Introduction
Features
Comparison with C
Language Tutorial
Lexical Conventions
Identifiers
Keywords
Literals
Separators
Operators
Comments
Data Types
e Basic Data Types
e Collection Data Types
e Custom Data Types
Expressions
Statements
e Expression Statement
e Compound Statement
e Control Flow Statement
e Loop Statement
Function
e Function Definitions
e Calling Functions
Anonymous Functions
Scope Rules
Inheritance
Interfaces
Memory Allocation

Project Planning
Planning Process
Specification
Development and Testing
Roles and Responsibilities
Test Plan

Unit Tests

Integration Tests

Automation

Source to Target

Software Development Environment
Project Timeline
Architectural Design
e Scanner
e Parser
¢ Type Inference and Semantic Checking
e Codegen
Lessons Learnt
Project Log
Appendix
e Code
e Test Suite

Introduction

The Cimple programming language is a statically-typed, low-level
compiled language that is syntactically similar to C. Its purpose is to offer
the fast execution speeds of C while simplifying the process of writing
and maintaining code by offering additional language constructs that free
the programmer to organize logic in a variety of ways. It is based off of C
with features that enable the programmer to write expressive server side
programs with the same ease as he or she would with a language like
python or ruby. These features include inheritance, interface types,
anonymous functions and closures.

We have chosen C as the basis of our language due to its status as a "low-
level” language. The ideas expressible in the language have close
relationships with the resulting CPU instructions the compiler generates.
This proximity of the language to the computer hardware in this sense
promotes fast execution speed. Therefore, our language would benefit
programs that require fast execution speed, such as any software that
processes or renders signals in real time, such as digital audio production
workstations and plugins, video editing and rendering, real-time (or
otherwise) 3D graphics, video games, etc.

Additionally, we are introducing some higher level language features,
including object-oriented principles such as structs with inheritance and
methods, anonymous functions with closures, and interfaces. This
extends the ways a programmer may organize code, and increase the
speed with which more abstract concepts can be represented in code.

Types of programs that can benefit from this include those that rely on
asynchronous communication. An example would be client software
interacting with a server, and vice verse.

Comparison with C

Inheritance

Cimple supports inheritance, which is a new feature compared to C. User-
defined data-types i.e. structs (analogous to classes in Java) are allowed
to inherit the members of other structs, thus providing the benefit of
code-reuse. This follows a typical parent-child hierarchy observed in most
object-oriented languages. This speeds up program development and
ensures validity to the child struct instances such that what is valid and
consistent about a struct will also work for other structs that inherit from
it. More than one struct can inherit from a struct but not the other way
round i.e. inheritance in Cimple works the way it does in Java but
mupltiple inheritance not in C++.

Interfaces

An interface is an abstract type which defines a group of related methods
with empty bodies. It is a structure which enforces certain properties on
an object, which implements one. They are useful for situations when a
rigid type hierarchy is not desired. Cimple allows more flexibility in
inheritance than what a parent-child hierarchy can allow, by virtue of
interfaces.

Interfaces provide structs with the ability to be formal about the behavior
they promise to exhibit. They form a contract between the struct and the
outside world, which is enforced at build time by the compiler. If a struct
claims to implement an interface, all methods defined by that interface
must appear in its definition for the struct to successfully compile.
Interfaces are not permitted to contain method implementations. Still
using interfaces provides implementation assistance to programmers.

Anonymous functions

These are a new feature in Cimple, not found in C. These allow for a
more intuitive scheme of declaration of function arguments to other
functions than what would be done in C, using a function pointer instead.
They provide compactness to the program and enhance the readability.

The benefit of compactness stems from the fact that they are used
unnamed, because such a function is only ever called in one place, and so
no need to add a name to the scope they are in. Anonymous functions are
declared inline and inline functions have advantages in that they can
access variables in the parent scopes. The code becomes more readable
when handlers are defined right inside the code that's calling them.
Reading the code can be done almost sequentially, rather than having to
go and find the function with that name.

Memory Management Convenience

Cimple follows a memory management scheme much similar to C in terms
of the decision-making about the place in memory that variables land up
in, depending on their type. But it gives a much more convenient
functionality to the programmer in practicing memory allocation and de-
allocation than C does.

As in C, variables can be stored on the stack (“automatic variables”) or
on the heap. Automatic variables, as the name implies, are automatically
de-allocated upon exiting scope. However, storage for heap-allocated
variables is at the will of the programmer, and is allotted or freed with
the use of keywords make and clean. Syntactic details are discussed in a
later section.

Tutorial

This section is intended to help get the reader started on using the
Cimple language, by writing simple programs in it. But before getting to
that, it is required that the project be downloaded and its dependencies
be installed.

The two primary requirements for the project to work are:

Ocaml - version 4.02.3 - better installed through OPAM
GCC

Once these are installed and the project is downloaded, the following
steps are to be followed to run your first program in Cimple.

1. Enter the project folder, and run the command make . This is needed
so that an executable named ‘cimple’ is generated which is the entry-
point to the compiler.

2. Write a Cimple program:

Clearly, at this time, there isn't enough detail discussed for a beginner to
be able to whip out a Cimple program. But to get started, copy the
following code verbatim into a new file:

int main () {
int quarter = 25;

int dime = 10;
return quarter+dime;

}
Save the file with the name first.cpl'.

3. Now run the following command :
./runProgram.sh first.cpl

4. If all done correctly, the following should be the output:- 35

An important thing to remember is that every program in Cimple must
have the main () function, which is the entry-point of control into a
Cimple program. Cimple programs without a main() function are not
executable.

Lexical Conventions

Identifiers

Identifiers are case-sensitive sequences of characters that represent the
names of various entities, such as numeric values, custom data types and

functions. Identifiers contain a sequence of letters, digits and underscore
‘7, but should always start with a letter. However, they cannot be the
same as a keyword in Cimple, to make it through compilation.

Being case-sensitive means that two identifiers composed of lowercase
letters and uppercase letters even if they have the same spellings are
different. Identifiers in Cimple are of two types:

(a) Value and Function Identifiers - These are the names given to things
such as integer, floating-point or string values and the functions defined
in a program. They must begin with a lower-case letter, and can be
followed by any number of letters of either case, digits from 0 to 9 as
well as the underscore (_).

(b) Struct Identifiers - These are the names given to structs in a Cimple
program. They must begin with an upper-case letter, and can be followed
by any number of letters of either case, digits from 0 to 9 as well as the
underscore ('_').

Also, there is something called method receivers that are a very handy
concept in the interfaces domain in Cimple. What they are is discussed
later in this document. For the purposes of naming, receivers share the
same rules as structs i.e. their names should begin with a capital letter
and can be followed by any other letters, digits or an underscore.

Keywords

Keywords are words that are reserved for use naming of entities that hold
a special meaning for the Cimple compiler. These words cannot be used
for any other purpose. The following is a listing of all the keywords
recognized by Cimple :

auto long if interface
register float else extends
static double while implements
extern struct for make

void unsigned break clean

char signed return super

short const

func

Literals

Literals are the source code representation of a value of some primitive
types. Following are the types of literals in Cimple:

Integer Literal - This is a sequence of one or more digits in decimal.
Negative integers are represented by a negation operator prefixed to a
sequence such as the aforementioned one. Examples: 235, 89

Float Literal - This is a sequence consisting of an integer part, a decimal
point and a fraction part. For representing negative numbers, a negation
operator is prefixed. Examples:13.5, 9098.765

Character Literal - Character literals are characters that are enclosed by
single quotes. Examples: 'c’, 'S, 2, ™ etc. There are some special
character literals that hold specific meanings for the compiler, and act as
escape sequences. They are listed below along with their meanings:

\n' - Newline
\t' - Horizontal Tab
' - Carriage Return

Character literals with more than one character are inherently machine-
dependent and should be avoided.

String Literal - This is a double-quoted sequence of ASCIl characters. A
string can also be empty. Examples are : "Cimple is fun”, "good”, "I am 20

Separators - A separator separates tokens. Separators themselves are
simply single-character tokens. Following is a list of separators in
Cimple :

Character Token

' LPAREN
'y RPAREN

LBRACKET
RBRACKET
LBRACKET_SQUARE
RBRACKET_SQUARE
COMMA

SEMICOLON

oo b = e A

Operators

Operators are symbols that command the language to carry out specific
mathematical, relational or logical computations over a set of data items
to produce a final result. Cimple recognizes many types of operators,
which are distinguished into categories in two ways:

(a) Based on the number of operands an operator takes :- There are two
types of operators on this basis - Unary (operators taking only one
operand) and Binary (operators acting on two operands).

(b) Based on the type of computation an operator performs :- There are
categories such as arithmetic, assignment, logical, relational, bit-wise
among which operators can be segregated on this basis.

Following is a description of all the types:

1. Assignment operators :- These operators deal with operations of
assigning values to variables, and are always binary. Examples: = denoting
equals, += denoting plus equals, -= denoting minus equals, *= denoting
multiply equals, etc.

2. Arithmetic operators :- These represent arithmetic operations on
numeric values. Example of binary arithmetic operators are: + denoting
addition, - denoting subtraction, * denoting product, / denoting division,
% denoting modulus. In unary usage, the value of an expression formed by
the unary plus (+) and its operand is the positive value of its operand,
while the value of an expression formed by the unary minus (-) and its
operand is the negated operand.

3. Relational operators :- These stand for operations such as comparison
of numeric values and are binary, examples:- < denoting ‘less than’, >
denoting ‘greater than', <= denoting ‘less than or equals’, == denoting
‘equals’, != denoting 'not equals'.

4. Logical operators :- These are used to perform boolean condition
checks on expressions and are binary, examples: && denotes ‘and’ i.e.
operator evaluates to true if both of its boolean-typed operands evaluate
to true, || denotes ‘or' i.e. the result is true if either of its boolean-typed
operands evaluate to true.

5. Bitwise operators :- These are used for operations on individual bits of
the operands, and can be unary or binary. Examples:- & denoting the
binary AND, * meaning the bitwise XOR, ~ meaning negation or the
bitwise NOT, >> meaning right-shift, << meaning right-shift.

6. Increment and Decrement Operators :- These are C-style operators
which are used to increase and decrease the value of the operands by 1,
and are unary. These include ++ and --, standing for incrementation and
decrementation respectively. These are used as postfix operators that act
on an identifier (variable name) representing a numeric value. in such
usage, the value of the identifier is incremented or decremented, but the
value of the expression is equal to the value of the identifier before
having been altered.

Following is a table of all the Cimple operators, listed in the decreasing
order of precedence :

Operators Associativity

left to right
() [1. right to left
I~ 4+ -+ - left to right
% left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== 1= left to I‘lght
& left to right
A left to right
| left to right
& & left to right
I right to left
?: right to left

+= -= *: /= %: &: N= = <<=

The + and - operators appearing first are the unary versions whereas the
lower + and - are binary.

Comments

Comments in Cimple are anything which is enclosed within the character-
pairs /* and */, or that which follows a pair of forward-slashes i.e. '//"in
the same line. Following are the examples of the both types:

/* This is a
multi-line comment */

/1 Whereas this is a single line comment
Comments contain information which is ignored by the compiler, but that

is helpful to the programmer writing and maintaining the code to which it
refers. Comments cannot be nested.

Data Types

Data types in Cimple refer to the different forms of data that the
compiler accepts to perform operations on. These come in the following
two flavors:

Basic Data Types

The following primitive data-types are supported by the language.

int, short, long - These are the reserved words that refer to 32, 16,
and 64-bit integer values in Cimple.

float, double - There are the reserved names for 32 and 64-bit
floating-point numeric values in Cimple.

char - The char type is used to store a single character from the
language character set, and occupies 8-bits of memory.

string - This is a built-in data type in Cimple, which is recognized as an
array of characters. It is specified by the string keyword.

void - The void type indicates an absence of a value, and is used
primarily as a return type of a function to indicate that it is used purely
for its side effects, such as printing.

Collection Data Types

These are data-types that are formed from a collection of values of one of
the basic data-types. All the values in the collection necessarily belong to
the same primitive data-type. They are called arrays in Cimple.

Arrays are 0-indexed lists of the same type of values. They are declared
by writing the number of items the array holds, enclosed by square
brackets at the end of the name of an identifier, example :- int
integerList[10]. Individual elements of the array can be accessed by

specifying an index into the array enclosed by square brackets at the end
of the name of the identifier, example :

// Set the tenth element in the array to the value 10

integerList[9] = 10;

Custom Data Types

These are data-types that are user-defined and are not already included
in the language specification. In Cimple, they are called structures.

Structures or struct as they are recognized by the compiler, are the
primary means of creating custom data types. Structs encapsulate data
members of arbitrary type and functions that act on or with these data
members. Their size is variable and dependent on the data members
defined by the user. Constructors can be defined that initialize the state
of a struct by implicitly being called whenever an instance of that struct
is allocated.

Struct Declaration

The declaration of a struct is illustrated in this example:
struct Vehicle({
string color;

float speed;
}

It can be seen in the above example that a struct having name 'Vehicle' is
declared with the keyword struct, and holds two member variables of
heterogeneous data-types. One thing which is important to note here is
that the identifier used as the name of the struct begins with an upper-
case letter. This is a requirement for the compiler to accept the identifier

as the name of the struct, whereas names for other things such as
variables and functions are acceptable if beginning with a lower-case
letter.

Struct Instantiation

Unlike the primitive data-types, custom data types need to be
instantiated before they can be leveraged for data operations. The syntax
observed in creating instances of structs is:

struct struct-identifier pointer-identifier = make struct-
identifier();

struct and make are keywords here.
Exanuﬂe:- struct Employee *teacher = make Employee() ;
for some struct Employee defined as :- struct Employee{

int age;

double wage;

double getWage () {

// function body

Expressions

Programs in Cimple are built with expressions, and a program can be
viewed as a list of expressions executed in sequence.
The types of expressions in Cimple are elaborated in the following table.

Name Syntax
Examples

a,

ifi identifier
Identifiers computeSum,
Student
integer or floating-point or 25000, 35.85
Constants ?:haracter or sgrfn : ’
g C, hame
Address & identifier &num
* identifier *ptr
Pointers or
** identifier **doublePtr
numbers []
Arrays identifier [size] groceryList[quant
ity]
books[10]
expression arithmetic-operator 34-*5,
expression (234 /47 8) -
Arithmetic, or 12
Retat].on?l’ expression relational-operator 25<=100’
ogica expression area/length !=
operations width
or
expression logical-operator 3 ||8
expression (@>b)&&(c==50
)
height = 10
Assignment amount +=
operations |expression assignment-operator (P*R*T)/100

expression

age *=5

Incrementatio expression increment-operator num ++
n, _ or (5*13) --
Decrementati expression decrement-operator
on operations
int a, d

Declaration

declaration-specifier declarator-
list

string *pointer

Function call

identifier ()
or

identifier (parameter-1list)

add(one, two)

getLength(arra
y)

make Vehicle()

Memory _ o (in a statement such
t make struct-identifier () as
Mmanagemen clean struct-identifier struct vehicle
car = make
Vehicle () :
discussed more in
detail later),
clean car
square.area
Struct (for E sltruct as the
expression dereference-operator one below:
rnen1ber. expression struct Shape{
Dereferencing int
areay,
int volume;
}
struct Shape
*square = make
Square () ;)
Anonymous fur!c (int) (int
fungtion 3, int bX
definition func return_type parameters]ntmeUCt

statements

= a*b;
return
product;

}

Statements

A statement is the smallest unit of execution of code. The following types
of statements are supported in Cimple.

Expression Statements

An expression statement is basically just an expression followed by a
semi-colon. It follows this syntax :-

expression;
A few examples:
12+60;
length -= 100;
char *p = &c;
string text;
int newArea = square.area--;
struct Employee *teacher = make Employee() ;

Being the smallest unit of execution of code, an expression statement
gets executed with all the expressions that constitute it getting
evaluated.

Compound Statements

Compound statement is nothing but a set of statements written one
following the other, and enclosed within a pair of braces, in the following
syntax:

{
statement_1

statement_2

statement_n

1

Here is an example: {
double r = 100.56;
double s = 765.90;

double result = r-s;

Conditional Statements

These statements are used for the conditional execution of another
statement or a block of statements.

e if statement - This is a conditional statement, which is written in the
following syntax:

if (expression) statement

The purpose of this statement is to evaluate whether the expression
inside the parentheses is true, and if it is, to execute the statement that
follows. Thus, execution of the statement is dependent on the validity of
the preceding expression i.e. the execution is conditional.

Example: if(num !'= 100) {
num+=50;

int newNum = num;

e else statement - This is another conditional statement, which follows
an if statement. this syntax is followed:

if (expression) statement_1 else statement_2

The difference between this construct and the previous one having only
an if clause is that if the expression enclosed within the parentheses is

true, statement_1 will execute, but if it is not true (the case with which
else corresponds), statement_2 will execute.

Example: if(weight>200) string message = "Heavy";

else string message = "Light”;

Loop Statements

This is a type of statements which are used to execute the same
statement or block of statements repeatedly as long as some specific
condition is met. They are named ‘loops’ because they execute one pass
of statements, circling back to the beginning and going again. There are
three variants of these:

e for statement - This statement assumes the following syntax:

for (expression_1; expression_2; expression_3) statement

The way it works is, expression_1 is an initialization expression, which
behaves as the initiation of the loop. expression _2 is a test expression
which runs every time a new iteration of the loop is going to begin, in
order to decide if the iteration will take place. expression_3 is an
increment or decrement expression, run after each loop iteration,

which causes the progression of the value of expression_2 toward its
final value, where the loop is supposed to stop.

It is worth noting that none of the three expressions in a loop's body are
necessary, i.e. this syntax is totally acceptable:
for (; ;) statement

Example:
for (int i=10; i>0; i--){
int §J = 2*i;

}

e while statement - The while loop has the following syntax:

expression-1;
while (expression-2) {
statement
expression-3 ;

}

This loop statement works very similarly to the £or loop. All expressions
have the same purpose here as they did in the case of for loop, and they
are all optional here as well. If expression_2 is missing in a while
statement, the statement is interpreted to be equivalent to while (1)or
while (true), which means that the test-condition always stays true
and thus causes a never-ending execution of the associated statements.

Example:- int m = 0;
int n = 8;
while (m>n) {

n=4*n;
m+=5;
}

Control Flow Statements

This is a category of statements which are used to maneuver the flow of
control during the execution of a Cimple program.

e return statement - This is a statement that allows the control to

jump from a function in execution back to the code that invoked the
said function.

It follows either of the following syntax:
return ;
return (expression);

The difference between the two types is that some value is returned by
the second statement while nothing is returned by the first. The value

that gets returned in the second case has the same type as the type of
the expression on the right side.

Example:- {
float radius = 25;

return 3.14*radius*radius;

e break statement - This statement is used inside a loop to terminate
the execution of it, before the test expression evaluates to faise and

terminates the loop. When a preak is executed, the control transfers to
the statement that follows the terminated statement or block.

The syntax is very simple:- break ;
Example :- int value = 50;
while (value<100) {
value+=10;

if (value==90) break;

Functions

A function in Cimple is a block of statements that execute when the
function is invoked. They differ from a usual block of statements in that
they can be executed in multiple places in a program, without having to
be re-written, with a simple invocation statement called on an identifier
reference to the function.

Function definition

A function in Cimple is defined using the following syntax:
return-type function-name (parameter declarations) {
declarations

statements

]

In a function definition, the 'return-type', 'function-name’ and the pair of
matched parentheses are all required, while the other things like
‘parameter declarations’, ‘declarations’ and 'statements’ are optional.

Return type of a function refers to the data-type of the value returned to
the calling code, when that function is called. It can be any of the
primitive types like int, float, char, string or a user-defined type or
a pointer. A function may not return any value. In that case the return
type needs to be specified as void. Although the body of a function,
which is the block of statements that are enclosed in a pair of braces { }
and follow the parentheses in a function definition, is optional when
defining a function, if the function has a return type other than void, it
should compulsorily have a return statement with a value having the
same type as the return type of the function. This can be better
explained with examples.

The following function definitions are correct.

double getVolume (double length, double width, double height) {

double volume = length*width*height;
return volume;

}

void computeSum(int p, int q, int r, int s) {

int sum = p+g+r+s;

The following function definition is not correct, because the function will
not return a value of the same type as the return type.

int findAverage (int num 1, int num 2) {

int avg = (num_l+4num 2)/2;

Parameters, or arguments, of a function are values that are supplied to it
to use them in some computation or to perform some operation on them.
These can be of any type, primitive, user-defined or pointers. These are
optional and can be left out of a function definition.

