
The Programming Language Landscape

Stephen A. Edwards

Columbia University

Fall 2014

The Diversity of Programming Languages

http://www.99-bottles-of-beer.net has programs in over
1,500 different programming languages and variations to
generate the lyrics to the song “99 Bottles of Beer.”

http://www.99-bottles-of-beer.net

99 Bottles of Beer

99 bottles of beer on the wall, 99 bottles of beer.
Take one down and pass it around, 98 bottles of beer on the wall.

98 bottles of beer on the wall, 98 bottles of beer.
Take one down and pass it around, 97 bottles of beer on the wall.

...

2 bottles of beer on the wall, 2 bottles of beer.
Take one down and pass it around, 1 bottle of beer on the wall.

1 bottle of beer on the wall, 1 bottle of beer.
Take one down and pass it around, no more bottles of beer on the wall.

No more bottles of beer on the wall, no more bottles of beer.
Go to the store and buy some more, 99 bottles of beer on the wall.

Java

class Bottles {
public static void main(String args[]) {
String s = "s";
for (int beers=99; beers>-1;) {
System.out.print(beers+" bottle"+s+" of beer on the wall, ");
System.out.println(beers + " bottle" + s + " of beer, ");
if (beers==0) {

System.out.print("Go to the store, buy some more, ");
System.out.println("99 bottles of beer on the wall.\n");
System.exit(0);

} else
System.out.print("Take one down, pass it around, ");

s = (--beers == 1)?"":"s";
System.out.println(beers+" bottle"+s+" of beer on the wall.\n");

}
}

}

Sean Russell,
http://www.99-bottles-of-beer.net/language-java-4.html

http://www.99-bottles-of-beer.net/language-java-4.html

Java

class Bottles {
public static void main(String args[]) {
String s = "s";
for (int beers=99; beers>-1;) {
System.out.print(beers+" bottle"+s+" of beer on the wall, ");
System.out.println(beers + " bottle" + s + " of beer, ");
if (beers==0) {

System.out.print("Go to the store, buy some more, ");
System.out.println("99 bottles of beer on the wall.\n");
System.exit(0);

} else
System.out.print("Take one down, pass it around, ");

s = (--beers == 1)?"":"s";
System.out.println(beers+" bottle"+s+" of beer on the wall.\n");

}
}

}

Gosling et al., Sun, 1991

Imperative, object-oriented,
threaded

Based on C++, C, Algol, etc.

Statically typed

Automatic garbage collection

Architecturally neutral

Defined on a virtual machine (Java
Bytecode)

Sean Russell,
http://www.99-bottles-of-beer.net/language-java-4.html

http://www.99-bottles-of-beer.net/language-java-4.html

C
#define MAXBEER 99
void chug(int beers);

int main()
{
int beers;
for(beers = MAXBEER; beers; chug(beers--)) ;
puts("\nTime to buy more beer!\n");
return 0;

}

void chug(int beers)
{
char howmany[8], *s;
s = beers != 1 ? "s" : "";
printf("%d bottle%s of beer on the wall,\n", beers, s);
printf("%d bottle%s of beeeeer . . . ,\n", beers, s);
printf("Take one down, pass it around,\n");
if (--beers) sprintf(howmany, "%d", beers);
else strcpy(howmany, "No more");
s = beers != 1 ? "s" : "";
printf("%s bottle%s of beer on the wall.\n", howmany, s);

}

Bill Wein, http://www.99-bottles-of-beer.net/language-c-116.html

http://www.99-bottles-of-beer.net/language-c-116.html

C
#define MAXBEER 99
void chug(int beers);

int main()
{
int beers;
for(beers = MAXBEER; beers; chug(beers--)) ;
puts("\nTime to buy more beer!\n");
return 0;

}

void chug(int beers)
{
char howmany[8], *s;
s = beers != 1 ? "s" : "";
printf("%d bottle%s of beer on the wall,\n", beers, s);
printf("%d bottle%s of beeeeer . . . ,\n", beers, s);
printf("Take one down, pass it around,\n");
if (--beers) sprintf(howmany, "%d", beers);
else strcpy(howmany, "No more");
s = beers != 1 ? "s" : "";
printf("%s bottle%s of beer on the wall.\n", howmany, s);

