Examination Generation Grading Language (EGGL)
Final Project Report

Gordon Hew (CVN) (gh2242@columbia.edu)

COMS W4115:; Programming Languages and Translators (PLT)
Fall 2010, Professor Stephen Edwards

Introduction

Examinations have been used as a measure to gauge an individual’s mastery over a
particular skill. Depending on the nature of the skill that is being assessed, an exam format
may vary. As most students can attest, the majority of examinations follow a basic question and
answer format. In general, instructors create exams in a WYSWIG text editor such as Word
and grade a student’s answers by hand. This process can be error prone and requires a large
amount of human effort. This is largely due to instructors using tools that are not designed for
creating exams.

The Examination Generation Grading Language (EGGL) seeks to provide a simple
language that can easily facilitate the creation and scoring of computerized exams. Such a
language would be beneficial to educators in that it would enable them to quickly write an
interactive exam that can be scored instantly. Additionally, sophisticated users can use EGGL’s
control flow constructs to add dynamic functionality to their exams.

Language Tutorial

This section will walk you through creating a simple EGGL program.
Create a file with notepad and save it as test.eggl.

In the file, add the code below. Every EGGL program needs a main function to execute.
main ()

{
println (“*hello world!”);

}

Run the following command in the directory where you saved test.eggl: ./eggl “test.eggl”, your
output should be: hello worid!

Add a new function to test.eggl:
questionl ()

https://docs0.google.com/document/edit?id=1EmleWU2jYwLywiVAt8tA2WX9vPVD4KfzHFJSsuFDe2w&hl=en
https://docs0.google.com/document/edit?id=1EmleWU2jYwLywiVAt8tA2WX9vPVD4KfzHFJSsuFDe2w&hl=en
https://docs0.google.com/document/edit?id=1EmleWU2jYwLywiVAt8tA2WX9vPVD4KfzHFJSsuFDe2w&hl=en
https://docs0.google.com/document/edit?id=1EmleWU2jYwLywiVAt8tA2WX9vPVD4KfzHFJSsuFDe2w&hl=en
https://docs0.google.com/document/edit?id=1EmleWU2jYwLywiVAt8tA2WX9vPVD4KfzHFJSsuFDe2w&hl=en
https://docs0.google.com/document/edit?id=1EmleWU2jYwLywiVAt8tA2WX9vPVD4KfzHFJSsuFDe2w&hl=en
https://docs0.google.com/document/edit?id=1EmleWU2jYwLywiVAt8tA2WX9vPVD4KfzHFJSsuFDe2w&hl=en

prompt (“What is your favorite color?”)
answer (“red”) ;
choice (“blue, green, red,yellow”);

}

Add the function call to the main() function. This function will prompt the user for their favorite
color and give them a number of choices from which the user can input. If they type in the
correct input, they will receive a score of 100%.

Running the program again should yield the below output with user input in bold.
hello world!
Question: What is your favorite color?
Choices:
blue
green
red
yellow
User Choice: red
Score:100.%

This simple program demonstrates how EGGL can be used to quickly create simple exams that
automatically score themselves.

Language Manual

Lexical Convention

Comments

EGGL supports single line comments. The sequence of /* indicates the start of a comment and
a subsequent */ indicates the end of the comment. Anything within the bounds of the comment

declaration will not be processed by the compiler.
Example: /* This is a comment */

Identifiers

An identifier is the name of a variable, constant, or a function declared in EGGL. A variable
name can only consist of alphanumeric characters and must begin with a letter. The use of
symbols and special characters are not permitted.

Reserved Keywords
The following keywords are reserved and could not be used for variable or function names:

e print

e printin
e prompt
e choice

answer
float

if

else
for
while
return
true
false

Separators

There are two separators in the EGGL language, they are commas (,) and semi-colons (;). A
comma is used for declaring a sequence of items such as in an array. Semi-colons are used to
indicate the end of a statement.

White-spaces
White-spaces such as tabs, carriage returns, and new lines are ignored during compilation.
Spaces are used to identify keywords and variable declarations.

