.join=function(){ 

 let result=''; 

 foreach(el in this) result+=el; 

 return result; 

};  

 

let a=[1,2,'abc',1.2]; 

println(a.join()); 

Example 2: extending the array type with a map function, which takes a function as an argument 

and returns a new array with the function applied to each  element of the array, and a clone 

function, which uses the map function to return a copy of the array: 

let Array.prototype.map=function(f){ 

 let newArray=[]; 

 foreach(element in this) 

  newArray.push(f(element)); 

 return newArray; 

}; 

var Array.prototype.clone=function(){ 

 return this.map(function(x){return x;}); 

}; 

6.1.2 Semantics for map types 

Since the map type has the ability to store member functions, or declare its own member map 

named prototype, resolving member functions for maps is more complex, and proceeds in 

the following order: 



 31 

1. Try to find the definition for the function in the map. If it is found, it is invoked as a normal 

function call, in particular, this is assigned to Void. (map.func(), essentially a static 

invocation) 

2. If the map has a map member named prototype, try to find the function definition in 

the map and invoke it, passing the caller in a variable named this. 

(map.prototype.func()) 

3. If the map has a map member named prototype, and it contains a map with a prototype 

member, try to find the function definition in the map and invoke it, passing the caller in a 

variable named this. (map.prototype.prototype.func()) 

4. Lookup the function is the Map.prototype map. If it is found, invoke it, passing the 

caller in a variable named this. (Map.prototype.func()) 

Example: 

let m={ 

    foo:     function(){print('hello');},  

    prototype: {bar: function(){this.foo();println(' again');}} 

 }; 

m.foo();println(); //using case 1 

m.bar();           //using case 2 

let a=m.keys();  //using case 4 

 
The interesting use cases comes with case 3 above, which allows for a single level of inheritance. 

Example: 

let Foo={prototype: {print: function(){println('your value is 

',this.value); }}}; 

let m={value:10, prototype: Foo}; 

m.print();   //using case 3 

Here the declaration of Foo creates a new type that exposes function print. Any map with a 

prototype assigned to Foo can invoke functions of Foo’s prototype as if it were a member 

function of the map. 

A more involved example: The built in library exposes a Date map with a single(static) function, 

now(), which returns a map mimicking a tm structure, and with its prototype set to Date. This 

allows Date to be extended to add a toString() member function. 

var Date.days = 

['Sunday','Monday','Tuesday','Wednesday','Thursday','Friday','Saturday'

]; 

 

var Date.prototype={}; 

 

var Date.prototype.toString=function(){ 

    var offset=''; 

    if (this.gmtOffset>0){ 

        offset='+'+this.gmtOffset; 

    }else{ 



 32 

        offset=this.gmtOffset+''; 

    } 

    return Date.days[this.dayOfWeek]+' 

'+this.month+'/'+this.dayOfMonth+'/'+ 

        this.year+' 

'+this.hour+':'+(this.minute+'').padLeft(2,'0')+':'+ 

        (this.second+'').padLeft(2,'0')+' (GMT'+ offset+')'; 

}; 

where padLeft is defined as  

let String.prototype.padLeft=function(len,pad){ 

    var result=this+''; //cast to string 

    while (result.length()<len){ 

        result=pad+result; 

    } 

    return result; 

}; 

The expression Date.now().toString() evaluates to a string such as ‘Sunday 6/21/2009 

10:27:14 (GMT-5)’ 

6.2 Supporting multiple levels of inheritance 
As noted in the previous section, prototypal inheritance only supports one level of inheritance. 