Function Call

The way to bring a function into execution is to call its name with the
proper arguments. The syntax followed is:

function-name (arg_1, arg_2, ...)

Here, arg_1, arg_2 etc are values of the same type as the types of the
parameters mentioned in the definition of the function, and they appear
in the invocation in the same order as their counter-parts in the
definition.

Exanuﬂe:- void computeSum(int p, int q, int r, int s) {

int sum = p+gt+r+s;
}

For the above function definition, the function computeSum can be
invoked by a statement like this:

computeSum (10, 8, 72, 3);

The rule for function calling changes a little for functions that are
members of structs. Structs are Cimple's way of encapsulating data and
methods in order to provide object-oriented programmability. Thus, a
function which is defined inside a struct can only be invoked by an
instance of that struct. This is done using the member-dereference
operator, according to this syntax :-

struct-instance-name. function-name(parameter-list);
Here is an example for this scenario:
struct Course{
string name;
int id;
void enroll () {

// function body

}

Invoking the function ‘enroll’;-

struct Course *literature = make Course() ;

literature.enroll () ;

Anonymous Functions

As mentioned earlier, anonymous functions are a new concept in Cimple,
compared to C. They differ from the usual functions in that they are
defined inline with another function definition, without a name. Because
this means that a function could begin its definition within some scope
other than global, it is valid for the scope of the anonymous function to
reference variable names (identifiers) declared outside of its scope. In
this case, the compiler will copy the values of these variables to a data
structure that is passed as an implicit argument to the function.

One important feature of anonymous functions is that although they work
as arguments to other functions, they are not returnable i.e. they cannot
be used as return types of functions.

Anonymous Function Definition

An anonymous function is defined as follows:
func (type)(arg_1, arg_2, ...) { statements }

The first set of parentheses can only have one type indicated, and
represents the return type of the anonymous function. The second set of
parentheses contains the parameter list, as with the named functions.

Example of anonymous function definition:-

func (int) (int i) {
// Do something with i
return i;

Anonymous Function Call

An anonymous function is used as an argument to another function, thus
the anonymous function gets called during the execution of the function
that it is serving as an argument to. The use of an anonymous function as
an argument is specified according to the following syntax:

return-type outer-function-name (arg_1, func(return-type)(arg_1, arg_2) *anon-function-name,
arg_2, ...)

anon-function-name is an alias for the anonymous function which takes an
int parameter and returns a void.

An example will make this clearer.

void some_function(int x, func(int) (int) *£fn)
{

int result = fn(x);

printf (“%d\n”, result);
}

int main(int argc, string* argv)
{
for (int i = 0; i < 5; ++1i) {
some function(i, func(int) (int Jj) {
return j + 1;

})

Scope Rules

The accessibility of a variable in different parts of a program is called its
scope. Not all variables can be accessed everywhere in a program, and
the scope of a variable is dependent upon where in the program it has
been declared.

Variables that are declared at the head of a Cimple program or elsewhere
but not within any function or looping construct, are called global
variables, and they can be accessed all through the entire program.
Variables that are declared within a function or a for or while loop are
called local variables, and their scope is limited to within the function or
loop statement where they are declared. The scope of variables that are
arguments to functions is also the function itself.

The following example illustrates the scope of various types of variables.

int numOfSides = 3;

struct Triangle ({
float sides[numOfSides-1];
float perimeter;
}
int main () {
struct Triangle *equilateral = make Triangle() ;
for(int i=0;i< numOfSides;i++) {
equilateral.sides[i] = 10;
}
equilateral .perimeter = findPerimeter (equilateral) ;
return O;
}
float findPerimeter (Triangle t) {
int j, peri =0;
while (j< numOfSides) {
peri+=t.sides[]j];
J++;
}

return peri;

1. Variable 'numOfSides’ is declared at the very beginning of the program,
or otherwise, outside any function. Thus, it is accessible anywhere in the
program till the end.

2. Variable i is declared in the for loop, and can be used in the same
context in the loop alone, i.e. the scope of variable i extends from the
body of the for loop following the expression int i=0; to the closing
brace .

3. Variable t is an argument to the function findrperimeter. Thus, the
scope of t is the body of findrerimeter.

4. Variables i and peri are declared within function findperimeter, SO
they can only be used within that function.

5. Other identifiers such as Triangle, equilateral, sides and
perimeter are struct instance or member identifiers, and they observe
different scoping rules than the types discussed so far.

Inheritance

In Cimple, a struct can inherit from another struct. This is done with the
use of extends keyword, such that a child struct “extends” the
functionality of another struct, which will be its parent. The syntax is:

struct struct-identifier_1 extends struct-identifier_2 { member variables and
functions }

Here is an illustration of this:

struct Person {
string name;
Person (string theName)
{
name = theName;
}
}

struct Student extends Person{
string uni;
Student (string name, string theUni) {
super (name) ;
uni = theUni;

}

Another keyword worth noting here is super. It allows access to a parent
struct’s methods and can only be used within the struct definition. In the
above example, the constructor of the parent class is invoked by
calung super (name) ;.

To access a method, this could be written:- super.getName () ; .

Interfaces

To benefit from a flexible inheritance scheme, structs can inherit the
methods declared in other structs called interfaces, but provide native
implementation to them. An interface is an abstract type which defines a
Method Set, which is a collection of methods encapsulated in scope. A
method set is a list of methods belonging to the same receiver. A method
set is defined internally.

For example :-

{

ReturnTypel (Receiver) func namel () ;
ReturnType2 (Receiver) func_ name2 ();

}

The Receiver must begin with a capital letter or maybe empty. It is a
semantic error for it to be empty for a non interface type.

A method is a function with a receiver associated with it.

Syntax:- ReturnType (Receiver_opt) func_name ()

Interface Declaration

An interface is declared in much the same way as a struct. The only
difference lies in the keywords used to identify the two. This is the
syntax:

interface struct-identifier{ method-set }

Example :- interface Pet{
void feed() ;

void walk () ;

Interface Implementation

As in the case of a struct, an interface can be ‘implemented’ by a struct
with the use of the keyword implements. The syntax followed is:

struct struct-identifier_1 implements struct-identifier_2 { member variables and
method-sets }

Exanuﬂe:- struct Dog extends Animal implements Pet{
void feed() {
// dog-specific feeding implementation

}
void walk () {

// native implementation

}
}

It is a structure which enforces certain properties on an object, which
implements one. The receiver for this method set is empty. In particular
all interfaces have the same receiver.

Memory Management

As mentioned earlier, Cimple uses two types of memory management for
variables. The variables that come into action on the activation of their
scope are automatically allocated space on the stack memory. Other
variables, specifically those that refer to user-defined custom data-types
are given space on the heap, whenever instances of those types are
created. This is done with use of the keyword make followed by the
identifier used for the custom type, as discussed in the above section
dedicated to structs. A call to the constructor method of the struct can
be used to initialize the data members to their default values.

Likewise, Cimple manages memory de-allocation skillfully. For heap
variables, memory is not de-allocated until the programmer specifies
such action with the use of clean keyword. That can be done in the
following syntax:

clean struct-instance-identifier

Project Planning

Planning Process

We used to meet our TA, Alexandra Medway, every week on Tuesdays, to
get a progress check about the tasks handled since the last meeting as
well as to decide the goals for the upcoming week. Other team meetings
used to be held on Tuesdays or Fridays to collaborate on the tasks more
granularly. Even though a few soft deadlines were missed, the progress of
the project remained largely steady throughout the semester. The
timeline followed in completing the different milestones of the project is
laid out in the 'Project Timeline' section.

Specification

The beginning of the project was marked by a decision about the type of
language that we wanted to implement, worded down in our language
proposal. We wanted the language to have the execution speed of C,
while supporting some empowering features such as inheritance and
anonymous functions, which meant that the language would extend the
functionality of C somewhat into the realm of Java and Javascript. Our
initial meeting with our TA revealed that the language, being an
extension of C, would be better implemented if brought to compile down
to C rather than LLVM.

Development and Testing

We started with a simple goal of defining the basic grammar, and getting
an abstract syntax tree built out of the basic arithmetic operations.
Successively, we expanded the grammar and re-iterated the above steps.
Then we moved on to the further steps of getting static semantic
checking and code generation working. Once the 'Hello World' milestone

was met, we moved on to the implementation of the larger 'non-C
features such as interfaces and anonymous functions. Every new feature
was accompanied by a test, to make sure that the syntax tree was
generated correctly and code generation was happening without glitches.

Roles and Responsibilities

After a discussion with the TA, it was made clear that even though all the
team members were to shoulder responsibility for the entire project,
assigning specific roles to each member would make sure that one person
was answerable for falling behind on at least their individual
responsibility, in case that happened. Accordingly, roles were allotted as
follows:

Graham Barab - Manager and System Architect
Shankara Pailoor - Language Guru

Panchampreet Kaur - Tester

Test Plan

Unit Tests

We started testing the scanner, parser and ast with unit-tests, to
determine whether the basic arithmetic and assighment expressions were
being parsed correctly into a syntax tree. At first, the testing was limited
to the use of menhir. However, in subsequent meetings with the TA, we
decided to setup a dedicated test-suite with a structure to support four
kinds of tests:

1. Parse-tree tests - Pass and Fail
2. Build tests - Pass and Fail

The parse tree tests were setup to make sure that the syntax tree was
getting created properly and the build tests were to test whether code-
generation was taking place without hassles. The pass sub-category
pertains to the syntactically correct programs which were expected to
pass the various front-end and back-end components of the compiler

while the fail category refers to the incorrect programs which were
supposed to generate a compilation error.

Besides, we also made use of the Travis automated testing suite, which
was a big help in making sure commits on all different branches were
resolved for errors.

Integration Tests

As the project progressed to the later stages where we moved to the
implementation of interfaces and anonymous functions, we started
writing more detailed programs for testing purposes. The integration
testing was carried out using the same test suite as described in the
above section.

Automation

As mentioned earlier, Travis Cl was an automated testing tool that we
incorporated into our test suite to make use of at the level of version
control. Besides, we added scripts to the folder containing each type of
tests, which were added to the project Makefile and would run comparing
the outputs of all test programs against their expected outputs.

Source to Target

The code comprising the test-suite is included in the appendix section of
this report.

Software Development Environment

The following tools were used in the development of this project:

Purpose Tool

Programming language
Compiler front-end

C output generation from Cimple
code

Ocaml version 4.02.3
Ocamllex, Ocamlyacc
GCC version 5.4.0
Mac OS X, Ubuntu

Operating systems Github
Version Control Nano, Vim
Text Editors
Project Timeline

Date Milestone
September 15 Brainstorming about basic language features
September 28 Language Proposal submitted
October 26 Language Reference Manual submitted
November 15 Scanner and Parser complete
November 18 Hello World working
December 9 Interfaces implemented
December 16 Anonymous functions and C codegen
December 19 implemented

Submission of Final report and Project Demo

Architectural Design

Cimple

Source
| Abstract ; | Static
Scanner | Parser yntax Tree o
Checker
[
GCC | C Code Code C Tree
- 1 - }
generation Generation
l ' (SAST)
Executable Header

Files

The point of entry into the compiler is file in the project folder, called
‘cimple.ml’, which takes in a Cimple source file and routes it through the
correct components of the compiler. The parts through which a source
file goes are explained in sequence below.

Scanner - This part accepts the stream of characters that make up the
source of the program, and outputs tokens made out of those characters,
with characters such as spaces and user comments filtered out. The
tokens then go into the parser. The code associated with this component
is written in scanner.mll.

Parser - This part accepts tokens and emits an abstract syntax tree from
those tokens in accordance with the grammar of the language. This part
is coded in parser.mly.

Abstract Syntax Tree - This is a tree structure of all things such as data
types, expressions and statements that are accepted by the language,

and is further used for static semantic checking. The code for the syntax
tree resides inside ast.mli.

Semantic Checker - This part deals with the verification and validation of
the variables, types and expressions forming the program. The code for
this part is contained in semant.ml.

C-Tree - This part deals with the verification of the correctness of the
types, values, expressions of the intermediary C program which results
from the Cimple source, after the latter is passed by the semantic
checking stage. The code for this can be found in ctree.ml.

Code Generation - This part outputs a C program after the Cimple
program is verified for its semantic validity and C header files are linked
on. The relevant file is ccodegen.ml.

In the end, the C program that has so far formed, is fed to GCC, which
compiles it and returns an executable to be run.

Lessons learnt

Shankara

When designing a compiler it is important that everyone has a very clear
understanding of all the components of the language. To achieve that |
really recommend taking professor Edward’s plea to have your parser and
scanner done by Nov 1 or earlier. Having a complete parser and scanner is
crucial because last minute changes to it could be disastrous. We had
some near close calls and having to suddenly deal with shift/reduce
errors can be stress inducing. | think you should choose a language that
will motivate you to complete it. For me, | was very interested in the
components we developed, like classes, inheritance, anonymous functions
and interfaces and | wanted to get them to work. It is also critical that
you maintain a diverse and extensive set of tests as you develop. Without
it, you simply cannot guarantee you changes haven’t broken something
else. Having that piece of mind as the semester nears to a close is
invaluable. Travis Cl was a great tool for us, but there are many such out
there. Lastly, don’t fight OCaml, embrace the way it is. Being open to a

new way of programming will make this class much easier and you will
have a lot more fun.

Graham

Obviously, as many have said before, it is critical that the project be
started as early as possible, and worked on regularly. In particular,
the parser should be air tight as early as possible, because it is very
easy to introduce subtle errors by modifying it later into the project.

Since | come from an imperative and object oriented programming
background, debugging a functional programming language such as
OCaml proved to be a bit of a challenge. Over the course of this
project, | have found that a rudimentary, but effective, way to
debug and troubleshoot is to use the sequencing feature of the
language (statements followed by a semicolon) to print debug
messages at runtime. The failure of a particular print statement to
appear can be very revealing.

As the manager, another very important lesson | have learned is the
importance of staying in regular communication with all
temamembers, and make sure contributions occurr regularly.

Graham Barab (Manager, System Architect)
Pancham

Through this project, | have learnt that it is very crucial that one takes
sufficient input from people who have done such a project in a similar
environment, like students from previous years or the TAs, about the
scope and gravity of the project. This would help in setting realistic yet
challenging enough deadlines for the various milestones of the project
and keep unpleasant surprises from coming your way through the
semester, especially toward the end.

Another take away has been that one should put off pushing code until all
build tests pass, and to also keep your code in your separate branch first
before pushing to the common branch. Having to spend time on merge
conflicts is one thing, but taking other team members down with you by
messing with their branch is an even worse scenario. In the end, among

the many widely applicable skills that this class can equip you with,
getting to know and adopt functional programming has definitely been

the highlight.

Project Log

©C232739b0dcafbde156129809678d377beda760
4c46bb19038f21050055bb68fb61bedns0302188
beobbISd795F6033d9F1e 7198635305990 549
dCOBABBOChLTBA0L1B997FFO187 363990080 3¢ 36
T4eae35feS5cdfe951d500a84c8deandadea’sie
4207¢994b176b5154bbel613122ac2c 190082229
bB69cd2f591d8fda7a12025b4d35d92¢27b4812
fasc1b2844c0bd3741edb659be20730d2F33528)
134€34740ab1dC0daBCclS 2800842801 15400000
P078c91a4d6caleab34226703980164a004 1060
c9c4dB4aS58aae7226b145a8941d311Ref3d709¢43
7c99c5a37a37d62df896082aa8bbfea1439f0181
edcBal7fa7d27e951e5df5e2a5ad9f05dee5508)
2¢609db9e97cdachIBTechCcaS9BeRCHGTdBch 7S
TO4LE32d2442393b39726abeabafod2bbetbfd7e
f7304520b4981192538b1ab036%achéaT3efcfoc
fci613ee42039d0fe32723badeafbbol33aclods
515c0acfo01015f573845c1caf5991f226658d00
BEFLC27Ba5781574950e 1096 1000dcfcIe12098
BA5S977aBcAnc2daedBel£12157296193497ddad9
ACS5B4304148432160dc431141D20109566142079
470217109915c4511a62243a7a77b4cf 12263370
9c901abdee3ac050109654dd56787716a¢3568¢3
7cbBSsSasc3abfbe674dbfE94dboesnafs21c629¢
SedOB256895¢C1280773¢66¢1abb29¢225847 364
©0ab3b034463034666597D5730825414c58304124
38219aa234bb1cB8fdefefadd82a59ca2f768¢c3b0
9692¢22b9f233d945c41b8bf98e75c8fbddd36db
77252Fdd27badasbeBlcdcbB20a2bcbefeass96a
VEBAIGLS298b1c6aaGob I cafel20d 7 fe2ca6cad

Code

scanner.mll

Merge branch “graham® of https://github.com/TeanCimple/Cimple into graham
Clearup

Adding dsp demo

adding demo folder with prograss from deso

Caught match error

Fixed duplicate symbols bug for real

Fixed order of declarations bug

Tutorial script

Fixed bug in mesbers_from* causing duplicate sysbols to be generated in ¢
Got rid of first ¢ compilation errors

Closer, still compilation errors in ¢ file output

Fixed undeclared receiver symbol error

fixing merge conflict

adding kharges

binary search out file

Super statements support anonymous functions

Fixed order of argument bug

Merge branch “‘graham’ of https://github.com/TeanCimple/Cimple into grabam
support for amon functions in methods

changing back order of argusents to function. It broke the ancnbuild
fixed bug with function not allowing pointer return types

adding parse tree tests

merged

converting globals

Added semantic check for printf, math functions

Merge branmch “grabham’ of https://github.cos/TeasCimple/Cisple into graham
printf works, still need semantic checking

added destructors

Merge branch “grabam’ of https://github.com/TeanCimple/Cinple into graham
Started work on printf

K*{ open Parser open Test }*)
{ open Parser }

rule token = parse

[* " "\t" '\r' "\n'] { token lexbuf }
'3" { SEMICOLON }

“++" { PLUSPLUS }

*+' { PLUS }

“+=" { PLUS_ASSIGN }
"--" { MINUSMINUS }

*=' { MINUS }

"-=" { MINUS_ASSIGN }
“/*" { comment 1 lexbuf}
*** { TIMES }

“+=" { TIMES_ASSIGN }
/ { DIVIDE }

"/=" { DIVIDE_ASSIGN }
‘%' { MOD }

"%=" { MOD_ASSIGN }
"<<" { LSHIFT }

"<¢=" { LSHIFT_ASSIGN }
“>>" { RSHIFT }

“»>>=" { RSHIFT_ASSIGN }
“&&" { AND }

‘&' { BITWISE_AND }
"&=" { AND_ASSIGN }

LI { xoa }

"A=" { XOR_ASSIGN)
“I1" { oR }

('0' 9"]+ as Lit { anr_uavemAL(int_of string lit) }
['0' "']0'.'.['0’ '9']% a5 1t [FLOAT _LITERAL(float of string 1it))

ll - .l'll..ll.l(ll,..(ll,'l.ll‘ll"l.ll"l'll.ll‘ll e l\ll l

Textesds”™ (Exrewes)
“make” [Max)
“implesents” | pwLtmns)
“interface” [INTERFACE)
“wito” [o)

“register™ { MGISTER)
“static” | sraric)

.. 0 . l . !l‘l . ll\\ l.