Types
The following data types are supported by EGGL:

boolean

The boolean data type is used for declaring a boolean value which can either be true or false.
e Declaration Example:
boolean x;
x = true;

int
The int data type is used for declaring a 32-bit signed integer.
e Declaration Example:
int x;

x = 9;

float

The float data type is used for declaring a floating point number.
e Declaration Example:
float x;
x = 5.5;

string

The string data type is used for declaring a string.
e Declaration Example:

string x;
x = “cat”;

Operators

Arithmetic Operators
‘+’: addition

‘-’: subtraction

“*’ multiplication
‘. division

Relational Operators

‘<’ less than

‘<=": less than or equal to
>’ greater than

‘>=’: greater than or equal to

Equality Operators
e ‘=="equalto
e ‘I=": not equal

Logical Operators
e ‘&&’: and
o ||:or

String Operators
e ‘N: concatenates two strings together

Expressions

All expressions group left to right.

Primary Expressions

primary expression - int string-expression
| float string-expression
| string string-expression

A primary expression is an identifier.

Arithmetic Expressions
arithmetic expression - expression + expression
| expression - expression
| expression * expression
| expression / expression
An arithmetic expression is only valid when expression evaluates to a float or int.

Relational Expressions
relational expression - expression < expression
| expression <= expression
| expression > expression
| expression => expression
The evaluation of the operators ‘<, ‘<=", *>’, and ‘=>’ returns true or false. A
relational expression is only valid when expression evaluates to an int, float, or string
and are of the same type on both sides of the operator.

Equality Expressions

equality expression — expression == expression
| expression != expression
The evaluation of the relational operators ‘=="and ‘1=’ returns true or false. An

equality expression is only valid when expression evaluates to an int, float, string, or
boolean and are of the same type on both sides of the operator.

Logical Expressions

logical term - relational expression | equality expression
logical expression - logical term && logical term
| logical term || logical term

The evaluation of the logical operators ‘&&’ and ‘||’ returns true or false based on AND/OR truth
table logic.

Mutation Expressions
mutation expression - expression
Anutation expression is only valid when one of the expression values is a string.

A

expression

Statements

Expression Statement
expression;
The most common and basic statement is an expression statement.

Compound Statement
{

statement
statement

}
A compound statement is a list of statements to be evaluated.

Conditional Statement

if (expression)

statement

}

else if (expression)

{

statement

statement

}
A conditional statement is used to evaluate if-else logic control logic.

For Loop Statement
for (expression-1; expression-2; expression-3)

{

statement

}

The for-loop statement is used to run a statement until a condition is no longer met.
expression-1 is the initial condition, expression-2 is the condition in which to continue,
expression-3 is the mutation of the initial condition to a new value.

While Loop Statement
while (expression)

{

statement

}

The while-loop statement is used to run a statement until the expression is no longer met.
The expression should only evaluate to true or false.

Return Statement

return (expression) ;

The return statement is the value that is returned from a function. expression must match the
data type that the function is declared to return.

Prompt Statement

prompt (expression) ;

A prompt statement is required for question-functions and can only be declared once inside a
function. The expression must be a string data type in the form of a text question.

Answer Statement

answer (expression) ;

An answer statement is required for question-functions and can only be declared once inside a
function.

Choice Statement

choice (string-expression) ;

A choice statement is optional for question-functions. It provides a discrete set of choices that
can be selected to match the answer of a question-function. The expression must be a string of
tokens delimited by commas (i.e. “choice1,choice2,choice3”).

Function Definitions

Functions
function-name (param-1, ...)
{

statement*
}
A basic function definition is composed of a return-data-type (the data type to be
returned), the function-name (name of the function), and the parameters to be passed into
the function. Inside the function body can be any number of statements. The last statement that
must be called is a return-statement if the return-data-type is any value other than
void.

In order to create a question properly, a function must have a prompt-statement, answer-
statement, and a choice-statement otherwise the EGGL program will not run in an expected
fashion.

Each program must declare a main function from where other functions may be called:
main ()
{

statement*

}

Built-in Functions

There are several built-in functions in EGGL library as defined below:
e print(expression): evaluates expression and prints it to standard out.
e printin(expression): evaluates expression and prints it to standard out and adds a new
line at the end.

Scope

EGGL uses static scoping and has its scopes separated by blocks which are encapsulated by
curly braces { ... }.

Project Plan

Process

The development team followed an iterative approach in developing EGGL. Using the the
Language Reference Manual (LRM) that was drafted earlier in the semester, the team divided
the requirements into features. Each time a feature was developed, it would be tested manually
and then have a regression test associated with it. The regression test would ensure that the
feature continued to work as new features are incrementally added. Once a feature and its
regression test is implemented, the files are committed into a Subversion repository and then
branched.

