

MAPMe
Mapping Application Programming language

Made for Everyone

Language Reference Manual

COMS 4115 Programming Languages and Translators
Professor Stephen A. Edwards

Team Members:

Jonecia Keels jtk2128
Denelle Baptiste dgb2122
Changyu Liu cl2997
Eric Ellis ede2106

1. Introduction

This manual is a quick reference guide for using MAPMe language. It includes
the specific introduction of lexical conventions, types, operators, statements, and
samples.

2. Lexical conventions

2.1 Comments
The ‘~’ character introduces a comment and another ‘~’ character ends a
comment, except within a character constant or string literal.

The number of the comment character ‘~’ must be even. So the compiler
will automatically scan all ‘~’ which are not in a character constant or string
literal. If the number of ‘~’ is odd, the compiler will complain. If it is odd,
compiler will divide into pairs and treat the content between a pair of ‘~’ as
comments.

2.2 Key Words
 MAPMe defines several keywords, each with special meaning to the
compiler.

● Map
● Point (Longitude/Latitude Points)
● Path (Paths, Trails, Roads, Sidewalks, etc.)
● Object (Buildings, Vehicles, People, etc.)
● build (To instantiate a new object)
● Array <Type>
● HashTable
● double, float, string, char, bool
● if, else, while, return

2.3 Identifier
 In MAPMe, an identifier is a sequence of characters that represents a name
for the following:

● Variable
● Function
● Map
● Object
● Point
● Array
● Some other data structure like int, char, etc.

 For example, Point point1 = new Point(10, 10). Here point1 is an identifier.
 Notice that keywords cannot be identifiers.

2.4 Constant

2.4.1 Integer constants

Integer constants are used to represent whole numbers. In MAPMe,
an integer constant can only be specified in decimal without suffix.
To specify an integer constant, use a sequence of decimal digits in
which the first digit is not 0.

2.4.2 String constants

A string constant is a sequence of characters enclosed in double
quotation.

For example: string a = “hello”.

3 Types

3.1 Primitive Data Types

3.1.1 String
3.1.2 Double
3.1.3 Boolean
3.1.4 Array

3.2 Object Types

3.2.1 Path
3.2.2 Map
3.2.3 Object
3.2.4 Point

4. Operators

4.1. Logical Operators

4.2. I/O operation

5 Statement

5.1 Declaration/Assignment:

Declaration Format: Data/Object type identifier = build Data/Object type
Primitive Data type identifier = expression

Ex: Array <Point> [] Points= build Array<Point> [2];
 double distanceToChipotle;

Assignment Format: lvalue = expression
Ex. distanceToChipotle = myApartment.getDistanceTo(chipotle);

Syntax:
5.3 Looping Construct
The iteration statement included is started by the while keyword. The while construct is
structured as follows:

while (conditional expression) {
statement

}
As long as the conditional expression is satisfied, the statements within the while statement
brackets is executed continuously.

5.4 Built In Methods

MAPMe has built in methods for mapping calculations and manipulation.

6. Sample Program

Sample XML file named MapData.xml, that stores all of the input data such as Points of
Interests, roads, and longitude/latitude positions:

<Path>

<Name>
Broadway

</Name>
<Type>

Road
</Type>
<NumOfPoints>

2
</NumOfPoints>
<Points>

40.473245,-73.9251; 40.807991,-73.963829
</Points>

</Path>
<Object>

<Name>
Chipotle

</Name>
<Type>

Building
</Type>
</Point>

40.798737, -73.970947

</Point>
</Object>
<Object>

<Name>
myApartment

</Name>
<Type>

Building
</Type>
</Point>

40.808417, -73.963737
</Point>

</Object>
<Object>

<Name>
myCar

</Name>
<Type>

Car
</Type>
<Speed>

40mph
</Speed>

</Object>

MAPMe Code:

~This method reads in data which creates object types that the user can reference~
stream(MapData.xml);

double distanceToChipotle = myApartment.getDistanceTo(chipotle);

~flexibility to calculate estimated time of arrival given users input data~

double timeToGetToDest = myCar.speed / distanceToChipotle;