55w Mit | sTamme_LiTeaaL(lit))

“tloat™ { FLOAT }

“double” { DOUBLE }

“signed” { SIGNED }

“unsigned” { UNSIGNED }

“func™ { FuNC }

“const™ { CONST }

“volatile™ { VOLATILE }

"struct”™ { STRWCT }

“union™ { UNION }

“enum™ { ENUM }

“case”™ { CASE)

“default” { DEFAULY }

“if" { IF }

“else™ { ELSE }

“switch™ { SWITCH }

"while” { WHILE }

“do" { DO }

“for™ { FOR }

“goto” { GOTO }

“continue™ { CONTINUE }

“break”™ { BREAX }

“return” { RETURN }

*{' { LBRACKET }

*}' (RBRACKET }

“[* { LBRACKET_SQUARE }

'] { RBRACKET_SQUARE }

‘(" { LPAREN }

) { RPAREN }

. { PERIOD }

' coma)

= { ASSIGN }

*2' { QUESTION }

1 (coLom)

't { ASTERISK }

"o { ELLIPSIS }

[fa*-"z2""_")+['a'-"2"'"A'-'2''_"'0'-'9"]" as 1it { IDENTIFIER(lit) }

[CA*-"2")ef"a’-"2""A"-"2""_"'0"-'9')" as structLit (
STRUCT_IDENTIFIER(structLit) }

| eof { EOF }

| _ as char { raise (Failure(“illegal character © * Char,escaped char)))

and comment depth = parse

“I*" {comment (depth+l) lexbuf)
| **° (if (depth = 1) then token lexbuf else comment (depth-1) lexbuf)
| _ { comment depth lexbuf)

parser.mly

K{ cpen Ast X}

Atokes SEMICOLON

Ktokes <iat> INT_LITERML

Stokes <flost> FLOAT LITERAL

Stokes cotringy STRING_LITERAL

Stokes <otring> IDENTIFICR

Stokes cotring> STRUCT IDENTIFIER

Atokes ASSIGN

Atokes RETUAM

Stokes NIL

Stokes PLUS MDWS TIMES DIVIOE MO0 PUUSPLUS MInssMEws

Alokes AND OR QITWISE AND BITHISE OR NOR MOT LSMIFT RSMIST

Ntokes SQUALS NOT _FQUALS LESS Tl LESS THAN FQUALS GREATER THAN GREATER ThAn |
Xtokes TEMES_ASSIGN DEVIOE_ASSIGN MOD_ASSIGN PLUS_ASSIGN MINGS_ASSIGN l“ﬂ_}bu(n RSIFT_ASSIGN AND_ASSION NOR_ASSIGNY ON_ASSion
Alokes AUTO BEGISTER STATIC EXTERN TYPEDEF

Stokes VOID CHAR SMORT INT LONG FLOAT DOUBLE STGASD UNSIGASD STRING Fumg
Atokes COMST VOLATILE

Alokes STRUCT UMION INTERFACE MAKE SUPER CLEAM

Ntokes SWITOM CASE FWUM DEFMLT IF FLSE

Atoken UBRACKET MBRACKET LBRACKET_SQUARE MERACKET_SQUAKE LPAREN WPakin (Orew
COLON ELLIPSIS ASTERISK PERICO

Stokes WMILE DO FOR GOTO CONTINGE SRSAC

Stokes EXTENDS IMPLEMINTS

Ktokes QuEsTION

Xtoken §OF

Taonassoc MOELSE

Tnonassoc NOPOINTER
Tronassoc mXAaLL

Tocnassoc ELSE

Tnonassoc DELENIATOR
Tronassoc LPARIN

Satart prograe

Stype <Ast thrograss progras

statesent _list:
/* nothing */ { ())}
| stotement list statement { $2::81)

statesent:
expr_opt SEMICOLON { txpr $1 }
| selection_statesent { $1)
| composnd_statement { $1 }
| fteration_statement { $1)
| BREAX SEMICOLOW { Break)
| RETUSN expr_cpt SEMICOLON { Return $2)

selection_statement:
IF LPAREN expr RPAREN statement Xproc MOELSE(If($3, $5, EmptyElse))
| IF LPAREN expr RPARIN statement ELSE statesent ({I€($3, 35, $7)}

iteration statement:
WHILE LPAREN expr RPAREN statesemt { while(ss, $5) }
| FOR LPAREN expr_opt SEMICOLON oxpr_opt SEMICOLOW expr_opt RPAREN statesent (For($3, $5, $7, $9))

oxpr_opt:
/* wothing */ {moexpr)
| expr {$1)
oxpe:

assigrment_oxpression ($1)
| make_expr { $1 }
| anon_func_def { AncaFuncDef($1))

assignment_expression:
postfix_expr assignment operator expr { AsnExpr($1, $2, $3))
| logical_or_expression { $1)

logical or_expression:
| logical_and_expression { $1 }
| logical_or_expression OK logical and_expressiom { Comparetxpr($l, togicalor,
$3) }

legical_and_expression:
| equality expression { $1)
| logical asd expression AND equality expression | Cosparefapr($l, Logicalaad,
) }

equality_expression:
| relational_expression { $1)
| equality _expression EQUALS relational_expression { Comparefxpr($1, Eql,
$3) }
| equality expression NOT_[QUALS relational expression (Cosparefapr($l,
notiql, $3))

relational _expression:
| add_expe ($3 }
| relational_expression LESS_THAN add_expr { Comparebapr($l, Less, $3))
| relational_expression GREATER_TWAN add_expr { Comparefapr($1, Greater, $3))
| relational _expression LESS THAN EQUALS add_expe (Comparelxpr($1, Lessigl,
))
| relaticnal expression GREATER THAM EQUALS add expe (Comparelxpr($l,
Greaterigl, $2))}

UBArYy_exprs
| postfix_expr { $1)
| MIWS postfix_expr (Neg($2) }

postfix expe:
prisary_oxpe { $1)
| postfix_expr PLUSPLUS { Postfix($1, PostPlusPlus) }
| postfix_expr MINUSMINGG { Postfix($1, PostMinusMinus))
| postfix_expr LPAREN expr_list aPaAREN { Call(Moexpe, $1, $3))
| postfis_expr LBRACKET_SQUARE postfix_expr RBRACKET_SQUARE { ArrayAccess(si, $3) }
| SUPER LPAREN expe_list RPAREN (Seper($3))
| CLian peimary expe (Clean($2))
| postfix_expr PERIOO IDENTIFIER LPAREN expr list RPAREN (call($1,
td(tdentifier($2)), $5) }
| postfix_expr PERIOD IDENTIFIER Xprec MOCALL{ MemAccess($1, Tdentifier($3)))

make_expr:
MAKE STRUCT _IDENTIFIER LPAREN expr list RPAREN { Make(CustomType($2),
$4)}
| MAKE type LERACKET SQUARE primary cxpr RERACKET SQUARE (
Maka(ArrayType(s2, wofointer, $4), [1) }
/*| MAKE type_ pointer LBRACKET _SQUARE primery_expr RBRACKET _SQUARE (
Make(ArrayType(s2, $3, $5), (1)*/

expr_list:
/* wotking */ (]}
| expr { [51))
| expr_15st COMMA expr [$5 :: $1)

assigneent_operator:
ASSIGN { Asn }
| TIMES_ASSIGN (MulAsa)
| DIVIDE_ASSION { Divasn }
| MOD_ASSIGN { ModAsn)
| PLus_asston { Addase }
| mInus_ASSIGH { SubAsa }
| LSHIFT_ASSION [tshasn)
|
|
|
|

RSHIFT_ASSIGN { Rshasn }

binary operator:
AN { And)
| or {or)
| SITWISE A0 [SitAnd)
| sITwise_om { mitor)
| xo { xor)
| Mot { Wot }
| LSHIFT { Lsh)
| mswarr { msh }

logical_opeator:
EQUALS (Eql)
| wOT_EQuALS (NotEgl)
| LESS_TMAN { Less)
| Less_Tran tQuals { Lesseqgl)
| GREATER_THAN { Greater)
| GREATER THAN EQUALS [Greatereql)

add_exprs

add_expr PLUS mult_expr { Binop($1, Add, $3) }
| #dd_expr MINUS mult_expe [Binop($1, Sub, $3) }
| mult_expr { $1)

mult_expr:
mult_cxpr TIMES wnary_expr (Binop($l, Mul, $3))
| mult_expr DIVIDE unary_expr Binop($1, Div, $3))

| mult_expr MOD wnary expe { Binop($1, Mod, $3) }
| unary_expr {81}
primary_expr:
LPAREN expr RPAREN {s2)
| FLOAT_LITERAL { FloatLiteral(s1))
| INT_LITERAL { Literal(s1) }
| STRING_LITERAL { stringLiteral(s1) }
| 10ENTIFIER { 1d(1dentifier(s1))}
(L { mil)}
| BITWISE_AND primary expr [Pointify($2))
| TIMES primary_expr { Deref(s2))
type_specifier
voio { void }
| A { char)
| SHORT { Short)
| Y (Int)
| LowG { Lomg)
| FLOAT { rloat)
| oousLt { Dosble)
| S16utD { Signed)
| UNSIGNED { Unsigmed)

| STRING { String)

storage_class_specifier:
ATO (Asto)

| REGISTER { Register }

| STATIC { static)

| Exrean | Exteen }

| TYPELEF { Typedef)

declaratlon_specifiers:
type_ { DeclspecTypespecany($1) }
| declaration_specifiers type_ { DeclSpecTypeSpecinitiist(s2, $1) }

type !
type_specifier pointer [let rec num ptrs ptr » satch ptr with
| Pretypel , sext_ptr) <> 1 + sum ptrs
next_pte
| Pointer -> 3
| moPolister <> @ In PolnterType(PrisitiveType($l),
rum_ptrs $2))
| type_specifier Sprec MOPOINTER { PrimitiveType($1))
| STRIXT STRUCT_IDENTIFIER pointer (let rec num_ptrs ptr « match ptr with
| PtrType(, mext_ptr) > 1 + sum ptrs
next_ptr
| Pointer <> 1
| moPoister -> 0 in PolnterType(CuttonType($2),
um ptrs $3))
| STRUCT STRUCT_TOENTIFIER Xprec NOPOINTER{ CustomType($2) }
| INTERFACE STRUCT_TDENTIFIER { CustomType($2))

init_declarator_list:
init_declarater (InitDeclList([$1)))
| init_declarateor list COMMA init_declarator { InitDecliist($3::[$1]))

iait_declaratee:
declarator | InitDeclarator($1))
| declarator ASSIGN expr { InitDeclacatordsn($l, Asn, $3))

pointer:
TIMES polnter { Ptriype(Pointer, $2) }
| Tives { polnter }

declarater:
direct_declarator { DirectDeclarator($1))

record_initializer_list:
| record_initializer { Initializer(s1) }
| record_initializer_list COMA record_initializer (Initializertist(s1 i
[$3D)}

record_initializer:
assigrment expredsion { Initialirertxpe($l))
| LORACKET record initializer 1Lt RORACKEY { $2)
| LORACKEY record initializer 1St COMMA RBRACKLT { $2)

direct_declarator:
TOENTIFIER (var(Identifier($1)) }

declaration:
declaration specifiers Inlt_declarator_list seMicoecm { Declaration($l, $2))

declaration 1ist:
/* mothisg */ ((])}
| declacation list Seclaration ($2 :: $1)

struct_declaration:
STRUCT STRUCT_IDENTIFIER strect_inheritence_opt strect_interface_opt LBRACKET
declaration_list comstructor_destructor_opt RRRACKET SEMicouow { (
members = (List.rev $6);
Struct _name = $2;
extends = $3;
childeen = [**);
sothads = [];
lsplements « $4;
constrector « (fst $7);
destructor « (snd §7);

1

struct_inheritence_opt:
EXTENDS STRUCT _IDENTISIER { $2)
1€}
struct_interface opt:
| IMPLEMENTS STRUCT IDENTIFIER { $2 }
I {1}
interface:

INTERFACE STRUCT_TOENTIFIER LBRACKET fenc_decl _list RRRACKET SEMICOLON{{
name = $2;
funcs » $4;

Hn
compound_statesent:

LORACKET declaration 1Ist statesent 114t RERACKET { CospousdStatesent((List.rev $2),
(List.rev $3)) }

func_parass:
declaration_specifiers declarator { FencParamsDeclared($:, $2))
| declaration_specifiers { ParasDecinithType($1) }
| anon_func_decl (AsonFuncDecl($1))

func_params list:
/* wothisg */ { [))
| func_pacams { [$1] }
| func_params_list COMMA func_params ($3 11 $1)

recelver:
STRUCT_IDENTIFIER IDENTIFIER (($1, $2))
| STRUCT_IDENTIFIER TIMES IOENTIFIER (($1, $2)}

U (Sl

CONSTPUCTOr_destructor_opt:
STRUCT_TOENTIFIER LPAREN func_parass List RPAREN compownd statesent NOT

constructor_nase - $1;
constructor_params = $3;
constructor_body - $5;
)» (destructor_name - $1; destructor_body - $10}))
| /* mothing */ (({constructor_name = "7 constructor_parass = [];
constructor_body - CompowndStatesent((),
[1)): {destrector_name = “7; destructor_body - CompoundStatesest([], [1))))

func_decl:
declaration_specifiers declarator LPAREN func_parass 1ist RPAREN compound statesent | (
return_type - $1;
func_name - $2;
recefver = (7, *°)1;
params ~ (32);
body - $6 }}
| declaration specifiars LPAREN receiver RPAREN declarator LPAREN
func_perams_list RPARIN compound statesent {{
return_type - $1;
func_name = $5;
receiver - $3;
params - §7;
body - %

N
| declaration specifiers LPAREN receiver RPAREN declarator
LPAREN func_params_1ist mPAREN stmrcolon {{

return_type - $1;

func_rame - $5;

receiver - $3;

params - $7;

body = CompoundStatesent([], [])

N
| declaration specifiers declarator LPAREN fusc params list RPAREN
semacoton {{
return_type - $1;
func_rame - $2;
receiver = (°7, 7))
poaramy - $4;
) body - CompoundStatesent([], [])

fumc_decl_list:
/*Nothing */ { [])}
| func_decl_list func_decl { $2::%1)

amon_func_def:
FUNC LPAREN RPAREN LPAREN func parass_1ist RPAREN compound statesent { |
anon_name = ““;
anon_return_type - PrimitiveType(void);
anon_params - ($5);
anon_body - $7)
)

| FUNC LPAREN type RPAREN LPAREN func_params list RPAREN compound statesent ((
anon_name - “7;
anon_return_type = $3;
anon_params - ($6);
anon_body - $8}
}

amon_func_decl:
FUNC LOAREN RPAREN LPAREN func_parass_1ist RPAREN TOENTIFIER [{
anon_decl_return_type - PrimitiveType(Void);
anon_decl_perass - (35);
anon_decl_nase = fdentifier($7);}

)
| FUNC LPAREN type RPAREN LPAREN func _params list RPAREN IDENTIFIER { (
anon_decl_return_type = $3;
anon_decl_params - ($6);
anon_decl_nome - Identifier($s);})
}

decls:
/% nothing */ { { globals = []; structs = []; functioms = []; isterfaces

=[»n
| decls func_decl { {functioms - $2 :: ($1.functioms); globals - $1.globals;
structs = $1.structs; interfaces = $1.inmterfaces}))
| decls declaration [{ functions - $1.functions; globals - ($2 1:
$1.globals); interfaces - $1.interfaces;
structs = $1.structs })

| decls struct_declaration { {functions = $1.functions; globals =

$1.globals; interfaces = $1.interfaces; structs = ($2 :: $1,.structs)))
| decls interface { {functions = $1,functions; globals = $1.globals; structs
= $1.structs; interfaces = $2 :: ($1.interfaces) } }

an:
decls EOF { $1 }

ast.mli

Semant.ml

open Ast

module StringMap = Map.Make (String)

let add symbol list to symtable symlist symtable =

List.fold left (fun tbl x ->

let symbolStr = (Astutil.string of symbol simple x) in

if

(StringMap.mem symbolStr tbl) then raise(Failure ("Error,

" "~ symbolStr))

else

symlist

(StringMap.add (Astutil.string of symbol simple x)

let stdlib funcs =

tf

return type = (DeclSpecTypeSpec (Int));

redefining symbol

x tbl))

func name = DirectDeclarator (Var (Identifier ("printf")));

params = [FuncParamsDeclared (DeclSpecTypeSpec (String),
DirectDeclarator (Var (Identifier ("x"))))1;

receiver = ("™, "");

body = CompoundStatement ([], []);

return type = (DeclSpecTypeSpec (Float));

func name = DirectDeclarator (Var (Identifier("cos")));
params = [ParamDeclWithType (DeclSpecTypeSpec (Float))];
receiver = ("", "");

body = CompoundStatement ([], []);

symtable

return type = (DeclSpecTypeSpec (Float));

func name = DirectDeclarator (Var(Identifier("sin")));
params = [ParamDeclWithType (DeclSpecTypeSpec (Float))];
receiver = ("", "");
body = CompoundStatement ([], []);

bi

{
return type = (DeclSpecTypeSpec (Float)):;
func _name = DirectDeclarator (Var (Identifier ("exp")));
params = [ParamDeclWithType (DeclSpecTypeSpec (Float))];
receiver = ("", "");
body = CompoundStatement ([], []):

}7

{
return type = (DeclSpecTypeSpec (Float));
func name = DirectDeclarator (Var (Identifier("log")));
params = [ParamDeclWithType (DeclSpecTypeSpec (Float))];
receiver = ("", "");
body = CompoundStatement ([], []);

let rec string of type tp =
let string of primitive type = function
| Void -> "Void"
| Char -> "Char"
| Short -> "Short"

| Int => "Int"

| Long -> "Long"
| Float -> "Float"
| Double -> "Double"
| Unsigned -> "Unsigned"
| Signed -> "Signed"
| String -> "String"
in match tp with
PrimitiveType (t) -> string of primitive type t
| CustomType(s) -> "CustomType("™ ~ s ~ ")"

| AnonFuncType (t, tlist) -> "AnonFuncType (ReturnType: " ~ string of type t =~ ",
ParamTypes: " ~ string of type list tlist ~ ")"

| PointerType (base, num) -> "PointerType(" ~ string of type base ~ "," *
string of int num ~ ")"
| ArrayType(_, _, _) —>""

| NilType -> ""

and string of type list = function
[] _> mn

| [x] -> string of type x

| h::t -> string of type h ~ " " ~ string of type list t
let var name from direct declarator = function
DirectDeclarator (Var (Identifier(s))) -> s
| PointerDirDecl(, Var (Identifier(s))) -> s
let var name from declaration = function
Declaration(_, InitDeclarator(dd)) -> var name from direct declarator dd
| Declaration(_ , InitDeclaratorAsn(dd, _,)) -> var name from direct declarator dd
| Declaration(_, InitDecllList([InitDeclarator (dd) 1)) ->

var name from direct declarator dd

| Declaration(, InitDeclList([InitDeclaratorAsn(dd,

var name from direct declarator dd
_ —> raise(Failure("var name from declaration: not yet supported"))

let var name from anon decl adecl = match adecl.anon decl name with

Identifier(s) -> s

let var name from func param = function

FuncParamsDeclared(, x) -> var name from direct declarator x

| AnonFuncDecl (adecl) -> var name from anon decl adecl

| -> raise(Failure("pointers not supported"))

let rec type from declaration specifiers = function
DeclSpecTypeSpec (tspec) -> PrimitiveType (tspec)
| DeclSpecTypeSpecAny(t) -> t
_ —> raise(Faillure("type from declaration specifiers: invalid specifiers"))

(*| DeclSpecTypeSpecInitList(t, tDeclSpecs) ->
type from declaration specifiers tDeclSpecs) *)

CompoundType (t,
let rec get num pointers ptrs = match ptrs with
| PtrType (ptrl, ptr2) -> (get num pointers ptrl) + (get num pointers ptr2)

| Pointer -> 1

| NoPointer -> 0

let get func name fdecl = var name from direct declarator fdecl.func name

let type from declaration = function

| Declaration(decl spec,) -> type from declaration specifiers decl spec

let is_assignment declaration decl = match decl with

| Declaration(decl spec,

InitDeclList ([InitDeclaratorAsn(, ,)])) -> true

| Declaration(decl spec, InitDeclaratorAsn(PointerDirDecl (ptr,), _ , _))
-> true

| _ -> false

let rec type from func param = function
FuncParamsDeclared (t, PointerDirDecl (ptr,)) ->
PointerType (type from declaration specifiers t, get num pointers
ptr)
| FuncParamsDeclared(t,) -> type from declaration specifiers t
| ParamDeclWithType (declspecs) -> type from declaration specifiers declspecs

| AnonFuncDecl (adecl) -> type from anon decl adecl

and type list from func param list 1 = List.map type from func param 1

and param list has void params func name =
List.map (fun param -> if ((type from func param param) = PrimitiveType (Void))
then

raise (Failure ("Using void as a function

parameter for function: " ~ func name))
else ()) params
and type from anon decl d = AnonFuncType(d.anon decl return type,

type list from func param list d.anon _decl params)

let type from anon def d = AnonFuncType(d.anon return type,
type list from func param list d.anon params)

let symbol from func param p = match p with

| FuncParamsDeclared(decl specs, decl) ->

VarSymbol (var name from direct declarator decl,
type from func param p)
| AnonFuncDecl (d) ->