However, adding support for multiple levels can easily be accomplished. We begin by defining 

an object as a map and its  prototype map and add a prototype function extend. Object will 

serve as the base class for all objects: 

let Object={ 

 prototype: { 

  extend: function(){ 

   let obj={prototype:{}}; 

   foreach(key in this.prototype.keys()) 

    let obj.prototype[key]=this.prototype[key]; 

   return obj; 

  } 

 } 

}; 

As an example we then create a class Foo that extends from object, and introduces a new 

method foo(): 

let Foo=Object.extend(); 

let Foo.prototype.foo=function(){ 

 println('foo!'); 

}; 

We then define a new class Bar that extends Foo,  and a new class Fun that extends Bar 

overriding foo in both classes and introducing a new method bar in the Bar class. We implement 

the calling of the inherited method by using the library function Function.prototype.apply,  

which lets us call an arbitrary map member method while passing an arbitrary this object 



 33 

 

let Bar=Foo.extend(); 

let Bar.prototype.foo=function(){ 

 print('bar '); 

 Foo.prototype.foo.apply(this); 

}; 

 

let Bar.prototype.bar=function(){ 

 println('bar!'); 

}; 

let Fun=Bar.extend(); 

let Fun.prototype.foo=function(){ 

 print('fun '); 

 Bar.prototype.foo.apply(this); 

}; 

Finally, we create objects of each type, and invoke their methods. The method of constructing 

new objects is a little contrived, a matter that will be dealt with in the next section: 

let foo={prototype: Foo}; 

let bar={prototype: Bar}; 

let fun={prototype: Fun}; 

print('foo.foo(): ');foo.foo(); 

print('bar.bar(): ');bar.bar(); 

print('bar.foo(): ');bar.foo(); 

print('fun.bar(): ');fun.bar(); 

print('fun.foo(): ');fun.foo(); 

 
which outputs: 

foo.foo(): foo! 

bar.bar(): bar! 

bar.foo(): bar foo! 

fun.bar(): bar! 

fun.foo(): fun bar foo! 

6.3 Implementing constructors 

Jtemplate does not natively support a new constructor. However, the Object definition above 

can trivially be extended to provided a new() method: 

let Object={ 

 prototype: { 

  extend: function(){ 

   let obj={prototype:{}}; 

   foreach(key in this.prototype.keys()) 

    let obj.prototype[key]=this.prototype[key]; 

   return obj; 

  }, 

  new: function(){ 

   return {prototype: this }; 

  } 

 } 



 34 

}; 

Now the foo and bar objects in the previous example can be constructed using this new method 

let fun=Fun.new(); 

fun.bar(); 

fun.foo(); 

 

which outputs: 

bar! 

fun bar foo! 

In the same way that methods were overridden, constructors can be overridden. Overriding 

constructors lets us add parameters to the constructor and as importantly, define fields for our 

object. 

Example:  

let Point=Object.extend(); 

let Point.prototype.new=function(x,y){ 

 let point= Object.prototype.new.apply(this); 

 let point.x=x; 

 let point.y=y; 

 return point; 

}; 

let Point.prototype.print=function(){ 

 println('x: ',this.x,', y: ',this.y); 

}; 

 

let p=Point.new(42,10); 

print('p.print(): ');p.print(); 

 

let ThreeDPoint=Point.extend(); 

let ThreeDPoint.prototype.new=function(x,y,z){ 

 let point= Point.prototype.new.apply(this,x,y); 

 let point.z=z; 

 return point; 

}; 

let ThreeDPoint.prototype.print=function(){ 

 print('z: ',this.z,', '); 

 Point.prototype.print.apply(this); 

}; 

 

let p3=ThreeDPoint.new(5,42,10); 

print('p3.print(): ');p3.print(); 

Output: 

p.print(): x: 42, y: 10 

p3.print(): z: 10, x: 5, y: 42 

Note how the ThreeDPoint class inherited members x and y, by calling the overridden Point 

constructor in its constructor and passing x and y.  



 35 

7 Built in Library 

7.1 Built in variables 

7.1.1 Command line arguments 

When a program is run, the program name and any arguments after the program name are 

placed in an array named args. args[0] will contain the program name, args[1] the first 

argument if present and so on. 

7.1.2 Environment variables 

When a program is run, the environment variable names and values are placed in a map named 

env, with environment variable names as keys and environment variable values as key values. 

7.2 System Library 

The system library contains functions to deal with Jtemplate native types, as well as functions to 
deal with the operating system environment. 
 