Project Timeline / Log

Item Task Start Date End Date Status
1 Project Infrastructure

1.1 Setup Eclipse IDE with OCal IDE Plugin 2010.12.04 2010.12.04 100%
1.2 Setup Subversion 2010.12.04 2010.12.04 100%
2 Initial Development Setup

2.1 Create Make file 2010.12.04 2010.12.05 100%
2.2 Create test script 2010.12.04 2010.12.05 100%
2.3 Create abstract syntax tree 2010.12.04 2010.12.05 100%
24 Create Parser 2010.12.04 2010.12.05 100%
25 Create Scanner 2010.12.04 2010.12.05 100%
2.6 Create Interpreter 2010.12.04 2010.12.05 100%
2.7 Create start program 2010.12.04 2010.12.05 100%
3 Features

3.1 Add string data type 2010.12.13 2010.12.13 100%
3.2 Add float data type 2010.12.14 2010.12.14 100%
3.3 Add boolean data type 2010.12.15 2010.12.15 100%
34 Add/modify existing binary operations 2010.12.16 2010.12.16 100%
3.5 Add prompt builtin function 2010.12.17 2010.12.17 100%

3.6 Add choice builtin function 2010.12.18 2010.12.18 100%

3.7 Add answer builtin function 2010.12.18 2010.12.18 100%
3.8 Implement automatic scoring facility 2010.12.19 2010.12.19 100%
3.9 Add/modify existing control-flow (i.e. if), for, 2010.12.19 2010.12.19 100%

while, and assignment functionality

4 Final Project Report 2010.12.20 2010.12.22 100%

The incomplete items have been removed from the Language Reference Manual section of this
text.

Roles

The project team consisted of a single member, Gordon Hew, who designed, developed, and
tested EGGL.

Development Environment

Operating System: Mac OS X 10.6.5

IDE: Eclipse Helios Service Release 1 with OCal IDE and Subclipse Plugin
Language: OCaml

Repository: Subversion

Architectural Design

Parser

Parser
parser.mly

Lexical Analyzer

Generated Code

Scanner parser.ml

scanner.mil

Generated Code
EGGL Driver Generated Code s I
c L scanner.mi P .mi nterpreter
S eggl.mi interpreter.ml

ast.ml

Figure 1: Component Architecture

Components

Driver

The component that reads is invoked via command line and reads in the source EGGL code
into the EGGL language processor.

Lexical Analyzer

The Lexical Analyzer consists of a set of regular expressions (scanner.mll) and auto-generated
code (scanner.ml) from ocamllex which is used to generate a stream of tokens.

Parser

The Parser consists of a grammar specification (parser.mly) and auto-generated code
(parser.ml and parser.mli) from ocamlyacc which translates the tokens into a semantic action.

Interpreter

The Interpreter (interpreter.ml) defines the behavior that a semantic action is attempting to
invoke.

Workflow

1. The Driver reads in a EGGL source code.

2. The Lexicial Analyzer generates a stream of tokens from the source code based on the
set of regular expressions that define different token attributes.

3. The Parser reads in the stream of tokens and associates them to semantic actions via a
defined grammar.

4. The Interpreter reads in the semantic actions and invokes the appropriate behavior of
the command which then outputs to the console.

10

Test Plan

The EGGL test plan consists of two types of test scripts. The first type of test attempts to assert
whether a particular EGGL construct such as a for-loop or if-statement works properly. The
second type of test involves interactive user input which can be fed into the program through
standard input. The representative tests that are shown in this document are of the latter as they
depict a full EGGL program and how a developer might leverage the language.

Basic Exam Test

The Basic Exam Test seeks to assert that the question, answer, correction, and scoring facility
of an exam functions properly. Test verification consists of running the source code, feeding

in the input file via redirecting standard input, and comparing the differences between the
generated output and the expected output.