AnonFuncSymbol (Astutil.string of identifier d.anon decl name,
type from anon decl d)

| -> raise(Failure("symbol from func param not fully implemented. Cannot handle
declarations with parameters as types alone"))

let symbol from declaration decl = match decl with
Declaration (declspec,) -> VarSymbol (var name from declaration decl,

type from declaration decl)

let symbol table key for method struct name func name = let cstruct name =

String.concat "" [" struct";struct name] in String.concat "

[cstruct name; func name]

let symbol from fdecl fdecl =

let func name = var name from direct declarator fdecl.func name

in
if (fdecl.receiver = ("", "")) then
FuncSymbol (func _name, fdecl)
else
FuncSymbol ((symbol table key for method (fst fdecl.receiver)
func name), fdecl)
let symbol from struct struct decl = StructSymbol (struct decl.struct name,
struct decl)
let symbols from structs struct decls = List.map symbol from struct struct decls

let symbol from interface interface = InterfaceSymbol (interface.name, interface)

let symbols from interfaces interfaces = List.map symbol from interface

interfaces

let lookup symbol by id symbols id = try StringMap.find
(Astutil.string of identifier id) symbols with

Not found -> raise(Failure ("undeclared identifier:

Astutil.string of identifier id))

let get interface symbol table name =
let sym = lookup symbol by id symbol table (Identifier(name)) in
match sym with
| InterfaceSymbol(, interface) -> interface

| -> raise(Failure("cannot find interface"))

let is interface symbol table name =
let sym = lookup symbol by id symbol table (Identifier (name)) in
match sym with
| InterfaceSymbol(, interface) -> true

| _ -> false

let func decl from anon def anonDef = {

return type = DeclSpecTypeSpecAny (anonDef.anon return type);

func name = DirectDeclarator (Var (Identifier("")));
receiver = ("", "");
params = anonDef.anon params;

body = anonDef.anon body

let type from identifier symbols id =

let x = lookup symbol by id symbols id in match x with

| VarSymbol(, t) -> t

| FuncSymbol(, func) -> type from declaration specifiers

func.return type

| StructSymbol(, struct decl) -> CustomType (struct decl.struct name)
| InterfaceSymbol (name,) -> CustomType (name)
| AnonFuncSymbol(, t) -> t

let get parameter list symbol = match symbol with

FuncSymbol (, func) -> type list from func param list func.params
| AnonFuncSymbol(, t) -> (match t with
AnonFuncType (, tlist) -> tlist

| -> raise(Failure("get parameter list: Error, invalid type for
Anonymous function")))

| -> raise(Failure("Shouldn't get parameter list for Var Symbol"))

let get struct symbol = match symbol with
StructSymbol (, struct) -> struct

| -> raise(Failure("Attempting to get non struct symbol"))

let get func symbol = match symbol with
FuncSymbol (, func) -> func

| _ -> raise(Failure ("Attempting to get non func symbol"))

let get type from struct member cust type symbols t =
let cust symb = lookup symbol by id symbols

(Identifier(cust type)) in

match cust symb with

| StructSymbol(, struct decl) ->

let list decl = List.map var name from declaration struct decl.members

in
if (List.mem t list decl) then
let dec = List.find (fun decl ->
(var_name from declaration decl) = t)
struct decl.members in (type from declaration dec)
else
raise (Failure ("Invalid member of struct"))

_ —> raise(Failure ("Attemtping to get type for struct member for non struct

member"))

let type from mem access type t symbols =
match type with
| CustomType (cust type) -> get type from struct member cust type
symbols t
| PointerType (CustomType (cust type), 1) -> get type from struct member
cust type symbols t

| _ -> raise(Failure("Non Custom type trying to access

member"))

let is interface symbols id =

let sym = lookup symbol by id symbols id in match sym with
| InterfaceSymbol(,) -> true

| _ -> false

let rec tl inherits t2 tl t2 symbols =

let syml = (lookup symbol by id symbols (Identifier(tl))) in

match syml with

| StructSymbol (type , struct) -> (let sym2 = (lookup symbol by id

symbols (Identifier(t2))) in match sym2 with
| StructSymbol (type 2, struct2) ->
if (struct .extends <> "") then

(1f (struct .extends <> struct2 .struct name)

then (tl inherits t2
struct .extends t2 symbols)
else false
) else (if (type = type 2) then true
else false)
| —-> false)

_ —> false

let rec get interface for struct tl symbols =
let syml = (lookup symbol by id symbols (Identifier(tl))) in
match syml with
| StructSymbol (typ , struct) -> (if (struct .implements <> "") then
struct .implements else (if (struct .extends <> "")

then get interface for struct struct .extends symbols
else

"lv))

-> raise(Failure ("Not supported"))

let rec tl implements t2 tl t2 symbols =
let syml = (lookup symbol by id symbols (Identifier(tl))) in
match syml with
| StructSymbol (typ , struct) -> (let sym2 =

(lookup symbol by id symbols (Identifier(t2))) in match

sym2 with
| InterfaceSymbol(typ ,) -> if (struct .implements =
t2) then true else (if (struct .extends <> "")
then tl implements t2 struct .extends t2 symbols else
false)

| -> raise(Failure ("Not supported")))

_ —> raise(Failure ("Not supported"))

let rec tl inherits t2 tl t2 symbols =

let syml = (lookup symbol by id symbols (Identifier(tl))) in

match syml with

| StructSymbol (typ , struct) -> (let sym2 =
(lookup symbol by id symbols (Identifier(t2))) in match
sym2 with
| StructSymbol (typ2 , struct2) -> if (struct .extends
<> "") then (if (struct .extends = struct2 .struct name)

then true else tl inherits t2 struct .extends t2 symbols) else
false
_ —-> raise(Failure("cannot inherit from non struct

type"))

_ —-> raise(Failure ("Only struct types can inherit"))

let check compatible custom types symbols tl t2 =
let tl sym = lookup symbol by id symbols tl in
let t2 sym = lookup symbol by id symbols t2 in
match (tl sym, t2 sym) with

| (StructSymbol (tl name, tl struct), StructSymbol(t2 name, t2 struct))

-> if (tl name = t2 name) then () else (

if (tl inherits t2 t2 name tl name symbols) then () else
raise (Failure ("Incompatible types:" * tl name ~ "," 7~ t2 name)))
| (StructSymbol (tl name, tl_struct), InterfaceSymbol (name,)) ->

A

raise (Failure ("Incompatible types:" tl name ~ "," *

name))
| (InterfaceSymbol (name,), StructSymbol (t2 name, t2 struct)) -> if
(tl_implements t2 t2 name name symbols) then () else
raise(Failure ("Incompatible types:" ”~ t2 name ~ "," *
name))
| (,) —-> raise(Failure ("attempting to check compatible types for non

custom types"))

(* This is meant to check assignments of custom type to pointer type
* The only case this is valid is if a is pointer and b is interface

* which a satisfies *)

let check pointer and custom types a b symbols =

let sym a = lookup symbol by id symbols (Identifier(a)) in

let sym b lookup symbol by id symbols (Identifier (b)) in

match (sym a, sym b) with

| (StructSymbol(,), StructSymbol(,)) ->

~

raise (Failure ("Assigning:" ~ b ""to" “a »~ "which
is pointer type"))
| (StructSymbol (strct,), InterfaceSymbol (name,)) -> if

(tl implements t2 strct name symbols) then () else

A A

raise (Failure (strct "does not implement"
name))

-> raise(Failure ("Assigning incompatible custom types,

pointer and non pointer"))

let rec check compatible anon types symbols tl t2 =

let £ a b =
let error str = "tl = " * string of type tl *~ ", t2 = " ~ string of type
t2
in
if a = b then () else raise(Failure("check compatible anon types: Error,

A

param types not equal: " error str)) in
let check lists are equal 11 12 = List.iter2 £ 11 12 in
match (tl, t2) with
(AnonFuncType (rTypel, plistl), AnonFuncType (rType2, plist2)) ->
check compatible types symbols rTypel rType2;

check lists are equal plistl plist2

| (,) -> raise(Failure("check compatible anon types: Error, invalid anon
types passed as arguments"))

and check compatible types symbols tl t2 = match (tl, t2) with
(PrimitiveType (ptl), PrimitiveType(pt2)) -> (match ptl, pt2 with
| Void, Void -> ()
| Int, Float -> ()
(*| Int, Float -> raise(Failure("assigning float to int"))*)
| Float, Int -> ()
(*| Float, Int -> raise(Failure("assigning int to float"))*)
| String, Float -> raise(Failure("assigning float to string"))
| String, Int -> raise(Failure("assigning int to string"))
| Int, String -> raise(Failure("assigning string to int"))
| Float, String -> raise(Failure("assigning string to float"))
| Int, Int -> ()
| Float, Float -> ()

| String, String -> ()

| -> raise(Failure("Incompatible types")))
| (PointerType (typl , cl), PointerType(typ2 , c2)) ->

ignore (check compatible types symbols typl typ2);

if (cl = c2) then () else raise(Failure("Incompatible
pointer depths " *~ (string of int cl) ~ " " %
(string of int c2)))
| (PrimitiveType(), CustomType()) -> raise(Failure("Primitive type
incompatible with custom type"))
| (CustomType(), PrimitiveType()) -> raise(Failure("Custom type incompatible
with primitive type"))
| (CustomType (a), CustomType(b)) -> check compatible custom types symbols
(Identifier(a))
(Identifier (b))
| (PointerType (CustomType(a), 1), CustomType (b)) ->
check pointer and custom types a b symbols
| (CustomType (a), PointerType (CustomType(b), 1)) -> if (tl implements t2 b a
symbols) then () else raise(Failure("Incompatible types, pointer and custom type: "
YAt ra))
(*| (PointerType(,), PrimitiveType()) -> ()*)
(*| (PrimitiveType(), PointerType(,)) -> () *)
| (PointerType(,), PrimitiveType()) -> raise(Failure("Cannot compare
pointer and primitive"))
| (PrimitiveType(), PointerType(,)) -> raise(Failure("Cannot compare
pointer and primitive"))
| (PointerType(,), NilType) -> ()
| (PrimitiveType(), NilType) -> raise(Failure("Incompatible types: primitive
and nil. "))
| (CustomType(s), NilType) -> raise(Failure("Incompatible types: " ~ s ~ "
and " ~ "nil"))
| AnonFuncType(,), AnonFuncType(,) -> check compatible anon types

symbols tl t2

| (PrimitiveType(), AnonFuncType (rtype,)) -> check compatible types symbols tl
rtype

let tlStr = string of type tl in

let t2Str = string of type t2 in

let errorStr = "check compatible types: Error - " * tlStr *~ " and " ~ t2Str
" not yet supported" in

A

raise (Failure (errorStr))

let rec get fdecl for receiver typ tSymbol table func name =
let object symbol = (lookup symbol by id tSymbol table (Identifier(typ))) in
let rec find func symbol func name = match symbol with

| StructSymbol (type , struct) -> (let key =
symbol table key for method struct .struct name func name in

if (StringMap.mem key tSymbol table) then
(let sym = StringMap.find key
tSymbol table in (match sym with
| FuncSymbol (, fdecl) -> fdecl

| -> raise(Failure("found a non func

symbol matching call™))))

else (

if (struct .extends <> "") then
get fdecl for receiver
struct .extends
tSymbol table func name

else
raise (Failure ("Receiver doesn't
have function"))))

| InterfaceSymbol (type , interface) -> (if (List.exists (fun
fdecl -> if (get func name fdecl = func name) then true else

false)

interface.funcs) then

(List.find (fun fdecl -> if(get func name fdecl =
func name) then true else false)
interface. funcs)
else
raise (Failure ("Interface doesn't have
function")))
| _ -> raise(Failure("Cannot get method for non struct or
interface")) in

find func object symbol func name

let type of array type symbols = function
| ArrayType (type of array, pointer, expr) -> (match type of array with
| PointerType (base, num)
-> PointerType (base,

num+1)

PointerType (type of array,

1))

| -> raise(Failure("type of array type should not be called on non

array type"))

let rec get array access_depth depth expr = match expr with
| ArrayAccess(expr,) —-> 1 + (get array access depth 1 expr)

| -> 1

let rec type from array access symbols expr = match expr with
| ArrayAccess(el, e2) -> type from array access symbols el

| —> type from expr symbols expr

and type from expr symbols expr = match expr with

Literal() -> PrimitiveType (Int)
| FloatLiteral() -> PrimitiveType (Float)
| StringLiteral() -> PrimitiveType (String)

| Nil -> NilType
| DeclExpr(e) -> type from declaration e
| Neg(e) -> (let t = type from expr symbols e in match t with
| PrimitiveType (Int) -> PrimitiveType (Int)
| PrimitiveType (Float) -> PrimitiveType (Float)
| _ -> raise(Failure ("Cannot take negative of type other
than int or float")))
| Unop(e,) -> type from expr symbols e
| ArrayAccess(el, e2) -> (ignore(let t2 = type from expr symbols e2 in match t2 with
| PrimitiveType (Int) -> ()
| -> raise(Failure ("Index for array must be

int primitive")));

let tl = type from array access symbols expr in
let depth = (get array access depth 1 el) in
match (tl) with
| PointerType (base, num) ->
if (num < depth) then
(raise(Failure ("Too deep array
access"))) else (if (depth = num)
then (base) else (PointerType (base,

num - depth)))

| -> raise(Failure("Attempting array access

for non pointer type")))

| Binop(el, , e2) -> let tl
let t2

ignore

= type from expr symbols el in
= type from expr symbols e2 in

(check compatible types symbols tl t2);

type from expr symbols el

| Make(typ ,) —>

| ArrayType (type of array, pointer,

in (

of

| PointerType (base type,

nogn

| _ -> PointerType (typ ,

| Clean(e) -> ignore(let tl

| PointerType (base type,

PrimitiveType (Void)
| Call(e,

| Noexpr -> (

Id(Identifier(id)),

(match typ with

expr) -> (

ignore(let type of expr = type from expr symbols expr

match type of expr with
| PrimitiveType (Int) -> ()

| -> raise(Failure("Attempting to allocate memory

non integral size"))

)) i

type of array type symbols typ

count) -> ignore (Printf.printf

(string of int count));

PointerType (base type, count + 1)

1))
type from expr symbols e in match tl with
count)

-> 0

| -> raise(Failure("Cannot clean a non pointer")));

) —> (match e with

if (StringMap.mem id symbols) then

let sym = StringMap.find id symbols in

match sym with

FuncSymbol (, fdecl) ->

type from declaration specifiers
fdecl.return type

| AnonFuncSymbol(, t) -> t

| _ -> raise(Failure("Non function

symbol associated with call"))

else
raise (Failure("Calling function: " ~ id
~ "which is undefined"))
)
>
let typ = type from expr symbols e in
(match(typ) with
| CustomType (name) -> (
let fdecl =
get fdecl for receiver name symbols id in
type from declaration specifiers fdecl.return type)
| PointerType (CustomType (name), 1) -> (let fdecl =
get fdecl for receiver name symbols id in
type from declaration specifiers fdecl.return type)
| -> raise(Failure("Invalid type making method
call")))))
| CompareExpr(, _,) —> PrimitiveType (Int)
| Postfix(el,) -> type from expr symbols el
| MemAccess (expr, Identifier(t)) -> let typ = type from expr symbols expr in

type from mem access typ t symbols

| Id(id) -> type from identifier symbols id

| AsnExpr (expr, ,) —> type from expr symbols expr
| Super() -> raise(Failure("Super defined outside of head of constructor"))
| Deref(e) -> (let typ = type from expr symbols e in

match typ with

| PointerType (base type, count) ->
if (count = 1) then
base type
else
PointerType (base type, count-1)
| _ -> raise(Failure("Dereferencing non pointer type")))
| Pointify(e) -> (let typ = type from expr symbols e in
match typ with
| PointerType (base type, count) ->
PointerType (base type, count+l)
(* Because this isn't recursive
* we need to check if the
* existing type is a pointer
* and then add count to the

* existing pointer type *)

| CustomType(s) -> if (is_interface symbols
(Identifier(s))) then raise(Failure ("Cannot make
pointer out of interface")) else

PointerType (typ , 1)
_ —> (match e with
| Id(id) -> PointerType (typ , 1)

| -> raise(Failure ("Cannot make
pointer out of non-identifier"))))

| AnonFuncDef (adef) -> type from anon def adef

| Noexpr -> PrimitiveType (Void)

let rec type list from expr list symbols elist = match elist with
1 -> 11
| [e] -> [type from expr symbols e]

| h::t -> [type from expr symbols h]Q@(type list from expr list symbols t)

let receiver has func typ symbols func =
let object symbol = (lookup symbol by id symbols (Identifier(typ))) in

let rec has_func symbol func = match symbol with

| StructSymbol (type , struct) -> (match func.receiver with
(type2 , id) -> if (type2 == type) then () else
if (struct .extends <> "") then (let

parent = lookup symbol by id symbols

(Identifier (struct .extends)) in has func

parent func)

else raise (Failure ("method does not have

receiver")))
| InterfaceSymbol (type , interface) -> (if (List.mem func
interface.funcs) then () else raise(Failure("method isn't part

of interface")))
| _ -> raise(Failure ("Receiver must be either struct or
interface"))

in

has func object symbol func

let check constructor symbols struct name params =

let struct symbol = 1if (StringMap.mem struct name symbols) then
(lookup symbol by id symbols

(Identifier (struct name))) else raise(Failure("Calling constructor for

undeclared struct: " *~ struct name)) in

match struct symbol with

StructSymbol (typ , struct) ->

let constructor = struct .constructor in

let param list = constructor.constructor params in

if List.length param list != List.length params then
if (constructor.constructor name = "") then
raise (Failure ("Parameters for constructor not defined"))
else
List.iter2 (check compatible types symbols)
(type list from func param list param list)

(List.map (type from expr symbols) params)

_ —> raise(Failure ("not handled\n"))

let rec check compatible type lists symbols tll tl2 = match (tll, tl2) with
(rr, m -> 0
| (I[x1, [v]) —> check_compatible_types symbols x y
[(hl::tl, h2::t2) -> check compatible types symbols hl h2;
check compatible type lists symbols tl t2

_ —> raise(Failure("check compatible type lists: type lists are incompatible"))

let validate call expr expr list symbols params =
let func param types = type list from func param list params in
let exprlList = List.map (type from expr symbols) expr list in

List.iter2 (check compatible types symbols) exprList func param types

(* TODO: validate this *)

let rec validate anon call expr expr expr list symbols program anonSym = match anonSym
with

AnonFuncSymbol (name,) —->

let anonDef = anon def from tsymbol program anonSym in

check anon body anonDef symbols program anonDef.anon body

-> ()

and check format string with expr list symbols fmtStr elist =
let type from fmtSpec fmtSpec = match fmtSpec with
"%$s" -> PrimitiveType (String)
| "%d" -> PrimitiveType (Int)
| "%$f" -> PrimitiveType (Float)
| "%c" -> PrimitiveType (Char)

| -> raise(Failure("check format string with expr list:
format string"))

in
let rec get fmtSpec list from string str =
try
let firstOccurrence = String.index str '$' in
let substr = String.sub str firstOccurrence 2 in

let remainderStr = String.sub str (firstOccurrence + 1)
str) - (firstOccurrence + 1)) in

[substr]@(get fmtSpec list from string remainderStr)
with Not found ->
[]
in
let rec type list from fmtSpec list specList = match specList with
1 -> 11

| [s] -> [type from fmtSpec s]

| h::t -> [type_ from fmtSpec h]@(type list_ from fmtSpec_list t)

in

let fmtSpecList = get fmtSpec list from string fmtStr in

let argTypelist = type list from expr list symbols elist in

let fmtTypelist = type list from fmtSpec list fmtSpecList in

try

Error - Invalid

((String.length

List.iter2 (fun tl t2 -> (check compatible types symbols tl t2)) argTypelList
fmtTypelist

with
Invalid argument() -> raise(Failure("check format string with expr list:
Error - Number of format specifiers in format string does not match number of
arguments"))

| -> raise(Failure("check format string with expr list: expression types do
not match format specifier list"))

and check call to printf symbols exprList =
match (List.rev exprList) with
| [1] -> raise(Failure ("Printf needs at least one argument"))
| [e] -> if ((type from expr symbols e) <> PrimitiveType (String)) then

raise (Failure ("check call to printf: Error - If only 1 argument, must
be string!"))