Signature Description 
Array.prototype.push(value) Adds value to the end of the caller array, returns  

Void 

Array.prototype.pop() Removes the last element from the caller array and 
returns the element that was removed 

Array.prototype.length() Returns the length of the caller array as an integer 
Map.prototype.remove(key) Removes key and its associated value from the caller 

map, returns Void. 
Map.prototype.contains(key) Returns true if key exists in the caller map, false 

otherwise. 
Map.prototype.keys() Returns an array with the caller’s keys 
Integer.random(upperBound) Returns a pseudo random number between 0 and 

upperBound-1 inclusive 
Float.prototype.round() Returns an integer with the float caller rounded up if 

the fractional part >0.5, rounded down otherwise  
Date.now() Returns a map representing today’s date, with the 

following keys and values: 
gmtOffset: offset from GMT (integer) 
second: number of seconds in the time 0-59 (integer) 

minute: number of minutes in the time 0-59 (integer) 
hour: number of hours in the time 0-23 (integer) 
dayofMonth: number of day in the month 1-31 
(integer) 
month: number of month in year 1-12 (integer) 
year: today’s year (integer) 

dayOfWeek: today’s day index relative to the week, 
starting at 0 for Sunday 0-6 (integer) 
dayOfYear: today’s day index relative to the start of 
the year, starting at 0 for the first day of the year 0-366 



 36 

(integer) 

dst: true if daylight savings time is in effect, false 
otherwise (Boolean) 

Function.prototype.apply( 

this,args...) 
Calls caller map member function, passing this as 
parameter this, and passing any additional arguments 
specified in args 

typeof(value) Returns a string representing the type ‘s value, one of 
string, integer, boolean, float, 

function, map, array, NaN, Void 
System.command(command) Executes the external command specified by command, 

waits for execution to complete and returns an integer 
representing the exit code of the command. 

exit(exitcode) Causes the program to exit with exit code exitcode, 
which must be in the range -127 to 127 inclusive. 

Debug.dumpSymbolTable(incl) Dumps the symbol table to stdout, including library 

functions if incl is true 
Debug.dumpStackTrace() Dumps the current stack trace to stdout 
   

7.3 String Library 

The String library contains functions to perform string manipulation. 

Signature Description 
String.prototype.toUppercase() Returns a new string with every character in the 

string caller uppercased 
String.prototype.toLowercase() Returns a new string with every character in the 

string caller lowercased 
String.prototype.toFirstUpper() Returns a new string with the string caller’s first 

letter uppercased 
String.prototype.toFirstLower() Returns a new string with the string caller’s first 

letter lowercased 
String.prototype.length() Returns the length of the string caller as an integer 
String.prototype.charAt(index) Returns a new string with the character at the 

string caller’s position indicated by index, with 0 
indicating the first character. Throws a runtime 
error if the index is less than 0 or greater or equal 
to the string’s length 

String.prototype.indexOf( 

substr) 
Returns an index representing the leftmost position 
of substring substr in the string caller, or -1 if the 
substring is not found. 

String.prototype.substr(st,len) Returns the substring in the string caller starting at 
position st of length len. Throw 

String.prototype.startsWith( 

substr) 
Returns true if the string caller starts with the 
substring substr, false otherwise 

String.prototype.endsWith( 

substr) 
Returns true if the string caller ends with the 
substring substr, false otherwise 

String.prototype.replaceAll( Returns a new string with every occurrence of 



 37 

substring, replacement) substring in the string caller replaced with 

replacement. 
String.prototype.split(sep) Returns an array containing the substrings in the 

string caller that are delimited by sep 
String.prototype.parseInt() Returns an integer parsed from the string caller, or 

Void if the string does not represent a valid integer 
String.prototype.parseFloat() Returns a float parsed from the string caller, or Void 

if the string does not represent a valid float 

 

7.4 I/O Library 

The I/O Library contains functions to deal with input and output to the console and file system, 

as well as functions to manipulate the file system. 