Source Code (test-exam-1.eggl)

questionl ()

{
prompt ("Is the sky blue?");
answer ("yes") ;
choice ("yes,no");

}

question2 ()

{
prompt ("What color is my face?");
answer ("red") ;
choice ("green, purple,blue, red");

}

question3 ()

{
prompt ("1 + 5 = ?2");
answer ("o6") ;
choice("5,16,6,10");

}

questioni ()
{
prompt ("5 * 10 = ?2");
answer ("50") ;
choice ("50,3,60,120");
}

main ()
{

questionl () ;

11

question2 () ;
question3 () ;
questiond () ;

}

Input (test-exam-1.in)
yes

red

6

50

Output (test-exam-1.out)
It is important to note that in the output, we will not see the standard input feed.

Question: Is the sky blue?
Choices:
yes
no
User Choice: Question: What color is my face?
Choices:
green
purple
blue
red

Il
(]

User Choice: Question: 1 + 5
Choices:

5

16

6

10
User Choice: Question: 5 * 10 = ?
Choices:

50

3

60

120
User Choice: Score:100.%

Dynamic Exam Test

In addition to asserting that the question, answer, correction, and scoring facility of an exam
functions properly, the Dynamic Exam Test seeks to demonstrate control flow and how exam
questions can be created dynamically. Test verification consists of running the source code,
feeding in the input file via redirecting standard input, and comparing the differences between
the generated output and the expected output.

Source Code (test-exam-1.eggl)

questionDynamic ()

12

int i;
string choice;

for (1 =0 ; 1 <5 ; 1i=1+1) {
prompt ("What is 5 * " ~ i & "= ?2");
answer (5*1i) ;

choice("0,5,10,15,20,25");

questionDynamic () ;

Input (test-exam-1.in)
0

5

10

20

20

Output (test-exam-1.out)

It is important to note that in the output, we will not see the standard input feed.

Question: What is 5 * 0= ?
Choices:

0

5

10

15

20

25
User Choice: Question: What is 5 * 1= ?
Choices:

0

5

10

15

20

25
User Choice: Question: What is 5 * 2= ?
Choices:

0

13

5

10

15

20

25
User Choice: Question: What is 5 * 3= ?
Choices:

0

5

10

15

20

25
User Choice: Question: What is 5 * 4= ?
Choices:

0

5

10

15

20

25
User Choice: Score:80.%

Retrospective

Lessons Learned

There are two primary lessons that have been learned during the course of the project. The first
is that time management is a crucial component to any software project. If the development of
EGGL had started earlier in the semester than later, all the development goals may have been
realized.

The second lesson is that | should have thought more carefully about what the language is
trying to accomplish and the construct types that would maximize the effectiveness of EGGL.
| believe that some of the more advanced constructs that | was not able to implement in time
would have been better served by smaller and nimbler language features.

Future Advice

As a note for future students of PLT, developing a language is not an easy task. There is

the hurdle of learning and understanding OCaml which is unlike some of the main stream
languages (i.e. Java, C++, etc.). Additionally, developing a language requires more finesse
than developing a utility library as it requires more consideration and careful planning. The best
advice for a student embarking on a similar project is to start as early as possible.

References

14

The MicroC source code and tests written by Professor Stephen Edwards was used as a
baseline implementation from which to develop a language using OCaml. It was used as a
guide and adapted in the development of EGGL.

MicroC Source: http://www.cs.columbia.edu/~sedwards/classes/2010/w4115-fall/microc.tar.qz

Appendix

ast.ml

type op = Add | Sub | Mult | Div | Equal | Neqg | Less | Leqg | Greater | Geqg
And | Or | Concat

type expr =
LiteralInteger of int
| LiteralString of string
| LiteralBool of bool
| LiteralFloat of float
| Id of string
| Binop of expr * op * expr
| Assign of string * expr
| Call of string * expr list
| Noexpr

type stmt =
Block of stmt list
| Expr of expr
| Return of expr
| If of expr * stmt * stmt
| For of expr * expr * expr * stmt
| While of expr * stmt

type func decl = {
fname: string;
formals : string list;
locals : string list;
body : stmt list;

type program = string list * func decl list

eggl.ml

let =
let file = Sys.argv.(l) in
let lexbuf = Lexing.from channel (open_in file) in
let program = Parser.program Scanner.token lexbuf in ignore

(Interpret.run program)