else

if ((type from expr symbols h) <> PrimitiveType (String)) then

raise (Failure("check call to printf: Error - If only 1 argument, must
be string!"))

else (match h with
StringLiteral (s) ->

check format string with expr list symbols s t

->

let errorStr = "check call to printf: Error - h is " *
(Astutil.string of expr h) in

raise (Failure (errorStr)))

and is literal expr = match expr with

| Literal() -> true

| StringLiteral() -> true

| FloatLiteral() -> true

_ —> false

and check expr symbols program e = match e with

el)

Id(Identifier (name)) -> if (StringMap.mem name symbols) == false then

Binop (el,

I4

e2)

Pointify (expr)

Neg (expr) -> ignore(type from expr symbols expr);
Literal() -> ()
StringLiteral() -> ()
FloatLiteral() -> ()
ArrayAccess (el, e2) -> ignore(type from expr symbols el); if (is_literal
then raise(Failure("Literal expression is not an array")) else ()

Deref (expr) -> (let tl = type from expr symbols expr in

match tl with

| PointerType (base type,) -> ()

| -> raise(Failure ("Dereferencing non pointer")))
Super () -> raise(Failure("Super is not at the head of a constructor"))
Clean(expr) -> (let tl = type from expr symbols expr in

match tl with

| PointerType (base type, num) -> ()

| _ -> raise(Failure("Cleaning a non pointer type")))
Call (expr, Id(Identifier(id)), expr list) -> (match expr with

raise (Failure ("Undeclared identifier"))

else ()

-> let tl = type from expr symbols el in
let t2 = type from expr symbols e2 in

check compatible types symbols tl t2

-> ()

Noexpr ->

(1f (StringMap.mem id symbols) then

let s = StringMap.find id symbols in

match s with

FuncSymbol (, fdecl) ->

if (id = "printf") then
check call to printf symbols expr list
else
validate call expr
expr list symbols
fdecl.params
| AnonFuncSymbol (name, t) ->

0

(*validate anon call expr expr expr list
symbols program s¥*)

| -> raise(Failure("Non function symbol cannot

make call"))

else
raise (Failure("Calling function: " * id
~ "which is undefined"))
)
_ >
let typ = type from expr symbols expr in

(match(typ) with
| CustomType (name) -> (let fdecl =
get fdecl for receiver name symbols id in

validate call expr expr list symbols

fdecl.params)

| PointerType (CustomType (name), 1) -> (let fdecl
get fdecl for receiver name symbols id in

validate call expr expr list symbols

fdecl.params)

_ —> raise(Failure("Invalid type making method

call™)))))
| Unop (e, unop) -> check expr symbols program e;
let te = type from expr symbols e in
(match (te, unop) with

(PrimitiveType (Void),) -> raise(Failure("Cannot apply
unary operator to void type"))

| (PrimitiveType(),) -> ()
| _ => raise(Failure("Type/Unary Operator mismatch")))
| CompareExpr(el, op, e2) -> (let tl = type from expr symbols el in
let t2 = type from expr symbols e2 in
match (tl, t2) with
| (CustomType(a),) ->
raise (Failure ("Cannot
compare custom types"))
| (_, CustomType(s)) -> raise(Failure("Cannot
compare custom types"))
| _ -> check compatible types symbols
(type from expr symbols el) (type from expr
symbols e2))
| Postfix(el, op) -> check expr symbols program el;
let te = type from expr symbols el in
(match (te, op) with
(PrimitiveType (Void),) -> raise(Failure ("Cannot
apply postfix operator to void type"))
| (PrimitiveType(),) -> ()

| _ -> raise(Failure ("Type/Postfix Operator mismatch")))

| MemAccess (s, Identifier(t)) -> ignore(let typ = type from expr symbols s in
type from mem access typ t
symbols) ;

| Make(typ , expr list) -> (match (typ , expr list) with

| (PrimitiveType(s), [al) -> ()
| (ArrayType (array time, ptr, expr), []) ->
ignore (type from expr symbols

(Make (typ , expr list)));

| (CustomType(s), e) —-> (check constructor symbols s e)

| > raise (Failure ("Invalid make")))
| AsnExpr (expr, asnOp, e) -> ignore (
if (is_literal expr) then
raise (Failure ("Cannot assign to
literal"))
else ()
);
let tl = type from expr symbols e in
let t2 = type from expr symbols expr in

(match (tl, t2) with

(PrimitiveType (Void),) | (_, PrimitiveType (Void))

> raise (Failure ("Cannot assign to type void"))

| (PrimitiveType(), CustomType()) ->
raise (Failure ("Cannot assign a struct to a primitive type"))
| (CustomType(), PrimitiveType()) ->
raise (Failure ("Cannot assign a primitive type to a struct"))
| _ —-> check compatible types symbols t2 tl)
| Noexpr -> ()
| -> raise(Failure ("unmatched expression"))
and symbols from decls decls = List.map symbol from declaration decls
and symbols from func params func params = List.map symbol from func param func params
and symbol from receiver receiver = match receiver with

| (type , id) -> VarSymbol (id, PointerType (CustomType (type), 1))

and type from receiver receiver = match receiver with

| (typ_, _) —-> typ_
and id from receiver receiver = match receiver with
| (., id) -> id

and compare func params symbols pl p2 =
let pl types = List.map type from func param pl in
let p2 types = List.map type from func param p2 in
if (List.length pl types <> List.length p2 types) then
raise (Failure ("Func Param length mismatch")) else

List.iter2 (check compatible types symbols) pl types p2 types

and compare func names nl n2 =
let nl name = var name from direct declarator nl in
let n2 name = var name from direct declarator n2 in
if (nl name = n2 name) then () else raise(Failure ("Function

Names do not match"))

and compare func return types symbols rl r2 =
check compatible types symbols (type from declaration specifiers rl)

(type from declaration specifiers r2)

and compare functions symbols fl f2 =

let = compare func names fl.func name f2.func name in

let = compare_ func params symbols fl.params f2.params in

compare func return types symbols fl.return type f2.return type

and symbols from fdecls fdecls = List.map symbol from fdecl fdecls

and get id from symbol = function

VarSymbol (id,) -> id
| FuncSymbol (id,) -> id
| StructSymbol (id,) -> id
| InterfaceSymbol (id,) -> id

| AnonFuncSymbol (id, t) -> id

and symtable from symlist symlist =
List.fold left (fun m symbol ->
if (StringMap.mem (get id from symbol symbol) m) then

raise (Failure("symlist to symtable: Error - redefining variable"))

else
StringMap.add (get id from symbol symbol) symbol m) StringMap.empty
symlist
(*let symbols from anon def anonDef = *)
(*let paramSymbols = symbols from func params anonDef.anon params in*)
(*let bodySymbols = symbols from s anonDef.anon body in*)

(*symtable from symlist (paramSymbols@bodySymbols)*)

and merge symtables sl s2 =
StringMap.merge (fun key vl v2 ->
(match v2, v2 with
X, y => if x != y then
raise(Failure ("merge symtables: Error - duplicate symbol"))
else x
| None, y -> vy

| x, None -> x)) sl s2

and get decls from compound stmt stmt = match stmt with

CompoundStatement (x, y) -> x

_ > 1

and get stmts from compound stmt stmt = match stmt with
CompoundStatement (x, y) -> y

_ > 1

and check local declaration symbols decl = match decl with
Declaration (declspec, InitDeclList([InitDeclaratorAsn(declarator, asnOp,

expr)])) —->

let sym = symbol from declaration decl in

(match sym with
VarSymbol(, tl) -> let t2 = type from expr symbols expr in

check compatible types symbols tl t2
| FuncSymbol(, func) -> let tl =
type from declaration specifiers func.return type in let
t2 = type from expr symbols expr

in check compatible types symbols tl t2)

| Declaration(declspec, InitDeclList([InitDeclarator(decl)])) -> ()

| -> raise(Failure("check local declaration not supported"))

and check bool expr symbols expr = check compatible types symbols (type from expr
symbols
expr) (PrimitiveType (Int))

and add to symbol table tbl decls =
List.fold left (fun m symbol ->
if StringMap.mem (get id from symbol symbol) m then

A

raise (Failure ("redefining variable: " get id from symbol symbol))

else StringMap.add (get id from symbol symbol) symbol m)

tbl (symbols from decls decls)

and add symbol to symbol table tbl sym =
if (StringMap.mem (Astutil.string of symbol simple sym) tbl) then
raise(Failure ("redefining variable: " ”~ get id from symbol sym))
else

StringMap.add (Astutil.string of symbol simple sym) sym tbl

and add symbol list to symbol table tbl symlist = match symlist with
[T -> tbl
| [x] -> add symbol to symbol table tbl x
| h::t -> let htbl = add symbol to symbol table tbl h in

add symbol list to symbol table htbl t

and check statement func symbol table program stmt = match stmt with
Expr(e) -> (match e with
| Make(,) -> raise(Failure("Cannot have stand
alone make."))

| -> check expr symbol table program e)

| Return(e) -> check expr symbol table program e; check compatible types
symbol table (type from expr symbol table e)

(type from declaration specifiers func.return type)

| If(e, sl, s2) -> check bool expr symbol table e; check statement

func symbol table program sl; check statement func symbol table program s2

| EmptyElse -> ()

| For(el, e2, e3, st) -> ((match (el, e3) with
| (Make(,),) —-> raise(Failure("Cannot have
stand alone make"))
| (, Make(,)) -> raise(Failure("Cannot have

stand alone make"))

\ -> ()):

check expr symbol table program e2; check bool expr

symbol table e2; check statement

func symbol table program st)

| While(e, s) -> check bool expr symbol table e; check statement func symbol table

program s

| CompoundStatement (dl, sl) -> let tbl = add to symbol table symbol table dl

in List.iter (check local declaration tbl) dl; List.iter (check statement func tbl

program) sl

| Break -> ()

and check anon body anonDef symbol table program stmt = match stmt with
Expr(e) -> (match e with
| Make(,) -> raise(Failure("Cannot have stand
alone make."))
| => check expr symbol table program e)
| Return(e) ->

check expr symbol table program e;

check compatible types symbol table (type from expr symbol table
anonDef.anon return type

| If(e, sl, s2) ->
check bool expr symbol table e;
check anon body anonDef symbol table program sl;
check anon body anonDef symbol table program s2
| EmptyElse -> ()
| For(el, e2, e3, st) -> ((match (el, e3) with

(Make(,), _) -> raise(Failure("Cannot have

stand alone make"))

(_, Make(,)) -> raise(Failure("Cannot have

stand alone make"))

=> 0);

check expr symbol table program e2;

e)

check bool expr symbol table e2;
check anon body anonDef symbol table program st)
| While(e, s) ->
check bool expr symbol table e;
check anon body anonDef symbol table program s
| CompoundStatement (dl, sl) ->
let tbl = add to _symbol table symbol table dl in
List.iter (check local declaration tbl) dl;
List.iter (check anon body anonDef tbl program) sl

| Break -> ()

and func decl from anon func def anonDef = {

return type = DeclSpecTypeSpecAny (anonDef.anon return type);

func name = DirectDeclarator (Var (Identifier("")));
receiver = ("", "");
params = anonDef.anon params;

body = anonDef.anon body

and check anon func def symbol table program anonDef =

check statement (func decl from anon func def anonDef) symbol table program
anonDef.anon body

(* This function checks 1) Is there a cycle in the inheritence tree and 2)
* checks that all extensions are valid i.e. no extending oneself or a non

* existenct struct *)

and validate all inheritence symbols structs =
let validate inheritence symbols strct =
(* It could be that the struct inside of the symbols map is

* different from the struct we pass into this function is not

* the same as the one in our symbol table since the symbol
* table could be modified.

* *)

let StructSymbol(, struct) = StringMap.find strct.struct name

symbols in
(* Check to see if the parent struct is defined*)
if (StringMap.mem struct .extends symbols)
then

let StructSymbol (name, parent struct) = StringMap.find
struct .extends

symbols in

(* Check if parent struct is a member of struct 's

* children list. If it is then we have circular

* definition *)

if (List.mem parent struct.struct name struct .children)

then
raise (Failure ("Circular inheritence: "
parent struct.struct name "~ " extends " ”*
struct .struct name ~ " but is also a parent of
" ~ struct .struct name))
else

(* We found our parent struct and are about to

* add ourselves and our children to its children
* list. Sanity check we aren't extending

* ourselves

* *)

if (struct .struct name = name)

then

parent struct.struct name;

list to_add);

parent struct.constructor;

else

if

raise (Failure ("Struct: " ~ struct .struct name

cannot extend itself"))

else
let list to_add = struct .children @
[struct .struct name] in
let updated struct = {
members = parent struct.members;
struct name =
extends = parent struct.extends;
methods = [];
implements = parent struct.implements;
children = (parent struct.children @
constructor =
destructor =
parent struct.destructor;
} in
let new symbol = StructSymbol (name,
updated struct) in
StringMap.add name
new_symbol symbols
(struct .extends = "") then symbols else

raise (Failure ("extending a struct that isn't

defined: " ~ struct .extends))

in

List.fold left validate inheritence symbols structs

(* Assumes that the symbol table has been validated for

* inheritence rules and duplicate entries *)

and get parents symbols struct =

if (struct .extends <> "")

then
let StructSymbol(, parent struct) = StringMap.find
struct .extends symbols in
[parent struct] @ (get parents symbols parent struct)
else

[l
(* This function gets the constructor of the closest
* ancestor of struct . ¥)
and get ancestors constructor symbols struct =

if (struct .extends = "")

then struct .constructor

else

let StructSymbol(, parent struct) = StringMap.find struct .extends

symbols in
if (parent struct.constructor.constructor name = "")
then get ancestors constructor symbols parent struct
else

parent struct.constructor

and get ancestors destructor symbols struct =

if (struct .extends = "")

then struct .destructor

else

let StructSymbol(, parent struct) = StringMap.find struct .extends

symbols in
if (parent struct.destructor.destructor name = "")
then get ancestors destructor symbols parent struct
else

parent struct.destructor

and check void decl decl = match decl with
| Declaration(decl spec,) ->
if (type from declaration specifiers decl spec =
PrimitiveType (Void)) then
raise (Failure ("Invalid Declaration of
type Void. Trying to declare variable: " * var name from declaration decl "~ " as
void"))
else
0)

~ —> raise(Failure ("Unhandled Declaration"))

and remove duplicate strings string list =

let str map = List.fold left (fun acc str -> StringMap.add str 1 acc)

StringMap.empty string list in

StringMap.fold (fun str acc -> acc @ [str]) str map []

and get method names for struct tSymbol table struct =

if (struct .extends = "") then List.map (fun fdecl ->
var name from direct declarator fdecl.func name) struct .methods

else (
let StructSymbol(, parent struct) = lookup symbol by id
tSymbol table (Identifier (struct .extends)) in List.rev (
(List.map (fun fdecl -> var name from direct declarator
fdecl.func_name) struct .methods) @ (get method names for struct
tSymbol table

parent struct)))

and get unique method names for struct tSymbol table struct =

remove duplicate strings (get method names for struct tSymbol table struct)

and check child methods against parent symbols child methods parent methods =
let parent method map = List.fold left (fun m parent decl -> let
parent method = var name from direct declarator parent decl.func name in if
(StringMap.mem parent method m) then raise(Failure ("Redeclaring
method: " ~ parent method)) else (StringMap.add parent method parent decl m))

StringMap.empty parent methods in

List.map (fun child method ->
let func name =
var name from direct declarator child method.func name in
if (StringMap.mem func name
parent method map) then (let parent method = StringMap.find
func name parent method map in
try

compare functions symbols child method

parent method

with

_ —> raise(Failure ("Declared child method: " ~ func name ~ " is

incompatible with parent declaration"))

) else ()) child methods
and update fields functions symbols structs =

let = validate all inheritence symbols structs in

let update field functions symbols strct =

let StructSymbol(, struct) = StringMap.find strct.struct name
symbols in
let strct methods = List.filter (fun func -> if
(type from receiver func.receiver = strct.struct name)

then true else
false) functions in
if (struct .extends = "")
then

let updated child struct = {

struct name = struct .struct name;
members = struct .members;
children = struct .children;

methods = strct methods;
constructor = struct .constructor;
destructor = struct .destructor;
implements = struct .implements;
extends = struct .extends;

} in

StringMap.add struct .struct name

(StructSymbol (struct .struct name,

updated child struct)) symbols

else

let parents = get parents symbols struct in

match parents with

| [1 -> symbols

| -> List.fold left (fun sym parent struct ->

let parent methods =
List.filter (fun func ->

if

(type from receiver

func.receiver

parent struct.struct name)
then true else
false)
functions in

ignore
(check child methods against parent symbols

strct methods parent methods) ;

let StructSymbol(,

current struct) =
StringMap.find
strct.struct name

sym in

let updated child struct = {
struct name =
struct .struct name;
members =
parent struct.members

@

current struct.members;

children =

current struct.children;

methods = strct methods;

constructor = (if
(struct .constructor.constructor name
= "") then
(get _ancestors constructor
sym
struct)
else
structi.constructor);
implements =

struct .implements;
extends =

struct .extends;
destructor =

struct .destructor;

StringMap.add

struct_.struct name
(StructSymbol (struct .struct name,
updated child struct))

sym) symbols parents in

List.fold left (fun symbols struct -> (update field functions

symbols struct)) symbols structs

(* Updates structs in the program object with the ones populated in symbol table *)
and update structs in program program =
let fdecls = program.functions@stdlib_ funcs

in

let symbol table = update fields program.functions (List.fold left (fun m
symbol -> if StringMap.mem

(get_id from symbol symbol) m then
raise (Failure ("redefining identifier"™)) else StringMap.add
(get _id from symbol symbol) symbol m) StringMap.empty
(symbols from decls program.globals (@
symbols from fdecls (List.filter (fun func -> if
(type from receiver func.receiver = "") then true

else false) fdecls) @ (symbols from structs
program.structs)

@ (symbols from interfaces program.interfaces)))

program.structs in

let rec get structs from symbols structs symbol table =
match structs with

[1 => 1]

| h::t -> (let StructSymbol(, struct) = StringMap.find
h.struct name symbol table in [struct] @ get structs from symbols t

symbol table)

in

let structs = get structs from symbols program.structs symbol table in

globals = program.globals;
structs = structs_ ;
interfaces = program.interfaces;

functions = program.functions;

and check struct fields struct =

ignore (List.map check void decl struct .members);

List.fold left (fun sym decl -> if

(StringMap.mem (var name from declaration decl)

sym) then raise(Failure("Struct field: " *

(var name from declaration (decl)) ~ " was redeclared")) else
StringMap.add (var_name_from_declaration decl) decl sym)

StringMap.empty struct .members

and struct implements method struct symbol table interface method =
let interface method name = var name from direct declarator
interface method.func name in

let fdecl = get fdecl for receiver struct .struct name

symbol table interface method name in

compare functions symbol table fdecl interface method

and check implements symbol table struct =
if (struct .implements = "") then () else (

let impl = struct .implements in

if (StringMap.mem impl symbol table) then
let sym = StringMap.find impl symbol table in
(match sym with
| InterfaceSymbol(, interface) -> List.iter
(struct implements method struct symbol table)

interface. funcs

| -> raise(Failure("Implementing a non-interface"))

else raise(Failure ("Implementing a non-existent interface"))

and convert constructor to fdecl constructor updated body =
{
return type = DeclSpecTypeSpecAny (PrimitiveType (Void));

func name =

DirectDeclarator (Var (Identifier (constructor.constructor name))) ;
body = updated body;
params = constructor.constructor params;

receiver = ("", "");

and convert destructor to fdecl destructor =

{

return type = DeclSpecTypeSpecAny (PrimitiveType (Void))

func name =
DirectDeclarator (Var (Identifier (destructor.destructor name))) ;

body = destructor.destructor body;

params = [];

receiver = ("", "");

and isSuper stmt = match stmt with
| Expr (Super()) -> true

| -> false

and constructor has super constructor = match constructor.constructor body with
| CompoundStatement (d, s) -> (
match s with
| [1 -> false
| [singleton] -> isSuper singleton

| h::t -> isSuper h)

and constructor body filtered for super body = match body with
| CompoundStatement(d, s) -> (
match s with
| [] —-> CompoundStatement (d, s)
| [singleton] -> if (isSuper singleton) then
CompoundStatement (d, []) else CompoundStatement (d, s)
| h::t -> if (isSuper h) then CompoundStatement(d, t) else