}

Dennis Ritchie, Bell Labs, 1969

Procedural, imperative

Based on Algol, BCPL

Statically typed; liberal conversion
policies

Harmonizes with processor
architecture

For systems programming: unsafe
by design

Remains language of choice for
operating systems

Bill Wein, http://www.99-bottles-of-beer.net/language-c-116.html

http://www.99-bottles-of-beer.net/language-c-116.html

FORTRAN
program ninetyninebottles
integer bottles
bottles = 99

1 format (I2, A)
2 format (A)
3 format (I2, A, /)
4 format (A, /)
10 write (*,1) bottles, ’ bottles of beer on the wall,’

write (*,1) bottles, ’ bottles of beer.’
write (*,2) ’Take one down, pass it around...’
if (bottles - 1 .gt. 1) then

write (*,3) bottles - 1, ’ bottles of beer on the wall.’
else

write (*,3) bottles - 1, ’ bottle of beer on the wall.’
end if
bottles = bottles - 1
if (bottles - 1) 30, 20, 10

* Last verse
20 write (*,1) bottles, ’ bottle of beer on the wall,’

write (*,1) bottles, ’ bottle of beer.’
write (*,2) ’Take one down, pass it around...’
write (*,4) ’No bottles of beer on the wall.’

30 stop
end

Alex Ford,
http://www.99-bottles-of-beer.net/language-fortran-77-760.html

http://www.99-bottles-of-beer.net/language-fortran-77-760.html

FORTRAN
program ninetyninebottles
integer bottles
bottles = 99

1 format (I2, A)
2 format (A)
3 format (I2, A, /)
4 format (A, /)
10 write (*,1) bottles, ’ bottles of beer on the wall,’

write (*,1) bottles, ’ bottles of beer.’
write (*,2) ’Take one down, pass it around...’
if (bottles - 1 .gt. 1) then

write (*,3) bottles - 1, ’ bottles of beer on the wall.’
else

write (*,3) bottles - 1, ’ bottle of beer on the wall.’
end if
bottles = bottles - 1
if (bottles - 1) 30, 20, 10

* Last verse
20 write (*,1) bottles, ’ bottle of beer on the wall,’

write (*,1) bottles, ’ bottle of beer.’
write (*,2) ’Take one down, pass it around...’
write (*,4) ’No bottles of beer on the wall.’

30 stop
end

Backus, IBM, 1956

Imperative language for science
and engineering

First compiled language

Fixed format lines (for punch cards)

Arithmetic expressions, If, Do, and
Goto statements

Scalar (number) and array types

Limited string support

Still common in high-performance
computing

Inspired most modern languages,
especially BASIC

Alex Ford,
http://www.99-bottles-of-beer.net/language-fortran-77-760.html

http://www.99-bottles-of-beer.net/language-fortran-77-760.html

AWK
BEGIN {

for(i = 99; i >= 0; i--) {
print ubottle(i), "on the wall,", lbottle(i) "."
print action(i), lbottle(inext(i)), "on the wall."
print

}
}
function ubottle(n) {

return sprintf("%s bottle%s of beer", n?n:"No more", n-1?"s":"")
}
function lbottle(n) {

return sprintf("%s bottle%s of beer", n?n:"no more", n-1?"s":"")
}
function action(n) {

return sprintf("%s", n ? "Take one down and pass it around," : \
"Go to the store and buy some more,")

}
function inext(n) {

return n ? n - 1 : 99
}

OsamuAoki,
http://www.99-bottles-of-beer.net/language-awk-1623.html

http://www.99-bottles-of-beer.net/language-awk-1623.html

AWK
BEGIN {

for(i = 99; i >= 0; i--) {
print ubottle(i), "on the wall,", lbottle(i) "."
print action(i), lbottle(inext(i)), "on the wall."
print

}
}
function ubottle(n) {

return sprintf("%s bottle%s of beer", n?n:"No more", n-1?"s":"")
}
function lbottle(n) {

return sprintf("%s bottle%s of beer", n?n:"no more", n-1?"s":"")
}
function action(n) {

return sprintf("%s", n ? "Take one down and pass it around," : \
"Go to the store and buy some more,")

}
function inext(n) {

return n ? n - 1 : 99
}

Aho, Weinberger, and Kernighan,
Bell Labs, 1977

Interpreted domain-specific
scripting language for text
processing

Pattern-action statements matched
against input lines

C-inspired syntax

Automatic garbage collection

OsamuAoki,
http://www.99-bottles-of-beer.net/language-awk-1623.html

http://www.99-bottles-of-beer.net/language-awk-1623.html

AWK (bottled version)
BEGIN{
split(\
"no mo"\
"rexxN"\
"o mor"\
"exsxx"\
"Take "\
"one dow"\
"n and pas"\