15

http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2010%2Fw4115-fall%2Fmicroc.tar.gz&sa=D&sntz=1&usg=AFQjCNEbXSssOl8keGr0_6eX1fM8519__w
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2010%2Fw4115-fall%2Fmicroc.tar.gz&sa=D&sntz=1&usg=AFQjCNEbXSssOl8keGr0_6eX1fM8519__w
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2010%2Fw4115-fall%2Fmicroc.tar.gz&sa=D&sntz=1&usg=AFQjCNEbXSssOl8keGr0_6eX1fM8519__w
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2010%2Fw4115-fall%2Fmicroc.tar.gz&sa=D&sntz=1&usg=AFQjCNEbXSssOl8keGr0_6eX1fM8519__w
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2010%2Fw4115-fall%2Fmicroc.tar.gz&sa=D&sntz=1&usg=AFQjCNEbXSssOl8keGr0_6eX1fM8519__w
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2010%2Fw4115-fall%2Fmicroc.tar.gz&sa=D&sntz=1&usg=AFQjCNEbXSssOl8keGr0_6eX1fM8519__w
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2010%2Fw4115-fall%2Fmicroc.tar.gz&sa=D&sntz=1&usg=AFQjCNEbXSssOl8keGr0_6eX1fM8519__w
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2010%2Fw4115-fall%2Fmicroc.tar.gz&sa=D&sntz=1&usg=AFQjCNEbXSssOl8keGr0_6eX1fM8519__w
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2010%2Fw4115-fall%2Fmicroc.tar.gz&sa=D&sntz=1&usg=AFQjCNEbXSssOl8keGr0_6eX1fM8519__w
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2010%2Fw4115-fall%2Fmicroc.tar.gz&sa=D&sntz=1&usg=AFQjCNEbXSssOl8keGr0_6eX1fM8519__w
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2010%2Fw4115-fall%2Fmicroc.tar.gz&sa=D&sntz=1&usg=AFQjCNEbXSssOl8keGr0_6eX1fM8519__w
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2010%2Fw4115-fall%2Fmicroc.tar.gz&sa=D&sntz=1&usg=AFQjCNEbXSssOl8keGr0_6eX1fM8519__w
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2010%2Fw4115-fall%2Fmicroc.tar.gz&sa=D&sntz=1&usg=AFQjCNEbXSssOl8keGr0_6eX1fM8519__w
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2010%2Fw4115-fall%2Fmicroc.tar.gz&sa=D&sntz=1&usg=AFQjCNEbXSssOl8keGr0_6eX1fM8519__w
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2010%2Fw4115-fall%2Fmicroc.tar.gz&sa=D&sntz=1&usg=AFQjCNEbXSssOl8keGr0_6eX1fM8519__w
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2010%2Fw4115-fall%2Fmicroc.tar.gz&sa=D&sntz=1&usg=AFQjCNEbXSssOl8keGr0_6eX1fM8519__w
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2010%2Fw4115-fall%2Fmicroc.tar.gz&sa=D&sntz=1&usg=AFQjCNEbXSssOl8keGr0_6eX1fM8519__w
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2010%2Fw4115-fall%2Fmicroc.tar.gz&sa=D&sntz=1&usg=AFQjCNEbXSssOl8keGr0_6eX1fM8519__w
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2010%2Fw4115-fall%2Fmicroc.tar.gz&sa=D&sntz=1&usg=AFQjCNEbXSssOl8keGr0_6eX1fM8519__w
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2010%2Fw4115-fall%2Fmicroc.tar.gz&sa=D&sntz=1&usg=AFQjCNEbXSssOl8keGr0_6eX1fM8519__w
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2010%2Fw4115-fall%2Fmicroc.tar.gz&sa=D&sntz=1&usg=AFQjCNEbXSssOl8keGr0_6eX1fM8519__w
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2010%2Fw4115-fall%2Fmicroc.tar.gz&sa=D&sntz=1&usg=AFQjCNEbXSssOl8keGr0_6eX1fM8519__w
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2010%2Fw4115-fall%2Fmicroc.tar.gz&sa=D&sntz=1&usg=AFQjCNEbXSssOl8keGr0_6eX1fM8519__w

interpret.ml

open Ast

module NameMap = Map.Make (struct

type t = string

let compare x y = Pervasives.compare x y
end)

exception ReturnException of string * string NameMap.t

(* Stores the answers in reverse sequential order ¥*)
let answerlist = ref [];;

(* Stores the user choices in resverse sequential order ¥*)
let userChoicelist = ref [];;

