
CSEE W3827

Fundamentals of Computer Systems

Homework Assignment 6

Prof. Martha A. Kim and Stephen A. Edwards

Columbia University

Due April 30th, 2012 at 1:10 PM

Show your work for each problem; we are more interested in how you
get your answer than whether you get the right answer.

1. (25 pts.) Examine the following MIPs program:

i1: ori $t0, $0, 1000
i2: ori $t1, $0, 2000
i3: addi $t2, $t0, 100
i4: lw $t3, 0($t1)
i5: lw $t4, 0($t0)
i6: add $t3, $t3, $t4
i7: sra $t3, $t3, 1
i8: sw $t3, 0($t0)
i9: sw $t3, 0($t1)
i10: addi $t0, $t0, 4
i11: addi $t1, $t1, 4
i12: slt $t3, $t0, $t2
i13: bne $0, $t3, i4

(a) When this code fragment is run, how many instructions will be executed total?

(b) Consider the five-stage MIPS pipeline with full bypass (i.e., M-to-E, W-to-E, and
M-to-D bypasses) and stall logic discussed as in class and shown at the end of
this assignment. List each hazard in the code and explain how the processor
will resolve it, e.g., “stall two cycles,” “bypass W to E,” “bypass M to D.” The
first is provided as an example. 1

• 1→ 3, bypass W to E

1For the handful of instructions not supported by the processor assume that: shift and
setting operations for sra and slt are performed by the ALU in the Execute stage; that
bne is just like beq and with branch resolution in the Decode stage.

(c) How many cycles will this code snippet take to execute on a piplined
processor?

2. (20 pts.) Assuming the same, fully-bypassed pipeline as in the previous problem.

(a) List all control and data dependencies which result in pipeline stalls (e.g.,
2→ 3).

(b) Reorder the instructions to remove as many of the stalls as possible. You may
not change the code other than reordering (i.e., no re-allocating registers).
List the stalls that remain.

i1: lw $t0, 0($t1)
i2: lw $t4, 0($t2)
i3: add $t0, $t0, $t4
i4: add $t0, $t0, $t2
i5: addi $t2, $t2, -8
i6: addi $t1, $t1, -8
i7: bne $t1, $0, i1

3. (25 pts.) Consider three direct mapped caches X, Y, and Z each interpreting an
8-bit address slightly differently according to the {tag:setIdx:byteOffset}
format specified. For each address in the reference stream, indicate whether the
access will hit (H) or miss (M) in each cache.

C1 C2 C3
Address Formats → {2:2:4} {2:3:3} {2:4:2}

Block Size (Bytes):

Cache Size (Blocks):

Address References
(in binary)

00000010

00000100

00001000

00010000

00100000

01000000

4. (30 pts.) Consider a three-level hierarchy consisting of an L1 cache backed by an L2 backed by
main memory.

(a) For each address referenced, indicate whether it will be a hit (H) or a miss (M) in each
cache. You should indicate no access with a slash. For each hit or miss, also indicate the
set in which it occurred. For example, M→ A, means the access missed in set A.

L1 L2

Sets 16 16
Bytes/Block 16 256

Ways 2 2

0xABCDE

0xABCD0

0xABDD0

0xABCEO

0xABCEF

0xABCDE

(b) What is the miss rate for L1 and L2?

(c) Let the L1 access time be 5 cycles, L2 50 cycles, and Memory (which backs
L2) 1000 cycles. What is the expected access time for the entire hierarchy,
assuming the reference pattern from the first part of the problem?

For reference, fully pipelined MIPS datapath:

EqualD

SignImmE

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign

Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE

1

0

PCF0

1

PC' InstrD
25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchD

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD
2:0

ALUSrcD

RegWriteD

Op

Funct

Control

Unit

PCSrcD

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

ALU

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

0

1

0

1

=

SignImmD

20:16 RtE

RsD

RdD

RtD

Hazard Unit

S
ta

llF

S
ta

llD

F
o

rw
a

rd
A

E

F
o

rw
a

rd
B

E

F
o

rw
a

rd
A

D

F
o

rw
a

rd
B

D

R
e

g
W

rite
E

R
e

g
W

rite
M

R
e

g
W

rite
W

M
e

m
to

R
e

g
E

B
ra

n
c
h

D

F
lu

s
h

E

EN

CLREN
CLR