CompoundStatement (d, s)

| -> raise(Failure("No other constructor body"))

and getSuperExpr stmt = match stmt with
| Expr(Super(e_list)) -> Expr(Super (e list))

| —> Expr (Noexpr)

and get super expr body = match body with
| CompoundStatement(, s) —-> (
match s with
| [1 -> Expr (Noexpr)

| [singleton] -> getSuperExpr singleton

| h::t -> getSuperExpr h)

and validate super super symbol table struct =
let ancestor constructor = get ancestors constructor symbol table

struct in

if (ancestor constructor.constructor name =
struct .constructor.constructor name) then
raise (Failure ("Calling super when no parent constructor

is defined"))

else
match super with
| Expr(Super()) -> let Expr (Super(elist)) = getSuperExpr super in
validate call expr elist symbol table
ancestor constructor.constructor params
and check for super in constructor symbols struct = match

struct .constructor.constructor body with

| CompoundStatement (decls, stmts) -> (

match (stmts) with

| [h] -> if (isSuper h) then validate super h symbols
struct else ()
| h::t -> if (isSuper h) then validate super h symbols

struct else ()

| -> raise(Failure ("Unexpected constructor body"))

and build symbol table program =
let fdecls = program.functions @ stdlib funcs in
List.fold left (fun m symbol -> if StringMap.mem
(get _id from symbol symbol) m then
raise (Failure ("redefining variable: " *
get id from symbol symbol)) else StringMap.add
(get_id from symbol symbol) symbol m) StringMap.empty
(symbols from decls program.globals
@ symbols from fdecls fdecls

@ (symbols from structs program.structs)

@ (symbols from interfaces program.interfaces))

and check constructor definition in struct program struct =
ignore (List.iter (fun decl -> if (is_assignment declaration decl) then
raise (Failure ("Cannot have assignment declaration in struct"))

else ()) struct .members):;

let symbol table = build symbol table program in
let constructor = struct .constructor in
let symbols = List.fold left (fun symbol table sym -> if

(StringMap.mem (get id from symbol sym)

symbol table) then raise(Failure("Struct field: " *
(get_id from symbol sym) *~ " was redeclared")) else

StringMap.add (get id from symbol sym) sym symbol table)
symbol table (symbols from decls struct .members @

symbols from func params constructor.constructor params) in

if (constructor.constructor name = "") then ()

else
ignore (check for super in constructor symbols struct);
let updated body = constructor body filtered for super

constructor.constructor body in

let func = convert constructor to fdecl constructor
updated body

in

check statement func

symbols program updated body

and check destructor definition program struct =

let symbol table = build symbol table program in
let destructor = struct .destructor in

let symbols = List.fold left (fun symbol table sym -> if (StringMap.mem

(get _id from symbol sym) symbol table) then raise(Failure("Struct field:

(get_id from symbol sym) *~ "was redeclared")) else StringMap.add
(get_id from symbol sym) sym symbol table) symbol table

(symbols from decls struct .members) in

if (destructor.destructor name = "") then ()

else

let func = convert destructor to fdecl destructor in

check statement func symbols program destructor.destructor body

and get method names struct = List.map (fun func -> var name from direct declarator
func.func name) struct .methods

and apply name to anon def (prefix, count) adef = {

anon name = prefix ~ " " *~ (string of int count);
anon return type = adef.anon return type;
anon params = adef.anon params;

anon body = adef.anon body;

and anon_defs from expr (prefix, count) expr = match expr with

AnonFuncDef (anonDef) ->([(apply name to anon def (prefix, count) anonbDef)],
(count + 1))

| Binop(el, op, e2) ->
let (defsl, countl) = (anon defs from expr (prefix, count) el) in
let (defs2, count2) = (anon defs from expr (prefix, countl) e2) in

(defsl@defs2, count2)

| AsnExpr(, _, e) -> anon defs from expr (prefix, count) e
| Postfix(el,) -> (anon defs from expr (prefix, count) el)
| Call(, e, elist) ->
let (defsl, countl) = (anon defs from expr (prefix, count) e) in
let (defs2, count2) = (anon defs from expr list (prefix, countl) elist) in

(defsl@defs2, count2)

| Make(, elist) -> anon defs from expr list (prefix, count) elist

| => ([], count) (* Other expression types cannot possibly contain anonymous
function definitions *)

and anon_defs from expr list (prefix, count) elist = match elist with
[l -> ([], count)

| [e] -> anon defs from expr (prefix, count) e

| h::t ->
let (defsl, countl) = (anon defs from expr (prefix, count) h) in
let (defs2, count2) = (anon defs from expr list (prefix, countl) t) in

(defsl@defs2, (count2))

and anon defs from declaration (prefix, count) decl = match decl with

Declaration (declSpecs, initDecl) -> anon defs from init declarator (prefix,
count) initDecl

and anon_defs from declaration list (prefix, count) declList = match declList with
[l => ([], count)
| [d] -> anon defs from declaration (prefix, count) d
[h::t —>
let (defsl, countl) = (anon defs from declaration (prefix, count) h) in

let (defs2, count2) = (anon _defs from declaration list (prefix, countl) t)

in

(defsl@defs2, count2)

and anon_defs from init declarator (prefix, count) idecl = match idecl with

InitDeclaratorAsn(, , e) -> anon defs from expr (prefix, count) e

| InitDeclList(initDeclList) -> anon defs from init declarator list (prefix,

count) initDeclList

| -> ([], count)

and anon defs from init declarator list (prefix, count) ideclList = match ideclList
with

[1 -> ([], count)

| [decl] -> anon defs from init declarator (prefix, count) decl

| h::t ->
let (defsl, countl) = (anon defs from init declarator (prefix, count) h) in
let (defs2, count2) = (anon defs from init declarator list (prefix, countl)

(defsl@defs2, (count2))

and anon _defs from statement (prefix, count) stmt = match stmt with

Expr(e) -> anon defs from expr (prefix, count) e
| Return(e) -> anon defs from expr (prefix, count) e
| EmptyElse -> ([], 0)

| If(e, sl, s2) ->

let (defsl, countl) (anon_defs from expr (prefix, count) e) in

let (defs2, count2) (anon defs from statement (prefix, countl) sl) in
let (defs3, count3) = (anon defs from statement (prefix, count2) s2) in
(defsl@defs2@defs3, count3)

| For(el, e2, e3, s) —->

let (defsl, countl)

(anon _defs from expr (prefix, count) el) in

let (defs2, count2)

(anon defs from expr (prefix, countl) e2) in

let (defs3, count3)

(anon_defs from expr (prefix, count2) e3) in
let (defs4, count4) = (anon defs from statement (prefix, count3) s) in
(defsl@defs2@defs3Q@defs4, countid)

| While(e, s) ->
let (defsl, countl) = (anon defs from expr (prefix, count) e) in
let (defs2, count2) = (anon _defs from statement (prefix, countl) s) in
(defsl@defs2, count2)

| CompoundStatement (declList, stmtList) ->

let (defsl, countl) = (anon defs from declaration list (prefix, count)
declList) in

let (defs2, count2) = (anon defs from statement list

stmtList) in

(defsl@defs2, count2)

(prefix,

and anon defs from statement list (prefix, count) stmtList = match stmtList with

[T => ([1, count)

| [s] -> anon defs from statement (prefix, count) s

| h::t ->
let (defsl, countl) = (anon defs from statement (prefix,
let (defs2, count2) = (anon _defs from statement list (prefix,

(defsl@defs2, count2)

and anon defs from func decl (prefix, count) fdecl =
let newPrefix =
(match fdecl.func name with
DirectDeclarator (Var (Identifier(s))) -> "a " "~ s

| PointerDirDecl(, Var (Identifier(s))) -> "a " "~ s)

in

anon_defs from statement (newPrefix, 0) fdecl.body

count) h) in

countl)

and anon_defs from func decl list (prefix, count) fdlist = match fdlist with

[T -> ([], count)

| [x] -> anon defs from func decl (prefix, count) x

| h::t ->
let (defsl, countl) = (anon defs from func decl (prefix,
let (defs2, count2) = (anon _defs from func decl list (prefix,

(defsl@defs2, count2)

and anon defs from tprogram tprog =

count) h) in

countl)

t)

t)

countl)

in

in

let (defs,) = (anon defs from func decl 1list (" ", 0) (List.rev

tprog.functions)) in

List.rev defs

and anon_def from tsymbol tprogram tsym =
match tsym with
AnonFuncSymbol (s,) ->

let anonDefs = anon defs from tprogram tprogram in

let dummyDef = {
anon name = "PLACEHOLDER ANON DEF";
anon_return type = PrimitiveType (Void);
anon params = [];

anon_body = CompoundStatement ([], [])

in
let (found, anonDef) = (List.fold left
(fun (isFound, foundDef) def ->
(match isFound with
true -> (isFound, foundDef)
| false ->
if (def.anon name = s) then
(true, def)
else
(false, foundDef))) (false, dummyDef) anonDefs)
in
if (found = true) then
anonDef
else

let errorStr = "anon def from tsymbol: Error - no anonDef with name "

raise (Failure (errorStr))

_ —> raise(Failure ("Unexpected symbol type"))

(*and anon_defs from func param list tprogram *)
and compare anon defs ignore name al a2 =
let bl = {
anon name = "";
anon_ return type = al.anon return type;

anon_params = al.anon_params;

anon_body = al.anon body

in
let b2 = {
anon name = "";
anon_return type = a2.anon_return type;

anon_params = a2.anon_params;

anon_body = aZ.anon_body

in

and find name for anon def tprogram anonDef =
let anonDefs = anon defs from tprogram tprogram in
let find match (isFound, targetDef) def =

if (isFound = true) then

(isFound, targetDef) (* Leave alone *)
else
if ((compare_anon_defs_ignore_name targetDef def) = true)
(true, def)
else

(false, targetDef)

then

in
let (found, def) = List.fold left find match (false, anonDef) anonDefs in
if (found = true) then
def.anon name
else

raise(Failure("find name for anon def: Error - could not find a matching
anonymous function definition"))

and find func containing anon def tprogram anonDef =

let name = find name for anon def tprogram anonDef in
let index of final underscore = String.rindex name ' ' in
let fname = String.sub name 2 (index of final underscore - 2) in

let symtable = build symbol table tprogram in
let interfaceSymbols = symbols from interfaces tprogram.interfaces in
let interfaceMethodSymbols =
let interfaces =
List.map (fun (InterfaceSymbol(, iface)) -> iface) interfaceSymbols
in
List.fold left (fun acclList iface ->
accList@ (symbols from fdecls iface.funcs)) [] interfaces
in

let updated symbol table = add symbol list to symtable interfaceMethodSymbols
symtable in

let fsym = lookup symbol by id updated symbol table (Identifier(fname)) in
match fsym with
FuncSymbol (, fdecl) -> fdecl

| -> raise(Failure("find func containing anon def: Error, incorrect symbol

type found"))

and find symbol containing anon def tprogram anonDef =

let name = find name for anon def tprogram anonDef in

let index of final underscore = String.rindex name ' ' in
let fname = String.sub name 2 (index of final underscore - 2) in
let symtable = build symbol table tprogram in
let interfaceSymbols = symbols from interfaces tprogram.interfaces in
let interfaceMethodSymbols =
let interfaces =
List.map (fun (InterfaceSymbol(, iface)) -> iface) interfaceSymbols
in
List.fold left (fun acclList iface ->
accList@ (symbols from fdecls iface.funcs)) [] interfaces
in

let updated symbol table = add symbol list to symtable interfaceMethodSymbols
symtable in

lookup symbol by id updated symbol table (Identifier (fname))

and find struct name for anon def tprogram anonDef =
let name = find name for anon def tprogram anonDef in

"S" ~ name

and anon defs from expr list no recursion tprogram elist =
List.fold left (fun acc e ->
(match e with
AnonFuncDef (anonDef) ->

let anonName = find name for anon def tprogram anonDef
in

let namedAnonDef = {
anon_name = anonName;
anon return type = anonDef.anon return type;
anon_params = anonDef.anon params;

anon body = anonDef.anon body

in
acc@ [namedAnonDef]

_ —> acc)) [] elist

and expr list contains anon defs no recursion elist =
let expr contains anon def at this level truthvVal expr =
if (truthvVal = true) then
true
else
(match expr with
AnonFuncDef () -> true
| -> false)
in

List.fold left expr contains anon def at this level false elist

and call contains_anon def call =
let rec expr contains anon def at this level truthval expr =
if (truthval = true) then
true
else
match expr with
AnonFuncDef () -> true
| —-> false
in
match call with
Call(, , elist) ->

List.fold left expr contains anon def at this level false elist

| -> raise(Failure("call contains anon def: Error - do not pass anything other
than a call expression to this function"))

let rec expr contains anon def symbols anonDef expr = match expr with
| AnonFuncDef (a) ->
if (compare anon defs ignore name a anonDef) then

(true, symbols)

else
(false, symbols)
| Binop(el, , e2) ->
let (found, newSyms) = (expr contains anon def symbols anonDef el) in

if found then
(found, newSyms)
else

let (found, newSyms) = (expr_ contains anon _def newSyms anonDef e2)
in

if found then
(true, newSyms)
else (false, symbols)
| AsnExpr(el, , e2) ->

let (found, newSyms) = (expr_contains_anon_def symbols anonDef el) in
if found then

(true, newSyms)
else

let (found, newSyms) = (expr_ contains anon _def newSyms anonDef e2)
in

if found then
(true, newSyms)
else (false, symbols)
| Literal(x) -> (false, symbols)
| CompareExpr(el, , e2) ->
let (found, newSyms) = (expr contains anon def symbols anonDef el) in
if found then

(found, newSyms)

else

let (found, newSyms) = (expr_ contains anon _def newSyms anonDef e2)
in

if found then
(true, newSyms)
else (false, symbols)
| FloatLiteral() -> (false, symbols)

| StringLiteral() -> (false, symbols)
| Postfix(e,) -> expr contains anon def symbols anonDef e
| Call(el, e2, elist) ->
let (found, newSyms) = (expr contains anon def symbols anonDef el) in
if found then
(true, newSyms)

else

let (found, newSyms) = (expr contains anon _def newSyms anonDef e2)
in

if found then
(true, newSyms)
else

let (found, newSyms) = (expr list contains anon def newSyms
anonDef elist) in

if (found = true) then

(true, newSyms)

else
(false, symbols)

| Make(, elist) -> expr list contains_anon_def symbols anonDef elist
| Clean(e) -> expr_contains_anon_def symbols anonDef e
| Pointify(e) -> expr contains anon def symbols anonDef e
| Deref (e) -> expr_contains_anon_def symbols anonDef e
| MemAccess (e,) -> expr contains anon def symbols anonDef e
| Id() -> (false, symbols)

| DeclExpr(decl) -> declaration contains anon def symbols anonDef decl

| Noexpr -> (false, symbols)

| Unop(,) -> raise(Failure("expr contains anon def: Error - unop not
supported"))

| -> raise (Failure ("expr contains anon def: Error - unexpected expression

type"))

and expr list contains anon def symbols anonDef elist = match elist with
[1] -> (false, symbols)
| [e] -> expr contains anon _def symbols anonDef e
| h::t -> let (found, newSyms) = expr contains anon def symbols anonDef h in
if found then

(true, newSyms)

else if
let (found, newSyms) = expr list contains anon def symbols anonDef
t in
found then (true, newSyms)
else (false, symbols)
and 1init declarator contains _anon _def symbols anonDef initDecl = match initDecl
with
InitDeclaratorAsn(, , e) —-> expr contains anon def symbols anonDef e
| InitDeclList(idlist) -> init declarator list contains anon def symbols anonDef
idlist
| InitDeclarator() -> (false, symbols)
| -> raise(Failure("init declarator contains anon def: Error - unexpected

init declarator type"))

and init declarator list contains anon def symbols anonDef initDeclList = match
initDeclList with

[1] => (false, symbols)
| [x] -> init declarator contains anon def symbols anonDef x

| h::t -> let (found, newSyms) = init declarator contains_ anon def symbols
anonDef h in

if found then

(true, newSyms)
else

let (found, newSyms) = init declarator list contains_anon def
newSyms anonDef t in

if found then
(true, newSyms)
else

(false, symbols)

and declaration contains_anon def symbols anonDef decl = match decl with

Declaration(, initDecl) -> init declarator contains anon def symbols anonDef

initDecl

and declaration list contains anon def symbols anonDef declList = match declList
with

[=> (false, symbols)
| [d] -> declaration contains anon def symbols anonDef d
| h::t ->

let (found, newSyms) = declaration contains anon def symbols anonDef h
in

if found then
(true, newSyms)
else

let (found, newSyms) = declaration list contains anon def symbols
anonDef t in

if found then
(true, newSyms)

else (false, symbols)

and statement contains anon def symbols anonDef stmt = match stmt with
Expr(e) -> expr contains anon def symbols anonDef e

| Return(e) -> expr contains anon def symbols anonDef e

| If(e, sl, s2) -> let (found, newSyms) = expr contains anon def symbols anonDef

if found then
(true, newSyms)
else

let (found, newSyms) = statement contains anon def newSyms
anonDef stmt in

if found then
(true, newSyms)
else (false, symbols)
| CompoundStatement (declList, stmtList) ->

let (found, newSyms) = declaration list contains anon def
symbols anonDef declList in

if found then
(true, newSyms)
else

let (found, newSyms) =
statement list contains anon def newSyms anonDef stmtList in

if found then
(true, newSyms)

else (false, symbols)

and statement list contains anon def symbols anonDef stmtList = match stmtList with
[1] -> (false, symbols)

| [s] -> statement contains anon def symbols anonDef s

[h::t ->
let (found, newSyms) = statement contains anon def symbols anonDef h in
if found then

(true, newSyms)

else

let (found, newSyms) = statement list contains anon def symbols
anonDef t in

if found then

(true, newSyms)

else (false, symbols)

and fdecl contains anon def symbols anonDef fdecl =
match fdecl.body with
CompoundStatement (declList, stmtList) ->
let psymbols = symbols from func params fdecl.params in
let bsymbols = symbols from decls declList in

let (found, newSyms) = declaration list contains_anon def
(symbols@psymbols@bsymbols) anonDef declList in

if (found = true) then
(true, newSyms)
else

let (found, newSyms) = statement list contains anon def
(symbols@psymbols@bsymbols) anonDef stmtList in

if (found = true) then
(true, newSyms)

else (false, symbols)

and fdecl list contains anon def symbols anonDef fdeclList = match fdeclList with
[1] => (false, symbols)
| [f] -> fdecl contains anon def symbols anonDef f
[h::t >
let (found, newSyms) = fdecl contains anon def symbols anonDef h in
if found then
(true, newSyms)
else

let (found, newSyms) = fdecl list contains anon def symbols anonDef
t in

if found then
(true, newSyms)

else (false, symbols)

and program contains_anon _def anonDef program =
let globals = symbols from decls program.globals in

fdecl list contains anon def globals anonDef program.functions

and symbols from outside scope for anon def tprogram anonDef =

let (found, symlist) = program contains anon def anonDef tprogram in
if (found = false) then

raise (Failure ("Error: program does not contain anonDef"))
else

symlist

and find func owning anon def tprogram anonDef =
let dummyFuncDecl = {
return type = DeclSpecTypeSpecAny (PrimitiveType (Void));
func name = DirectDeclarator (Var (Identifier("")));
receiver = ("", "");
params = [];

body = CompoundStatement ([], [1])

in
(*let symbols = (build symbol table tprogram) in*)
let (isFound, foundDecl) =
List.fold left (fun (isFound, foundDecl) fdecl ->
match isFound with
true ->
(*skip *)
(isFound, foundDecl)

| false ->

let (isFound,) = fdecl contains anon def [] anonDef fdecl in

if (isFound = true) then

(true, fdecl)

else
(false, foundDecl)) (false, dummyFuncDecl)
tprogram. functions
in
match isFound with
true -> foundDecl
| false -> raise(Failure("find func owning anon def: Error - could not find

function owning anonDef"))

and print anon def anonDef =

Printf.printf "\n%s\n" (Astutil.string of anon def anonDef)

and print anon defs = function

| [x] -> print anon def x

| h::t -> print anon def h; print anon defs t

let check structs satisfy interfaces program =

let symbol table = build symbol table program in

List.map (check implements symbol table) program.structs

let rec func param from expr symbols expr =
let te = type from expr symbols expr in
ParamDeclWithType (DeclSpecTypeSpecAny (te))

and func param list from expr list symbols expr list = match expr list with

[1 -> 11
| [e] -> [func param from expr symbols e]

| h::t -> [func_param from expr symbols h]@(func_param list from expr_ list symbols

and funcs with receivers program =
List.fold left (fun accList fdecl ->
let (rcvl, rcv2) = fdecl.receiver in
if ((rcvl <> "") || (rcv2 <> "")) then
accList@[fdecl]
else

acclList) [] program

and print funcs with receivers program =
let funcs_ that have recvrs = funcs with receivers program in