"s it around"\
", xGo to the "\
"store and buy s"\
"ome more, x bot"\
"tlex of beerx o"\
"n the wall" , s,\
"x"); for(i=99 ;\
i>=0; i--){ s[0]=\
s[2] = i ; print \
s[2 + !(i)] s[8]\
s[4+ !(i-1)] s[9]\
s[10]", " s[!(i)]\
s[8] s[4+ !(i-1)]\
s[9]".";i?s[0]--:\
s[0] = 99; print \
s[6+!i]s[!(s[0])]\
s[8] s[4 +!(i-2)]\
s[9]s[10] ".\n";}}Wilhelm Weske,

http://www.99-bottles-of-beer.net/language-awk-1910.html

http://www.99-bottles-of-beer.net/language-awk-1910.html

Python

for quant in range(99, 0, -1):
if quant > 1:

print quant, "bottles of beer on the wall,", \
quant, "bottles of beer."

if quant > 2:
suffix = str(quant - 1) + " bottles of beer on the wall."

else:
suffix = "1 bottle of beer on the wall."

elif quant == 1:
print "1 bottle of beer on the wall, 1 bottle of beer."
suffix = "no more beer on the wall!"

print "Take one down, pass it around,", suffix
print ""

Gerold Penz,
http://www.99-bottles-of-beer.net/language-python-808.html

http://www.99-bottles-of-beer.net/language-python-808.html

Python

for quant in range(99, 0, -1):
if quant > 1:

print quant, "bottles of beer on the wall,", \
quant, "bottles of beer."

if quant > 2:
suffix = str(quant - 1) + " bottles of beer on the wall."

else:
suffix = "1 bottle of beer on the wall."

elif quant == 1:
print "1 bottle of beer on the wall, 1 bottle of beer."
suffix = "no more beer on the wall!"

print "Take one down, pass it around,", suffix
print ""

Guido van Rossum, 1989

Object-oriented, imperative

General-purpose scripting
language

Indentation indicates grouping

Dynamically typed

Automatic garbage collection

Gerold Penz,
http://www.99-bottles-of-beer.net/language-python-808.html

http://www.99-bottles-of-beer.net/language-python-808.html

APL

http://www.99-bottles-of-beer.net/language-apl-715.html

http://www.99-bottles-of-beer.net/language-apl-715.html

APL
Iverson, IBM, 1960

Imperative, matrix-centric

E.g., perform an operation on each
element of a vector

Uses own specialized character set

Concise, effectively cryptic

Primarily symbols instead of words

Dynamically typed

Odd left-to-right evaluation policy

Useful for statistics, other
matrix-oriented applications

http://www.99-bottles-of-beer.net/language-apl-715.html

http://www.99-bottles-of-beer.net/language-apl-715.html

FORTH
: .bottles (n -- n-1)

dup 1 = IF ." One bottle of beer on the wall," CR
." One bottle of beer," CR
." Take it down,"

ELSE dup . ." bottles of beer on the wall," CR
dup . ." bottles of beer," CR
." Take one down,"

THEN
CR
." Pass it around," CR
1-
?dup IF dup 1 = IF ." One bottle of beer on the wall;"

ELSE dup . ." bottles of beer on the wall;"
THEN

ELSE ." No more bottles of beer on the wall."
THEN
CR

;
: nbottles (n --)

BEGIN .bottles ?dup NOT UNTIL ;

99 nbottles

Dan Reish,
http://www.99-bottles-of-beer.net/language-forth-263.html

http://www.99-bottles-of-beer.net/language-forth-263.html

FORTH
: .bottles (n -- n-1)

dup 1 = IF ." One bottle of beer on the wall," CR
." One bottle of beer," CR
." Take it down,"

ELSE dup . ." bottles of beer on the wall," CR
dup . ." bottles of beer," CR
." Take one down,"

THEN
CR
." Pass it around," CR
1-
?dup IF dup 1 = IF ." One bottle of beer on the wall;"

ELSE dup . ." bottles of beer on the wall;"
THEN

ELSE ." No more bottles of beer on the wall."
THEN
CR

;
: nbottles (n --)

BEGIN .bottles ?dup NOT UNTIL ;

99 nbottles

Moore, NRAO, 1973

Stack-based imperative language

Trivial, RPN-inspired grammar

Easily becomes cryptic

Untyped

Low-level, very lightweight

Highly extensible: easy to make
programs compile themselves

Used in some firmware boot
systems (Apple, IBM, Sun)