(* Removes quotes from the end of a string ¥*)
let rec remove double quotes s =
if(String.get s (String.length s - 1) = '""' && String.get s 0 = '""")
then
String.sub s 1 (String.length s - 2)
else
S;

(* Converts a , delimited string to a list *)
let rec string to list x y =

try
let 1 = (String.index y ',') in
string to list ((String.sub y 0 i) :: x) (String.sub y (i+1)
((String.length y) - (i + 1)))
with Not found -> vy :: x

rs

(* Determines the number of questions that are correct ¥*)
let rec answeredCorrectly correct answers selection =

if(List.length answers >= 1 && List.hd answers = List.hd selection)
then
answeredCorrectly (correct + 1) (List.tl answers) (List.tl
selection)
else 1if(List.length answers >= 1 && List.hd answers != List.hd
selection) then
answeredCorrectly (correct) (List.tl answers) (List.tl selection)
else
correct

16

(* Calculates the percentage of problems correct ¥*)
let rec percentageCorrect answers selection =

((float _of int (answeredCorrectly O answers selection)) /. float of int
(List.length answers)) *. 100.0;;

(* Main entry point: run a program *)

let run (vars, funcs) =
(* Put function declarations in a symbol table ¥*)
let func decls = List.fold left
(fun funcs fdecl -> NameMap.add fdecl.fname fdecl funcs)
NameMap.empty funcs
in

(* Invoke a function and return an updated global symbol table *)
let rec call fdecl actuals globals =

(* Evaluate an expression and return (value, updated environment) *)
let rec eval env = function
LiterallInteger (i) -> string of int (i), env
| LiteralString(t) -> t, env
| LiteralBool(b) -> if (b = true) then "1", env else "0",
env
| LiteralFloat(f) -> string of float(f), env
| Noexpr -> string of int(l), env (* must be non-zero for
the for loop predicate ¥*)
| Id(var) ->
let locals, globals = env in
if NameMap.mem var locals then
(NameMap.find var locals), env
else if NameMap.mem var globals then
(NameMap.find var globals), env
else raise (Failure ("undeclared identifier " »~ wvar))
| Binop(el, op, e2) —->
let vl, env = eval env el in
let v2, env = eval env e2 in
let boolean i = if i then "1" else "0O"
in
(match op with
Add ->
if
(String.contains vl '.') && (String.contains v2 '.') then
string of float((float of string vl) +. (float of string v2))
else
string of int((int of string vl) + (int of string v2))
| Sub ->
if
(String.contains vl '.') && (String.contains v2 '.') then
string of float((float of string vl) -. (float of string v2))

17

else

string of int((int of string vl) - (int of string v2))
| Mult ->
if
(String.contains vl '.') && (String.contains v2 '.') then
string of float((float of string vl) *. (float of string v2))
else
string of int((int of string vl) * (int of string v2))
Div ->
if
(String.contains vl '.') && (String.contains v2 '.') then
string of float((float of string vl) /. (float of string v2))
else

string of int((int of string vl) / (int of string v2))

| Equal -> boolean (vl = v2)
Neqg -> boolean (vl != v2)
| Less -> boolean ((int of string

vl) < (int_of string v2))

| Leg -> boolean ((int of string

vl) <= (int of string v2))
| Greater -> boolean
((int_of string vl) > (int of string v2))

vl) >= (int of string v2))

| And -> boolean
1) && ((int _of string v2) = 1))

| Or -> boolean
1) || ((int_of string v2) = 1))

| Concat ->

(((int_of string vl)

(((int_of string vl)

(remove double quotes vl) ~ (remove double quotes v2)
), env
| Assign(var, e) ->
let v, (locals, globals) = eval env e in
if NameMap.mem var locals then
v, (NameMap.add var v locals, globals)
else if NameMap.mem var globals then
v, (locals, NameMap.add var v globals)
else raise (Failure ("undeclared identifier
| Call ("print", [e]) ->
let v, env = eval env e in print string

woA

(remove double quotes v);
"0", env
| Call ("println", [e]) ->
let v, env = eval env e in print endline
(remove double quotes v);

"0", env
Call ("prompt"™, [e]) ->
print string "Question: ";
let v, env = eval env e in print endline

Geq -> boolean ((int of string

var))

18

(remove double quotes v);