List.iter (fun £ ->

Printf.printf "%s\n\n" (Astutil.string of func f)) funcs that have recvrs

let check program program =
let sdecls = List.map var name_ from declaration program.globals in
let report duplicate exceptf list =
let rec helper = function

nl :: n2 :: when nl = n2 -> raise (Failure (exceptf nl))

| _:: t -> helper t

in helper (List.sort compare list)

in

report duplicate (fun a -> "duplicate for variable: " * a) (sdecls) ;

ignore (List.map check void decl program.globals);

let fnames = (List.map (fun func -> var name from direct declarator
func. func_ name)

(List.filter (fun func -> if (type from receiver

func.receiver = "") then true else false)

program. functions)) in
report duplicate (fun a -> "duplicate functions:

" ~ a) (fnames);

let program = update structs in program program
in ignore(List.map check struct fields

program.structs) ;

ignore (List.map (check constructor definition in struct program)

program.structs) ;

ignore (List.map (check destructor definition program)

program.structs) ;

let struct names = List.map (fun struct -> struct .struct name)

program.structs in

~

report duplicate (fun a -> "duplicate structs: " a) (struct names);

let check duplicate struct struct =

A

report duplicate (fun a -> "duplicate method: " a)

(get _method names struct) in

List.map check duplicate struct (program.structs):;

let has main = List.mem "main" fnames in

if has main then () else raise(Failure("no function main declared")):;

let is printf redefined = List.mem "printf" fnames in
if is printf redefined then raise(Failure("cannot redefine printf")) else

() s

check structs_satisfy interfaces program;

let fdecls = program.functions @ stdlib funcs in

(* Build map of function declarations ¥*)

let functions map = List.fold left (fun m func -> StringMap.add

(var name from direct declarator func.func name) func m) StringMap.empty

fdecls in

('k ****DEBUG * Kk k kK *)

(*print funcs with receivers program.functions;*)

(* * Kk kK END DEBUG ****)

let check function func =

let func params = List.map var name from func param func.params
in
report duplicate (fun a -> "duplicate function parameters: " *

a) func params;

param list has void func.params (var name from direct declarator

func.func name) ;

let local decls = List.map var name from declaration

(get _decls from compound stmt func.body) in

report duplicate (fun a -> "duplicate local variable: " ~ a)

(local decls);

let symbol table = List.fold left (fun m symbol -> if StringMap.mem
(get_id from symbol symbol) m then

n"oA

raise (Failure ("redefining variable:
n A

get id from symbol symbol ~ " in function:

(var name from direct declarator func.func name))) else
StringMap.add

(get_id from symbol symbol) symbol m) StringMap.empty
(symbols from decls program.globals (@
symbols from fdecls fdecls @
(symbols from func params func.params) @ (symbols from decls
(get decls from compound stmt func.body))
@ (symbols from structs program.structs)

@ (symbols from interfaces program.interfaces)

@ ([symbol from receiver func.receiver]))
in
ignore (if (func.receiver <> ("", "")) then (if StringMap.mem (fst
func.receiver) symbol table then () else

raise (Failure ("receiver: " »~ (fst func.receiver) ~ " is

not defined"))));

List.iter (check local declaration symbol table)

(get decls from compound stmt func.body):;

List.iter (check statement func symbol table program)

(get _stmts from compound stmt func.body) ;

in List.iter check function program.functions;

Ctree.ml

open Ast

module StringMap = Map.Make (String)

type cIdentifier = CIdentifier of string

type cPrimitive =
Cvoid
| Cchar
| Cshort
| Cint
| Clong
| Cfloat

| Cdouble

type cProgram = {
cstructs: cStruct list;
cglobals: cDeclaration list;

cfunctions: cFunc list;

and cStruct = {
cstruct name: string;
cstruct members: cSymbol list;

cmethod to functions: cFunc StringMap.t;

and cFuncSignature = {

func_return_ type: cType;

func_param types: cType list;

and cFunc = {
cfunc_name: string;
cfunc_body: cStatement;
cfunc_params: cFuncParam list;

creturn type: cType;

and cFuncDecl = {
cfdecl name: string;
cfdecl params: cType list;

cfdecl return type: cType;

and cNonPointerType =
CPrimitiveType of cPrimitive

| CStruct of string

and cPointer =
CPointer of cNonPointerType

| CPointerPointer of cPointer

and cType =
CType of cNonPointerType
| CPointerType of cType * int

| CFuncPointer of cFuncSignature

and cExpr =
CBinop of cExpr * tOperator * cExpr

| CAsnExpr of cExpr * tAssignmentOperator * cExpr

CLiteral of int

CFloatLiteral of float

CStringlLiteral of string

| CCastExpr of cType * cExpr

| CPostfix of cExpr * tPostfixOperator

| CCall of int * cExpr * cExpr * cExpr list (* The int field is a flag to
indiciate it is a pointer dereference *)

| CAlloc of cType * cExpr

CNeg of cExpr

CFree of cExpr

CDheref of cExpr

| CArrayAccess of cExpr * cExpr

| CCompareExpr of cExpr * tLogicalOperator * cExpr

| CPointify of cExpr

| CMemAccess of int * cExpr * cldentifier (* The int field is a flag to
indicate it is a pointer dereference *)

| CId of cIdentifier

| CDeclExpr of cDeclaration

| CNoexpr

| CNull

and cStatement =
CExpr of cExpr
| CEmptyElse
| CReturn of cExpr
| CCompoundStatement of cDeclaration list * cStatement list
| CIf of cExpr * cStatement * cStatement
| CFor of cExpr * cExpr * cExpr * cStatement
| CWhile of cExpr * cStatement

| CBreak

and cDirectDeclarator =

CVar of cIdentifier

and cDeclarator =

CDirectDeclarator of cDirectDeclarator

and cInitDeclarator =

and

and

and

and

let

let

let

let

CInitDeclarator of cDeclarator

CInitDeclaratorAsn of cDeclarator * tAssignmentOperator * cExpr

cDeclarationSpecifiers =

CDeclSpecTypeSpecAny of cType

cFuncParam = cType * clIdentifier

cDeclaration =

CDeclaration of cDeclarationSpecifiers * cInitDeclarator

cSymbol =
CVarSymbol of string * cType
| CFuncSymbol of string * cFunc

| CStructSymbol of string * cStruct

cStructName_ from tInterface name =

String.concat "" [" interface";

name]

interface field name in struct interface name struct name =

String.concat "" [" "; (String.concat "

cStructName from tStruct name =

String.concat "" [" struct"; name]

virtual table name from tStruct name

"

[interface name;struct name])]

String.concat "" [" virtual";name]

let constructor name from tStruct name =

String.concat " " [" constructor";name]

let destructor name from tStruct name =

String.concat " " [" destructor";name]

let cType from tTypeSpec = function
Void -> CType (CPrimitiveType (Cvoid))
| Char -> CType (CPrimitiveType (Cchar))
| Short -> CType (CPrimitiveType (Cshort))
| Int -> CType (CPrimitiveType (Cint))

| Long -> CType (CPrimitiveType (Clong))

Float -> CType (CPrimitiveType (Cfloat))

Double -> CType (CPrimitiveType (Cdouble))

Signed -> raise(Failure("cType from tTypeSpec: Error, Signed unsuported at the moment"))

Unsigned -> raise(Failure("cType from tTypeSpec: Error, Unsigned unsuported at the moment"))
| String -> CPointerType (CType (CPrimitiveType (Cchar)), 1)

(*| _ -> raise(Failure("cType from tTypeSpec: Error, unsupported tTypeSpec"))*)

let rec print pointers n =

if (n = 1) then "*" else

(String.concat "" ["*"; (print pointers (n-1))])
let rec sizeof string tSymbol table typ = match typ with
| CType (CPrimitiveType (Cvoid)) =-> "void"
| CType (CPrimitiveType (Cchar)) -> "char"
| CType (CPrimitiveType (Cint)) -> "int"
| CType (CPrimitiveType (Clong)) -> "long"
| CType (CPrimitiveType (Cfloat)) -> "float"

| CType (CPrimitiveType (Cdouble)) -> "double"

| CType (CStruct(t)) -> String.concat " " ["struct"; t]
| CPointerType (base, n) -> String.concat " " [(sizeof string tSymbol table
base); (print pointers n)]
let rec cType from tType symbol table = function
PrimitiveType (typeSpec) -> cType from tTypeSpec typeSpec
| PointerType (base type, num) -> CPointerType (cType from tType symbol table base type,
num)

| ArrayType (array type, ptr, e) -> (let tl = Semant.type of array type

symbol table (ArrayType(array type, ptr, e)) in cType from tType symbol table
tl)
| CustomType (s) -> (let sym = StringMap.find s symbol table in

match sym with

| StructSymbol (name,) ->

CType (CStruct (cStructName from tStruct

name))

| InterfaceSymbol (name,) ->

CPointerType (CType (CStruct (cStructName from tInterface

name)), 1))

| AnonFuncType (t, tlist) ->
let anonRetType = (cType from tType symbol table t) in
let anonParamTypes = List.map (fun x -> (cType from tType symbol table x)) tlist in
let captureParam = CPointerType (CType (CPrimitiveType (Cvoid)), 1) in
CFuncPointer ({

func_return type = anonRetType;

func_param types = anonParamTypes@[captureParam]

b

_ —> raise(Failure("Haven't filled out yet"))

let id exists_in symtable symbols id =

try
StringMap.find (Astutil.string of identifier id) symbols;
true

with -> false

let id exists in symlist symlist id =
let check sym id equal sym id =

match sym with

VarSymbol (name,) -> if (name = (Astutil.string of identifier id)) then true else false
| FuncSymbol (name,) -> if (name = (Astutil.string of identifier id)) then true else false
| AnonFuncSymbol (name,) -> if (name = (Astutil.string of identifier id)) then true else
false
in

let compare symbol with id (id, (hasBeenFound, foundSymbol)) sym =
match hasBeenFound with
false -> if (check sym id equal sym id) == true then (id, (true, sym))
else (id, (hasBeenFound, foundSymbol))
| true -> (id, (hasBeenFound, foundSymbol))
in

let (, (isFound, foundSym)) = (List.fold left compare symbol with id (id,

VarSymbol ("ERROR SYMBOL", PrimitiveType(Void)))) symlist) in isFound

let lookup_ symbol from symlist by id symlist id =
let check sym id equal sym id =

match sym with

VarSymbol (name,) -> name == (Astutil.string of identifier id)
| FuncSymbol (name,) -> name == (Astutil.string of identifier id)
| AnonFuncSymbol (name,) -> name == (Astutil.string of identifier id)

in
let compare symbol with id (id, (hasBeenFound, foundSymbol)) sym =
match hasBeenFound with

false -> if (check sym id equal sym id) == true then (id, (true, sym))

(false,

else (id, (hasBeenFound, foundSymbol))
| true -> (id, (hasBeenFound, foundSymbol))
in

match (List.fold left compare symbol with id (id, (false, VarSymbol ("ERROR SYMBOL",
PrimitiveType (Void)))) symlist) with

(_, (true, foundSym)) -> foundSym

| _ -> raise(Failure("lookup symbol from symlist by id: Error, symbol not in table."))

let cDeclarationSpecifiers from tDeclarationSpecifiers symbol table tDeclSpecs = function
| DeclSpecTypeSpecAny (tType) ->

CDeclSpecTypeSpecAny (cType from tType symbol table tType)

let cDeclaration from tFdecl symbol table fdecl =
let first argument = [CPointerType (CType (CPrimitiveType (Cvoid)), 1)] in
let cfunc param types = first argument @ List.map (cType from tType symbol table)
(Semant.type list from func param list fdecl.params) in
let generate void star param types =
let anonList =
List.filter (fun p -> match p with
AnonFuncDecl (anonDecl) -> true
| _ -> false) fdecl.params
in
let returned param types =
List.map (fun p -> match p with
AnonFuncDecl (anonDecl) ->
CPointerType (CType (CPrimitiveType (Cvoid)), 1)) anonList
in
returned param types
in
let extraParamTypes = generate void star param types in

let cfunc_return type =

cType from tType symbol table (Semant.type from declaration specifiers
fdecl.return type) in
let func signature = {
func_return type = cfunc return type;
func _param types = cfunc param types@extraParamTypes;

} in

CVarSymbol ((Semant.var name from direct declarator fdecl.func name),
CFuncPointer (func_signature))

(* The C Struct corresponding to the Cimple Interface consists of

* 1) Function pointers instead of methods. The first argument is a void star *)

let cStruct from tInterface symbol table interface =
let cBodySymbol = [CVarSymbol ("body",
CPointerType (CType (CPrimitiveType (Cvoid)),
1))] in (* This is the void * body that we apply to all the functions *)

let cSymbols = List.map (cDeclaration from tFdecl symbol table) interface.funcs in

cstruct members = cBodySymbol @ cSymbols;
cstruct name = cStructName from tInterface interface.name;

cmethod to functions = StringMap.empty

let cSymbol from Implements implements =
let cstruct name = cStructName from tInterface implements in

CVarSymbol (cstruct name, CPointerType (CType (CStruct (cstruct name)), 1))

let cFuncParam from tFuncParam symbol table tFuncParam =

(cType from tType symbol table (Semant.type from func param tFuncParam),
(CIdentifier (Semant.var name from func param tFuncParam)))

let create cfunc param for receiver receiver =

(CPointerType (CType (CPrimitiveType (Cvoid)), 1),

CIdentifier (" body"))

let create initial cast decl receiver =
let cstruct name = cStructName from tStruct (fst receiver) in
CDheclaration (CDeclSpecTypeSpecAny (CPointerType (CType (CStruct (cstruct name)),
1)), CInitDeclaratorAsn(CDirectDeclarator (CVar (CIdentifier (snd receiver)))
, Asn, CCastExpr (CPointerType (CType (CStruct (cstruct name)), 1),

CId(CIdentifier (" body")))))

let number of anon_ func parameters in tFuncParamList plist =
List.fold left (fun acc f ->
(match £ with
AnonFuncDecl() -> (acc + 1)

| _ =->acc)) 0 plist

let number of anon func parameters in tFuncDecl fdecl =

number of anon func parameters in tFuncParamList fdecl.params

let cFunc_from tFunc symbol table tFunc =

creturn type = cType from tType symbol table

(Semant.type from declaration specifiers tFunc.return type);

cfunc_params = List.rev (List.map (cFuncParam from tFuncParam

symbol table) tFunc.params);

cfunc_body = CCompoundStatement ([], []);

cfunc_name = Semant.var name from direct declarator

tFunc.func name;

let rec cSymbol from sSymbol symbol table sym = match sym with
VarSymbol (s, t) -> CVarSymbol (s, (cType from tType symbol table t))
| FuncSymbol (s, fdecl) -> CFuncSymbol (s, (cFunc_from tFunc symbol table fdecl))
| StructSymbol (s, strct) ->
let (newStrct,) = cStruct from tStruct symbol table strct in
CStructSymbol (s, newStrct)

~ —> raise(Failure("Not completed"))

* This function returns a list of Ast.sSymbols representing the variables referenced within the
body of

* an anonymous function that are declared outside of it's scope. This list will form the data
* members of a special c struct that will be passed to a normal c¢ function whenevever

* an anonymous function in cimple is instantiated.

* Parameters:
* symbols: A StringMap of symbols from outside the scope of the anonymous function def
* psymbols: A symbol table of parameters to this anonymous function
* members: A list of function parameters declared in the anon function definition

* body: An Ast.tStatement (specifically a CompoundStatement) that is the body of the
anonymous function

and struct members from anon body symbols psymbols members body =

let rec print member m = Printf.printf "$s\n" (Astutil.string of symbol m)

and print _member list mlist = match mlist with

| [x] -> print member x

| h::t -> print member h; print member list t

in

let symbol is capturable = function
VarSymbol(,) -> true

| -> false

in

let rec members from expr symbols psymbols members e = match e with
Id(id) ->
if (id exists in symtable psymbols id) then []
else if (id exists in symlist members id) = true then
[1
else if (id exists in symtable symbols id) = true then
let sym = Semant.lookup symbol by id symbols id in
if (symbol is capturable sym) then
[sym]
else
[]
(*else if (id _exists in symtable psymbols id) then []¥*)
else (match id with
Identifier(s) ->
print member list members;
raise(Failure ("members from expr: Error - undeclared symbol '" "~ s 7~ "'")))
| Binop(el, , e2) -> let elMembers = members from expr symbols psymbols members el in

let e2Members = members from expr symbols psymbols (members@elMembers)
e2 in

elMembers@e2Members
| AsnExpr(el, , e2) -> let elMembers = members from expr symbols psymbols members el in

let e2Members = members from expr symbols psymbols
(members@elMembers) e2 in

elMembers@e2Members
| Postfix(el,) -> let elMembers = members from expr symbols psymbols members el in

elMembers

| Call(, e, elist) -> let eMembers = members from expr symbols psymbols members e in

let elistMembers = members from expr list symbols psymbols
(members@eMembers) elist in

eMembers@elistMembers
| Make(, elist) -> members from expr list symbols psymbols members elist
| Pointify(e) -> members from expr symbols psymbols members e

| MemAccess (e, 1d2) -> let idlMembers = members from expr symbols psymbols members e in

let id2Members = members_ from expr symbols psymbols
(members@idlMembers) e in

idlMembers@id2Members

| AnonFuncDef (def) -> raise(Failure("members from expr: Error - nested anonymous functions not
supported"))

| DeclExpr (decl) -> members from declaration symbols psymbols members decl
| StringLiteral() -> []

I -> [

and members from expr list symbols psymbols members elist = match elist with

| [x] -> members from expr symbols psymbols members x
| h::t -> let hMembers = members from expr symbols psymbols members h in
let tMembers = members from expr list symbols psymbols (members@hMembers) t in

hMembers@tMembers

and members from init declarator symbols psymbols members initDecl =
match initDecl with
InitDeclaratorAsn(, , e) -> members from expr symbols psymbols members e

| InitDeclList(l) -> members_ from init declarator_ list symbols psymbols members 1

and members from init declarator list symbols psymbols members declList =
match declList with

(*[] -> members from expr symbols psymbols members Noexpr¥*)

| [x] -> members from init declarator symbols psymbols members x
| h::t -> let hmembers = members from init declarator symbols psymbols members h in

hmembers@ (members from init declarator list symbols psymbols (members@hmembers) t)

and members from declaration symbols psymbols members decl = match decl with

Declaration(_, initDecl) ->

members from init declarator symbols psymbols members initDecl

(*I _ => [1 [> Other types of declarations wouldn't reference variables from outside scope
<1*)

and members from declaration list symbols psymbols members declList = match declList with

| [x] -> (members from declaration symbols psymbols members x)
| h::t -> let hmembers = members from declaration symbols psymbols members h in

hmembers@ (members from declaration list symbols psymbols (members@hmembers) t)

and members from statement list symbols psymbols members stmtList = match stmtList with

| [x] -> (members from statement symbols psymbols members x)
| h::t -> let hmembers = members from statement symbols psymbols members h in

(hmembers) @ (members from statement list symbols psymbols (members@hmembers) t)

and members from statement symbols psymbols members stmt = match stmt with
CompoundStatement (decls, stmtList) ->
let dmembers = (members from declaration list symbols psymbols members decls) in
dmembers@members from statement list symbols psymbols (members@dmembers) stmtList
| Expr(e) -> members from expr symbols psymbols members e
| Return(e) -> members from expr symbols psymbols members e
| If(e, sl, s2) -> let eMembers = members from expr symbols psymbols members e in

let slMembers = members from statement symbols psymbols (members@eMembers)
sl in

let s2Members = members from statement symbols psymbols
(members@eMembers@slMembers) s2 in

eMembers@slMembers@s2Members
| For(el, e2, e3, s) -> let elMembers = members from expr symbols psymbols members el in

let e2Members = members from expr symbols psymbols (members@elMembers)
e2 in

let e3Members = members from expr symbols psymbols
(members@elMembers@e2Members) e3 in

let sMembers = members from statement symbols psymbols
(members@elMembers@e2Members@e3Members) s in

elMembers@e2Members@e3Members@sMembers

| While(e, s) -> let eMembers = members from expr symbols psymbols members e in
let sMembers = members_from statement symbols psymbols (members@eMembers) s
in
eMembers@sMembers

I => 11
in
let mems members from statement symbols psymbols members body in
mems

* Returns a C struct to be used as a copy of the variables used within the body of an

* anonymous function that were declared outside of its scope.