Signature Description 
print(value...) Prints the arguments to stdout 
println(value...) Prints the arguments to stdout, followed by a 

newline after the last argument 
readln() Returns a string with a line read from stdin 
File.openForWriting(handle, 

filename) 
Opens file filename for writing and associates 
the file handle with string handle. 

File.openForReading(handle, 

filename 
Opens file filename for reading and associates 
the file handle with string handle. 

File.close(handle) Closes a previously opened file, using the string 

handle associated with the file handle. 
File.write(handle,value...) Writes the value arguments (automatically cast to 

a string) to a file associated with the string handle 
File.writeln(handle,value...) Writes the value arguments (automatically cast to 

a string) to a file associated with the string 
handle, then writes a newline after the last 
argument is written. 

File.readln(handle) Returns a string read from a file associated with the 
string handle,  previously opened for reading 

File.eof(handle) Returns true if the file previously opened for 
reading associated with the string handle has 
reached end of file. 

File.exists(filename) Returns true if filename exists, false otherwise 
File.delete(filename) Deletes filename, returns true if the file was 

successfully deleted, false otherwise 
File.rename(oldname,newname) Renames the file named oldname to name 

newname, returns true if the file was renamed, 
false otherwise. 

Directory.exists(dirname) Returns true if the directory named dirname 
exists, false otherwise 

Directory.delete(dirname) Deletes the directory named dirname, returns 
true if the directory was successfully deleted, false 



 38 

otherwise 
Directory.list(dirname) Returns an array containing every file and directory 

contained in the directory dirname 
Directory.create(dirname) Creates directory dirname, returns true if the 

directory was successfully created, false otherwise 
   

Example: 
 

This program takes two arguments, a source text file and a destination text file, and copies the 

source text file to the destination text file. 

 

if (args.length() != 3) { 

 println('Usage: ', args[0], ' source_file destination_file'); 

 exit(-1); 

} 

if (!File.exists(args[1])) { 

 println('File ', args[1], ' does not exist.'); 

 exit(-1); 

} 

File.openForReading('in', args[1]); 

try { 

 File.openForWriting('out', args[2]); 

 try { 

  let lines = 0; 

  while (!File.eof('in')) { 

   let s = File.readln('in'); 

   File.writeln('out', s); 

   ++lines; 

  } 

  println(lines, ' lines copied'); 

 } finally { 

  File.close('out'); 

 } 

} finally { 

 File.close('in'); 

} 
   

   

  

   


	Introduction
	Lexical Convention
	Character set and whitespace
	Comments
	Identifiers
	Values
	Integer
	Floating Point Number
	String
	Boolean
	Function
	Array
	Map
	NaN
	Void


	Expressions
	Values
	Variables and ‘left hand side’ expressions
	Arithmetic expressions
	Binary arithmetic expressions
	Unary arithmetic expressions

	Comparison expressions
	Binary comparison expressions
	Ternary comparison expressions

	Logical expressions
	Declaration and assignment expressions
	Declarations
	Assignment
	Combined arithmetic operation and assignment expressions
	Binary form
	Unary form


	Index expressions
	Member expressions
	Function Calls
	Function Invocation
	Partial application

	Grouping
	Operator precedence

	Statements
	Statement Blocks
	Expressions
	Iteration statements
	for  loops
	while  loops
	foreach  loops
	Altering loop statements control flow
	break  statement
	continue  statement
	return  statements


	Conditional statements
	if  statement
	switch  statement

	exception handling & recovery statements
	throw statement
	try/catch block
	try/finally block

	Importing definitions
	Template statements
	template statement
	instructions statement
	Instruction definition
	Invoking template instructions

	Replacement Methodology


	Scope
	Program level scope
	Statement block scope
	Function scope

	Object Oriented Constructs
	Prototypes
	Semantics for non map types
	Semantics for map types

	Supporting multiple levels of inheritance
	Implementing constructors

	Built in Library
	Built in variables
	Command line arguments
	Environment variables

	System Library
	String Library
	I/O Library