Inspired the PostScript language
for laser printers

Dan Reish,
http://www.99-bottles-of-beer.net/language-forth-263.html

http://www.99-bottles-of-beer.net/language-forth-263.html

The Whitespace Language

Edwin Brady and Chris Morris, April
1st, 2003

Imperative, stack-based language

Space, Tab, and Line Feed
characters only

Number literals in binary: Space=0,
Tab=1, LF=end

Less-than-programmer-friendly
syntax; reduces toner consumption

Andrew Kemp, http://compsoc.dur.ac.uk/whitespace/

http://compsoc.dur.ac.uk/whitespace/

Prolog

bottles :-
bottles(99).

bottles(1) :-
write(’1 bottle of beer on the wall, 1 bottle of beer,’), nl,
write(’Take one down, and pass it around,’), nl,
write(’Now they are all gone.’), nl,!.

bottles(X) :-
write(X), write(’ bottles of beer on the wall,’), nl,
write(X), write(’ bottles of beer,’), nl,
write(’Take one down and pass it around,’), nl,
NX is X - 1,
write(NX), write(’ bottles of beer on the wall.’), nl, nl,
bottles(NX).

Remko Trocon et al.,
http://www.99-bottles-of-beer.net/language-prolog-965.html

http://www.99-bottles-of-beer.net/language-prolog-965.html

Prolog

bottles :-
bottles(99).

bottles(1) :-
write(’1 bottle of beer on the wall, 1 bottle of beer,’), nl,
write(’Take one down, and pass it around,’), nl,
write(’Now they are all gone.’), nl,!.

bottles(X) :-
write(X), write(’ bottles of beer on the wall,’), nl,
write(X), write(’ bottles of beer,’), nl,
write(’Take one down and pass it around,’), nl,
NX is X - 1,
write(NX), write(’ bottles of beer on the wall.’), nl, nl,
bottles(NX).

Alain Colmerauer et al., 1972

Logic programming language

Programs are relations: facts and
rules

Program execution consists of
trying to satisfy queries

Designed for natural language
processing, expert systems, and
theorem proving

Remko Trocon et al.,
http://www.99-bottles-of-beer.net/language-prolog-965.html

http://www.99-bottles-of-beer.net/language-prolog-965.html

SQL
SELECT
CASE (bottlecount)
WHEN 0 THEN ’No more bottle of beer on the wall, no more bottles of beer. ’ ||

’Go to the store and buy some more, 99 bottles of beer on the wall.’
WHEN 1 THEN ’1 bottle of beer on the wall, 1 bottle of beer. ’ ||

’Take one down and pass it around, no more bottles of beer on the wall.’
WHEN 2 THEN ’2 bottles of beer on the wall, 2 bottles of beer. ’ ||

’Take one down and pass it around, 1 bottle of beer on the wall.’
ELSE
rtrim (cast((BottleCount) as char(2))) || ’ bottles of beer on the wall, ’ ||
rtrim (cast((BottleCount) as char(2))) || ’ bottles of beer. ’ ||
’Take one down and pass it around, ’ ||
rtrim (cast((BottleCount)-1 as char(2))) || ’ bottles of beer on the wall.’

END
FROM
(
SELECT avalue * 10 + bvalue as bottlecount
FROM
(VALUES (9), (8), (7), (6), (5), (4), (3), (2), (1), (0)) a(avalue),
(VALUES (9), (8), (7), (6), (5), (4), (3), (2), (1), (0)) b(bvalue)

) as valuelist;

Kent Olsen,
http://www.99-bottles-of-beer.net/language-sql-967.html

http://www.99-bottles-of-beer.net/language-sql-967.html

SQL
SELECT
CASE (bottlecount)
WHEN 0 THEN ’No more bottle of beer on the wall, no more bottles of beer. ’ ||

’Go to the store and buy some more, 99 bottles of beer on the wall.’
WHEN 1 THEN ’1 bottle of beer on the wall, 1 bottle of beer. ’ ||

’Take one down and pass it around, no more bottles of beer on the wall.’
WHEN 2 THEN ’2 bottles of beer on the wall, 2 bottles of beer. ’ ||

’Take one down and pass it around, 1 bottle of beer on the wall.’
ELSE
rtrim (cast((BottleCount) as char(2))) || ’ bottles of beer on the wall, ’ ||
rtrim (cast((BottleCount) as char(2))) || ’ bottles of beer. ’ ||
’Take one down and pass it around, ’ ||
rtrim (cast((BottleCount)-1 as char(2))) || ’ bottles of beer on the wall.’