"o", env
| Call("answexr", [e]) ->
let v, env = eval env e in answerList :=
(remove double quotes v) :: l!answerList;
"o", env
| Call("choice", [e]) ->
print endline "Choices:";
let v, env = eval env e in
let choices = (List.rev (string to list []
(remove double quotes v))) in
List.iter (fun x -> print endline ("\t" *
x)) choices;
print string "User Choice: ";
let str = read line () in
userChoicelist := str :: !userChoicelist;
"0", env
| Call(f, actuals) ->
let fdecl =
try NameMap.find f func decls
with Not found -> raise (Failure ("undefined function "
1))
in
let actuals, env =
List.fold left (fun (actuals, env) actual ->
let v, env = eval env actual in v :: actuals, env) ([], env) (List.rev
actuals)
in
let (locals, globals) = env in
try

let globals =
call fdecl actuals globals in "O",

(locals, globals)
with ReturnException (v, globals) -> v,
(locals, globals)

in
(* Execute a statement and return an updated
environment *)
let rec exec env = function
Block(stmts) -> List.fold left exec
env stmts
| Expr(e) -> let , env = eval env e in env
| If(e, sl, s2) -> let v, env = eval env e in exec
env (if (int of string v) != 0 then sl else s2)
\

While (e, s) ->
let rec loop env =
let v, env = eval env e in
if (int of string v) != 0 then loop

19

(exec env s) else env
in loop env

| For(el, e2, e3, s) —->
let , env = eval env el in
let rec loop env =
let v, env = eval env e2 in
if (int of string v) != 0
then
let , env = eval (exec
env s) e3 in
loop env
else
env
in loop env
| Return(e) ->
let v, (locals, globals) = eval env e in
raise (ReturnException (v, globals))

in
(* Enter the function: bind actual values to formal arguments

let locals =
try
List.fold left2 (fun locals formal actual
-> NameMap.add formal actual locals) NameMap.empty fdecl.formals actuals
with Invalid argument() -> raise (Failure ("wrong number
of arguments passed to " ~ fdecl.fname))
in
(* Initialize local variables to 0 *)
let locals = List.fold left
(fun locals local -> NameMap.add local "O"
locals) locals fdecl.locals
in
(* Execute each statement in sequence, return updated global
symbol table *)
snd (List.fold left exec (locals, globals) fdecl.body)

(* Run a program: initialize global variables to 0, find
and run "main" *)
in let globals = List.fold left
(fun globals vdecl -> NameMap.add vdecl "O" globals)
NameMap.empty vars
in try
let main = call (NameMap.find "main" func_decls)
[] globals
in
if(List.length !answerList > 0) then
print endline ("Score:" *
(string of float (percentageCorrect !answerList !userChoiceList) * "3%"))

20

with Not found -> raise (Failure ("did not find

the main() function"))

parser.mly

%{ open Ast %}

%token SEMI LPAREN RPAREN LBRACE RBRACE COMMA

%$token PLUS MINUS TIMES DIVIDE ASSIGN CONCAT

%$token EQ NEQ LT LEQ GT GEQ AND OR

$token RETURN IF ELSE FOR WHILE INT STRING BOOLEAN FLOAT
%$token <int> LINTEGER

%token <string> LSTRING

%token <bool> LBOOL

%$token <float> LFLOAT

$token <string> ID

%token EOF

%$nonassoc NOELSE

%nonassoc ELSE

%$right ASSIGN

%$right CONCAT

$left EQ NEQ

%$left LT GT LEQ GEQ AND OR
%$left PLUS MINUS

%$left TIMES DIVIDE

%start program
$type <Ast.program> program

o©°
o©°

program:
/* nothing */ { [1, I[] }
| program vdecl { ($2 :: fst $1), snd $1 }
| program fdecl { fst $1, ($2 :: snd S$1) }
fdecl:

ID LPAREN formals opt RPAREN LBRACE vdecl list stmt list RBRACE
{ { fname = $1;
formals = $3;
locals = List.rev $6;
body = List.rev $7 } }

formals opt:
/* nothing */ { [] }
| formal list { List.rev $1 }

21

formal list:

ID { [$1] }
| formal list COMMA ID { $3 :: $1 }
vdecl list:
/* nothing */ { [] }
| vdecl list vdecl { $2 :: S1 }
vdecl:

