
corgi
musical alg’rhythms



The Team
● Philippe-Guillaume Losembe
● Alisha Sindhwani
● Justin Zhao
● Melissa O’Sullivan



Motivation
● Music is complex, but there are interesting patterns
● Patterns in notes and harmonies that can be 

analyzed
● Top-down and Bottom-up approaches
● Our goal was to develop a language to 

algorithmically generate music, and analyze these 
patterns in music.



Uses
● corgi’s main selling point is its ability to 

search through music.
● Data structures make it easy to identify and 

return the location of specific instances in a 
given composition

● Ability to programmatically generate music.



Hello World
int main() {
    print("Hello, world!");
}



Types
● Fractions
● Durations
● Pitch
● Pitch/Duration Tuples
● Chords
● Track
● Composition



Flexible Data Type Conversion

duration d;
d = $1/2$;
fraction f;
f = $1/3$
pitch p;
p = 5;

chord c;
c = [(5,$1/4$), (3,d), (p,f)];



Structure



Java Implementation
● Use of the jFugue Library (not that great)

○ Limitations
● Translate well into Java class objects
● Added flexibility for greater abstraction



Lessons Learned
● Identify individual strengths earlier
● Start earlier, don’t procrastinate
● Do not underestimate how much time it takes to do 

even the small things
● Testing along the way is essential
● The more you distribute, the more you have to unify
● Be mindful of the limitations of the libraries that you use