END
FROM
(
SELECT avalue * 10 + bvalue as bottlecount
FROM
(VALUES (9), (8), (7), (6), (5), (4), (3), (2), (1), (0)) a(avalue),
(VALUES (9), (8), (7), (6), (5), (4), (3), (2), (1), (0)) b(bvalue)

) as valuelist;

Chamberlin and Boyce, IBM, 1974

Declarative language for databases

Semantics based on the relational
model

Queries on tables: select with
predicates, joining, aggregating

Database query optimization:
declaration to procedure

Kent Olsen,
http://www.99-bottles-of-beer.net/language-sql-967.html

http://www.99-bottles-of-beer.net/language-sql-967.html

LISP

(defun bottles-of-bier (n)
(case n
(0
’(No more bottles of beer on the wall no more bottles of beer.

Go to the store and buy some more 99 bottles of beer on the wall.))
(1
‘(1 bottle of beer on the wall 1 bottle of beer.

Take one down and pass it around no more bottles of beer on the wall.
,@(bottles-of-bier 0)))

(2
‘(2 bottles of beer on the wall 2 bottles of beer.

Take one down and pass it around 1 bottle of beer on the wall.
,@(bottles-of-bier 1)))

(t
‘(,n bottles of beer on the wall ,n bottles of beer.

Take one down and pass it around
,(1- n) bottles of beer on the wall.
,@(bottles-of-bier (1- n))))))

jimka, http://www.99-bottles-of-beer.net/language-lisp-1465.html

http://www.99-bottles-of-beer.net/language-lisp-1465.html

LISP

(defun bottles-of-bier (n)
(case n
(0
’(No more bottles of beer on the wall no more bottles of beer.

Go to the store and buy some more 99 bottles of beer on the wall.))
(1
‘(1 bottle of beer on the wall 1 bottle of beer.

Take one down and pass it around no more bottles of beer on the wall.
,@(bottles-of-bier 0)))

(2
‘(2 bottles of beer on the wall 2 bottles of beer.

Take one down and pass it around 1 bottle of beer on the wall.
,@(bottles-of-bier 1)))

(t
‘(,n bottles of beer on the wall ,n bottles of beer.

Take one down and pass it around
,(1- n) bottles of beer on the wall.
,@(bottles-of-bier (1- n))))))

McCarthy, MIT, 1958

Functional: recursive, list-focused
functions

Semantics from Church’s Lambda
Calculus

Simple, heavily parenthesized
S-expression syntax

Dynamically typed

Automatic garbage collection

Originally for AI applications

Dialects: Scheme and Common Lisp

jimka, http://www.99-bottles-of-beer.net/language-lisp-1465.html

http://www.99-bottles-of-beer.net/language-lisp-1465.html

Haskell
bottles :: Int -> String
bottles n
| n == 0 = "no more bottles"
| n == 1 = "1 bottle"
| n > 1 = show n ++ " bottles"

verse :: Int -> String
verse n
| n == 0 = "No more bottles of beer on the wall, "

++ "no more bottles of beer.\n"
++ "Go to the store and buy some more, "
++ "99 bottles of beer on the wall."

| n > 0 = bottles n ++ " of beer on the wall, "
++ bottles n
++ " of beer.\n"
++ "Take one down and pass it around, "
++ bottles (n-1) ++ " of beer on the wall.\n"

main = mapM (putStrLn . verse) [99,98..0]

Simon Johansson,

http://www.99-bottles-of-beer.net/language-haskell-1613.html

http://www.99-bottles-of-beer.net/language-haskell-1613.html

Haskell
bottles :: Int -> String
bottles n
| n == 0 = "no more bottles"
| n == 1 = "1 bottle"
| n > 1 = show n ++ " bottles"

verse :: Int -> String
verse n
| n == 0 = "No more bottles of beer on the wall, "

++ "no more bottles of beer.\n"
++ "Go to the store and buy some more, "
++ "99 bottles of beer on the wall."

| n > 0 = bottles n ++ " of beer on the wall, "
++ bottles n
++ " of beer.\n"
++ "Take one down and pass it around, "
++ bottles (n-1) ++ " of beer on the wall.\n"

main = mapM (putStrLn . verse) [99,98..0]

Peyton Jones et al., 1990

Functional

Pure: no side-effects

Lazy: computation only on
demand; infinite data structures

Statically typed; types inferred

Algebraic data types, pattern
matching, lists, strings

Great for compilers,
domain-specific languages, type
system research

Related to ML, OCaml

Simon Johansson,

http://www.99-bottles-of-beer.net/language-haskell-1613.html

http://www.99-bottles-of-beer.net/language-haskell-1613.html