INT ID SEMI { $2 }
| STRING ID SEMI { $2 }
| BOOLEAN ID SEMI { $2 }
| FLOAT ID SEMI { $2 }

stmt list:
/* nothing */ { [] }
| stmt list stmt { $2 :: S1 }
stmt

expr SEMI { Expr($1l) }
| RETURN expr SEMI { Return($2) }
| LBRACE stmt list RBRACE { Block(List.rev $2) }
| IF LPAREN expr RPAREN stmt $prec NOELSE { If($3, $5, Block([])) }
| IF LPAREN expr RPAREN stmt ELSE stmt { I£($3, $5, $7) }
| FOR LPAREN expr opt SEMI expr opt SEMI expr opt RPAREN stmt

{ For($3, $5, 87, $9) }

| WHILE LPAREN expr RPAREN stmt { While($3, $5) }

expr_ opt:

/* nothing */ { Noexpr }
| expr { $1}

expr
LINTEGER { LiteralInteger ($1) }
LSTRING { LiteralString($1) }
LBOOL { LiteralBool ($1l) }
LELOAT { LiteralFloat ($1) }

ID { Id($1) }
Binop ($1, Add, $3

expr PLUS expr)
Binop($1, Sub, $3)
)
)

expr MINUS expr
expr TIMES expr Binop($1, Mult, $3
Binop ($1, Div, $3
Binop($1, Concat, S

(

(

(

(

expr CONCAT expr (
Binop($1, Equal, $3

(

(

(

(

(

~
—

expr EQ expr)
expr NEQ expr Binop ($1, Negq, $3)
expr LT expr Binop ($1, Less, $3)
expr LEQ expr Binop($1, Leq, $3)
expr GT expr Binop ($1, Greater, $3) }

\
\
\
\
\
\
\
| expr DIVIDE expr
\
\
\
\
\
\
\

e e e e e T e T e e B e N)
D v e o o (D) o e e e

expr GEQ expr Binop ($1, Geq, $3)

| expr AND expr { Binop($1, And, $3) }

| expr OR expr { Binop($1l, Or, $3) }

| ID ASSIGN expr { Assign($1l, $3) }

| ID LPAREN actuals opt RPAREN ({ Call($1l, $3) 1}
| LPAREN expr RPAREN { $2 }

actuals opt:
/* nothing */ { [] }
| actuals list { List.rev $1 }

actuals_list:
expr {[$11}
| actuals_list COMMA expr { $3 :: $1}

scanner.mll

{ open Parser }

rule token = parse
[" " '"\t"'" "\r'" '"\n'] { token lexbuf } (* Whitespace ¥*)

| "/*x" { comment lexbuf } (* Comments *)
(" { LPAREN }
[") { RPAREN }
[' {"' { LBRACE }
"} { RBRACE }
! { SEMI }

| ', { COMMA }

| "+ { PLUS }

| =" { MINUS }
| '*! { TIMES }
VA { DIVIDE }
| '="' { ASSIGN }
| '~ { CONCAT }
| "==" { EQ }

| =" { NEQ }

| o< { LT }

| "<=" { LEQ }

| ">" { GT }

| ">=" { GEQ }

I { OR }

| "&&" { AND }

| "if" { IF }

| "else" { ELSE }

| "for" { FOR }

| "while" { WHILE }
| "return" { RETURN }
| "int" { INT }

| "string" { STRING }
\

"boolean" { BOOLEAN }

\
|
\
|
\
|
[A\l

"float" { FLOAT }
"true" as lxm { LBOOL(bool of string lxm) }
"false" as lxm { LBOOL(bool of string lxm) }

['0"="9"]+["'."]['0"'="9"]+ as 1lxm { LFLOAT (float of string lxm) }
['0'-"'9']+ as 1lxm { LINTEGER(int of string lxm) }
['"']
a'="z"'" 'A'-'Z'" '0'='O9r v v o nInor@r o tgrorgr o rgrorar tgr o rtar o r(rom)
| e LN s L AN Bl B
{ LSTRING (1lxm) }
| ['a'='z"'" '"A'-'z']['a'=-"z"' 'A'-'Z' '0'-'O"' ' !]* as 1lxm { ID(lxm) }
| eof { EOF }
| _as char { raise (Failure("illegal character " ~ Char.escaped char))
and comment = parse
"x/" { token lexbuf }

{ comment lexbuf }

l{l

as 1xm

}

24

