
COMS W4115
Programming Languages and Translators

Homework Assignment 3

Prof. Stephen A. Edwards Due November 28th, 2012
Columbia University at 4:10 PM

Submit solution on paper (no email). Please write your
name clearly on the paper.

Do this assignment alone. You may consult the instructor
and the TAs, but not other students.

1. For the following C array,

int a[3][2];

assume you are working with a 32-bit little-endian pro-
cessor with the usual alignment rules (e.g., a Pentium)
and

(a) Show how its elements are laid out in memory.

(b) Write the expression for calculating the starting byte
of a[i][j].

(c) Verify parts a) and b) by writing a small C program
that contains and accesses such an array and look-
ing at the assembly language output with the C
compiler’s -S flag (e.g., gcc -O -S array.c. Turn
in a copy of your C program and an annotated ver-
sion of the assembly listing. Make sure the assembly
listing is no more than 40 lines.

2. In an assembly-language-like notation (e.g., use MIPS or
a pseudocode of your own choosing), write what an op-
timizing compiler would produce for the following two
switch statements.

switch (a) {
case 4: z = 2; break;
case 5: x = 1; break;
case 6: x = 8; break;
case 8: x = 17; y = 10; break;
case 9: y = 3; x = 5; break;
default: z = 5; break;
}

switch (b) {
case 2: a = 18; break;
case 20: a = 2; break;
case 108: b = 7; c = 10;
case 254: c = 8; break;
default: c = 17; break;
}

3. For a 32-bit little-endian processor with the usual align-
ment rules, show the memory layout and size in bytes of
the following three C variables.

union {
struct {
short a; /* 16 bits */
char b; /* 8 bits */

} s;
int c; /* 32 bits */

} u1;

struct {
char a;
short b;
short c;
short d;
char e;

} s1;

struct {
int a;
short b;
char c;
short d;

} s2;

4. Consider the following C-like program.

int w = 9;
int x = 3;

int incw() { return ++w; }
int incx() { return ++x; }

void foo(y, z){
printf("%d\n", y + 1 + y);
x = 12;
printf("%d\n", z);

}

int main() {
foo(incw(), incx()); return 0;

}

What does it print if the language uses

(a) Applicative-order evaluation?

(b) Normal-order evaluation?