Parameters:
* program: an Ast.tProgram.

* def: The Ast.tAnonFuncDef whose body we are looking through to find captured variables

and capture struct from anon def program def =

let func = Semant.find func containing anon def program def in
let receiverSymbols = [Semant.symbol from receiver func.receiver] in
let interfaceSymbols = Semant.symbols from interfaces program.interfaces in

let interfaceMethodSymbols =

let interfaces =

List.map (fun (InterfaceSymbol(, iface)) -> iface) interfaceSymbols

in

List.fold left

(fun accList iface ->

accList@ (Semant.symbols from fdecls iface.funcs)) [] interfaces

in

(* (Astutil.print symbol table

let extraSymbols

let symlist

let symbols

let builtinDecls

let builtinSyms

(Semant.symtable from symlist interfaceMethodSymbols));*)

= receiverSymbols@interfaceSymbols@interfaceMethodSymbols in

(Semant.symbols from outside scope for anon def program def)@extraSymbols in

Semant.symtable from symlist symlist in

= Semant.stdlib funcs in

= Semant.symbols from fdecls builtinDecls in

let rec symconvert m = cSymbol from sSymbol symbols m in

let internal anon symbols

(fun stmt -> match stmt with

CompoundStatement (declList,) ->

Semant.symbols from decls declList) def.anon body in

let param symbols = (Semant.symbols from func params def.anon params)@internal anon symbols in

let param symtable = (Semant.symtable from symlist param symbols) in

let updated symbols = Semant.symtable from symlist (builtinSyms@symlist) in

cstruct name

= "s" »~ def.anon _name; (* 's' for 'struct' *)

cstruct members =
def.anon body));

param_symtable

[]

cmethod to_ functions =

(List.map symconvert

StringMap.empty

(struct_members from anon body updated symbols

and capture struct list from anon def list program defList = match deflList with

| [x] -> [capture struct from anon def program x]

| h::t
program t

->

[capture struct from anon def program h]@capture struct list from anon def list

and cFunc_from tMethod cStruct Name tFuncName = String.concat " " [cStruct Name;tFuncName]

and cStruct from tStruct symbol table tStruct =
let symconvert m = cSymbol from sSymbol symbol table m in

let defaultStructMemberSymbols = List.map symconvert (List.map
(Semant.symbol from declaration) tStruct.members) in

(* If there is an interface then add a struct member corresponding to
* the interface to our struct *)
let cStructMemberSymbols = if (Semant.get interface for struct
tStruct.struct name symbol table <> "") then
[cSymbol from Implements tStruct.implements] @

defaultStructMemberSymbols else defaultStructMemberSymbols in

let (methods to cfunctions, cfuncs) = (List.fold left (fun (sym, cfunc list)
method ->

(let tfunc name =
Semant.var name from direct declarator

method .func name in

let initial void param =
create_cfunc_param for receiver

method .receiver in

let init cast decl =
create_initial cast decl

method .receiver in

let cfunc = {
creturn_type = (cType from tType
symbol table
(Semant.type from declaration specifiers

method .return type));

cfunc_params =
[initial void param] @ (List.map
(cFuncParam_from tFuncParam

symbol table) method .params);

cfunc_body =

CCompoundStatement ([init cast decl],

[1);

cfunc_name = cFunc_from tMethod
(cStructName from tStruct

tStruct.struct name) tfunc name;

} in (StringMap.add tfunc_name cfunc

sym, cfunc_list @ [cfunc])))

(StringMap.empty, []) tStruct.methods) in
({
cstruct name = cStructName from tStruct tStruct.struct name;
cstruct members = cStructMemberSymbols;

cmethod to functions = methods_to cfunctions;

}, cfuncs)

let cDeclarationSpecifiers from tDeclarationSpecifiers symbol table tDeclSpecs = function
| DeclSpecTypeSpecAny (tType) ->

CDeclSpecTypeSpecAny (cType from tType symbol table tType)

let cDeclaration from tFdecl symbol table fdecl =
let first argument = [CPointerType (CType (CPrimitiveType (Cvoid)), 1)] in
let cfunc param types = first argument @ List.map (cType from tType symbol table)
(Semant.type list from func param list fdecl.params)

let generate void star param types =

in

let anonList =
List.filter (fun p -> match p with
AnonFuncDecl (anonDecl) -> true
| _ -> false) fdecl.params
in
let returned param types =
List.map (fun p -> match p with
AnonFuncDecl (anonDecl) =->
CPointerType (CType (CPrimitiveType (Cvoid)), 1)) anonlList
in
returned _param_types
in
let extraParamTypes = generate void star param types in
let cfunc_return type =
cType from tType symbol table (Semant.type from declaration specifiers
fdecl.return_type) in
let func signature = {
func return type = cfunc return type;
func_param types = cfunc param types@extraParamTypes;

} in

CVarSymbol ((Semant.var name from direct declarator fdecl.func name),
CFuncPointer (func_signature))

(* The C Struct corresponding to the Cimple Interface consists of

* 1) Function pointers instead of methods. The first argument is a void star *)

let cStruct from tInterface symbol table interface =
let cBodySymbol = [CVarSymbol ("body",
CPointerType (CType (CPrimitiveType (Cvoid)),
1))] in (* This is the void * body that we apply to all the functions *)

let bols = List.map (cDeclaration from tFdecl symbol table) interface.funcs in

cstruct members = cBodySymbol @ bols;
cstruct name = cStructName from tInterface interface.name;

cmethod to functions = StringMap.empty

let bol from Implements implements struct name =
let cstruct name = cStructName from tInterface implements in
let interface field name = interface field name in struct implements
struct name in

CVarSymbol (interface field name, CType (CStruct (cstruct name)))

let cFuncParam from tFuncParam symbol table tFuncParam =
match tFuncParam with

AnonFuncDecl () ->

noA

let newName = "anon (Semant.var name from func param tFuncParam) in

(cType from tType symbol table (Semant.type from func param tFuncParam),
(CIdentifier (newName)))

| ->

(cType from tType symbol table (Semant.type from func param tFuncParam),
(CIdentifier (Semant.var name from func param tFuncParam)))

let create cfunc param for receiver receiver =
(CPointerType (CType (CPrimitiveType (Cvoid)), 1),

CIdentifier (" body"))

let create initial cast decl receiver
let cstruct name = cStructName from tStruct (fst receiver) in
CDeclaration (CDeclSpecTypeSpecAny (CPointerType (CType (CStruct (cstruct name)),
1)), CInitDeclaratorAsn (CDirectDeclarator (CVar (CIdentifier (snd receiver)))
, Asn, CCastExpr (CPointerType (CType (CStruct (cstruct name)), 1),

CId(CIdentifier (" body")))))

let cFunc_from tFunc symbol_ table tFunc =
let generate n void star params n =
let anonList =
List.filter (fun p -> match p with
AnonFuncDecl (anonDecl) -> true
| -> false) tFunc.params
in
let returned params =
List.map (fun p -> match p with
AnonFuncDecl (anonDecl) ->
(match anonDecl.anon_decl name with
Identifier(s) ->

let paramName = "cap_anon " s in

(CPointerType (CType (CPrimitiveType (Cvoid)), 1),
CIdentifier (paramName)))) anonList

in
returned params
in
let n = number of anon func parameters in tFuncDecl tFunc in

let extraParams = generate n void star params n in

creturn type = cType from tType symbol table

(Semant.type from declaration specifiers tFunc.return type);

cfunc_params =List.rev (((extraParams)@List.map (cFuncParam from tFuncParam

symbol table) tFunc.params));

cfunc body = CCompoundStatement ([], []);

cfunc_name = Semant.var name from direct declarator tFunc.func_name;

let cFunc from tMethod tStructName tFuncName

Semant.symbol table key for method tStructName tFuncName

let first param for constructor struct name

(CPointerType (CType (CStruct (cStructName from tStruct struct name)), 2),

CIdentifier (" this"))

let first param for destructor struct name

(CPointerType (CType (CStruct (cStructName from tStruct struct name)), 2),

CIdentifier (" _this"))

let last param for constructor =

(CType (CPrimitiveType (Cint)), CIdentifier (" needs malloc"))

let last param for destructor =

(CType (CPrimitiveType (Cint)), CIdentifier (" needs free"))

and cFunction from tMethod object type method tSymbol table =

match object type with

| CustomType (name) ->

Semant.lookup symbol by id tSymbol table

typ symbol with

| StructSymbol(,)

(name) method
| InterfaceSymbol(,)

| PointerType (CustomType (name),

Semant.lookup symbol by id tSymbol table

typ_symbol with
| StructSymbol(,)

(name) method

(let typ symbol

(Identifier (name))

-> cFunc_from tMethod

-> method)

1)

->

(let typ symbol =

(Identifier (name))

-> cFunc_from tMethod

in match

in match

| InterfaceSymbol(,) -> method)

_ —> raise(Failure("not done"))

* This function takes a cimple expression and returns the pair ((C expression,
* statement[]), cDeclaration[]). The idea is that some cimple expression may generate multiple
* assignment statements such as a make expression with a constructor.
* Expressions should not create more declarations, only declarations create
* more declarations.
*
let rec update expr texpr tSymbol table tprogram = match texpr with
| Neg(e) -> (let ((updated el, el stmts), decls) = update expr e
tSymbol table tprogram in ((CNeg(updated el), el stmts), decls))
| Binop(el, op, e2) -> (let ((updated el, el stmts),) = update expr el
tSymbol table tprogram in
let ((updated e2, e2 stmts),) = update expr e2

tSymbol table tprogram in

((CBinop (updated el, op, updated e2), (el stmts@e2 stmts)), []))

| CompareExpr(el, op, e2) ->
(
let ((updated el, el stmts),) = update expr el tSymbol table tprogram in
let ((updated e2, e2 stmts),) = update expr e2 tSymbol table tprogram in

((CCompareExpr (updated el, op, updated e2), (el stmts @ e2 stmts)), [])

| Clean(e) -> (let tl = Semant.type from expr tSymbol table e in
let ((updated e, e stmts), decls) = update expr e tSymbol table tprogram in
match tl with
| PointerType (CustomType(s),) -> ((CCall(0, CNoexpr,

CId(CIdentifier(destructor name from tStruct s)),

[CCastExpr (CPointerType (CType (CStruct (cStructName from tStruct

s)), 2), CPointify(updated e))] @

[CLiteral(1)1), [1), [1)

| PointerType(,) -> ((CFree(updated e), e stmts),
decls))
| AsnExpr(el, op, e2) ->

(match e2 with

| Make(typ , expr list) -> cAllocExpr from tMakeExpr tSymbol table
tprogram el e2

[=>
let ((updated el, el stmts),) = update expr el
tSymbol table tprogram in
let ((updated e2, e2 stmts),) = update expr e2

tSymbol table tprogram in

let el type = Semant.type from expr tSymbol table el in

let e2 type = Semant.type from expr tSymbol table e2 in

(match (el type, e2 type) with

(* Check if we are assigning custom types. Since we are
* past semantic analysis the only possibilities are 1.
* we are assining a derived class to its ancestor or 2.
* we are assigning the same types. In those cases we

* need to cast *)

| (PointerType (CustomType(s),),
PointerType (CustomType (t), _)) ->
(if (Semant.tl inherits t2 s t tSymbol table) then

((CAsnExpr (updated_el, op,

CCastExpr ((cType from tType tSymbol table el type),
updated e2)),

(el_stmts@e2_stmts)), [])

else
((CAsnExpr (updated el, op, updated e2), el stmts
@ e2 stmts), []1))
| (CustomType (s), CustomType (t)) -> (if

(Semant.tl inherits t2 s t tSymbol table) then
((CAsnExpr (updated el, op,
CCastExpr ((cType from tType tSymbol table

el type), updated e2)), (el _stmts@e2 stmts)), [])

else
((CAsnExpr (updated el, op, updated e2), el stmts

@ e2 stmts), [1))

| => ((CAsnExpr (updated el, op, updated e2), el stmts

@ e2_stmts), [1))))

| Call (expr, Id(Identifier(s)), expr list) ->

let ret = cCallExpr from tCallExpr expr tSymbol table tprogram s expr list
in
ret

| Super() -> ((CNoexpr, [1), [])
| ArrayAccess(el, e2) -> ((CArrayAccess (fst(fst(update expr el tSymbol table
tprogram)), fst(fst(update expr e2 tSymbol table tprogram))), []), [])
| MemAccess (expr, Identifier(s)) -> (let typ = Semant.type from expr
tSymbol table expr in match (typ) with

| CustomType (name) -> ((CMemAccess (0, fst(fst (update expr expr

tSymbol_table tprogram)), CIdentifier(s)), [1), [])

| PointerType (CustomType (name), 1) -> ((CMemAccess(l, fst(fst

(update_expr expr tSymbol table tprogram)), CIdentifier(s)),

| -> raise(Failure("Bad Mem Access")))
| Id(Identifier(s)) -> ((CId(CIdentifier(s)), [1), [])
| Literal(d) -> ((CLiteral(d), [1), [1)
| Make(typ_ , expr list) -> (let ctype = cType from tType tSymbol table typ
in match typ_ with
| PrimitiveType(s) -> ((CAlloc(ctype,

CId(CIdentifier((sizeof string tSymbol table ctype)))), [1), [])

| ArrayType (array type, ptr, e) ->(let updated e = fst(fst(update expr

e tSymbol table tprogram)) in let pointer type

Semant.type of array type

tSymbol table typ in let cpointer type cType from tType tSymbol table
pointer type in (match cpointer type with

| CPointerType (base, num) ->let ctype to malloc = if (num = 1) then base
else CPointerType (base, num-1) in (

CAlloc (base, CBinop (updated e, Mul,

(CId(CIdentifier(sizeof string tSymbol table ctype to malloc))))), [1),

[

| CustomType (s) -> ((CAlloc(ctype, CId(CIdentifier (sizeof string tSymbol table

ctype))), [1), [1))
| FloatLiteral(d) -> ((CFloatLiteral(d), [1), [1])
| StringLiteral(s) -> ((CStringLiteral(s), [1), [])
| Postfix(el, op) -> (let ((updated el, el stmts),) = update expr el

tSymbol table tprogram in ((CPostfix(updated el,

op), el stmts),

| AnonFuncDef (anonDef) ->
let anon name = Semant.find name for anon def tprogram anonDef in
let instanceName = "s" ”* anon name in
let structName = "S" * anon name in
let decls = [CDeclaration (CDeclSpecTypeSpecAny (CType (CStruct (structName))),
CInitDeclarator (CDirectDeclarator (CVar (CIdentifier (instanceName)))))] in

let assignments from capture struct c =

List.map (fun csym ->
(match csym with
CvarSymbol (s,) ->

CExpr (CAsnExpr (CMemAccess (0, CId(CIdentifier (instanceName)),
CIdentifier(s)), Asn, CId(CIdentifier(s))))

| _ -> raise(Failure("update expr: Invalid CSymbol parameter"))))
c.cstruct members

in
let captures = capture struct from anon def tprogram anonDef in
let newAssignments = assignments from capture struct captures in

((CId(CIdentifier (anon name)), newAssignments), decls)
| Noexpr -> ((CNoexpr, [1), [1)
| Pointify(e) -> let ((updated e, stmts), decls) = update expr e
tSymbol table tprogram in ((CPointify(updated e), stmts), decls)
| Deref(e) -> let ((updated e, stmts), decls) = update expr e tSymbol table
tprogram in ((CDeref (updated e), stmts), decls)
| Nil -> ((CNull, [1), [1)
I ->
let expr type = Astutil.string of expr texpr in

raise (Failure ("not finished for type " ~ expr type))

and update expr_ list texpr list tSymbol table tprogram = match texpr list with
[1 =-> 11
| [e] -> [update expr e tSymbol table tprogram]

| h::t -> [update expr h tSymbol table tprogram]Qupdate expr list t tSymbol table tprogram

and generate stmts for parent destructor symbol table tprogram destructor

tStruct =

let ancestor destructor = Semant.get ancestors destructor symbol table

tStruct in

let c ancestor destructor name = destructor name from tStruct

ancestor_destructor.destructor name in

let first arg = CCastExpr (CPointerType (cType from tType symbol table
(CustomType (ancestor destructor.destructor name)), 2),

CId(CIdentifier (" this"))) in

let last arg = CLiteral(0) in

[(CExpr (CCall (0, CNoexpr,

CId(CIdentifier(c_ancestor destructor name)), [first arg]@[last argl)))]

and generate stmts for super expr list symbol table tprogram constructor tStruct =
let ancestor constructor = Semant.get ancestors constructor

symbol table tStruct in

let c_ancestor constructor name = constructor name from tStruct

ancestor constructor.constructor name in

let first arg = CCastExpr (CPointerType (cType from tType symbol table

(CustomType (ancestor constructor.constructor name)), 2), CId(CIdentifier (" this")))

in

let last arg = CLiteral(0) in

let cstParams = constructor.constructor params in
let funcParamSymbols = Semant.symbols from func params cstParams in
let anonParamSymbols = List.filter (fun sym ->

(match sym with
AnonFuncSymbol (,) -> true

| -> false)) funcParamSymbols

in
let anonParamSymbolTable = Semant.symtable from symlist anonParamSymbols in
let is_in symtable id =
try
StringMap.mem id anonParamSymbolTable
with
~ —> false
in
let fixedExprList =

List.map (fun e ->

(match e with

Id(Identifier(id)) ->
if ((is_in symtable id) = true) then
Id(Identifier ("anon " ~ id))
else

e)) expr_list

in
let caplds =
List.fold left (fun accList expr ->
(match expr with
Id(Identifier (id)) ->
if ((is_in symtable id) = true) then
accList@[CId(CIdentifier("cap_anon " ~ id))]
else
accList
_ —> raise(Failure("Invalid expr")))) I[] expr list
in

let fixedAnonParamSymbols =

let fix anon name str =
try
let sub = String.sub str 0 5 in

if (sub <> "anon ") then

woA

"anon__ str
else
str
with
_ —> "anon_" ~ str
in
List.map (fun sym ->
(match sym with
AnonFuncSymbol (anonName, t) -> AnonFuncSymbol ((fix anon name anonName), t)

| _ -> sym)) anonParamSymbols
in

let symbol table = Semant.add symbol list to symbol table symbol table
fixedAnonParamSymbols in

let call to super constructor stmt = [(CExpr(CCall(0, CNoexpr, CId(CIdentifier(
c_ancestor constructor name)), [first arg]@(List.map2

(cExpr from tExpr in tCall symbol table tprogram) fixedExprList

ancestor constructor.constructor params)@[last _arg]@caplds)))] in
let StructSymbol(, ancestor struct) = Semant.lookup symbol by id symbol table
(Identifier (ancestor constructor.constructor name)) in

let local reassignment of members = List.fold left (fun assignments

member -> let member id = Semant.var name from declaration member

in assignments @ [CExpr (CAsnExpr (CId(CIdentifier (member id)), Asn, CMemAccess (1,
CDheref (CId(CIdentifier (" this"))),

(CIdentifier (member id)))))]) [] ancestor struct.members in

call_to_super_ constructor_stmt @ local reassignment of members

and cAllocExpr from tMakeExpr tSymbol table tprogram asn expr tMakeExpr =
let ((updated el, updated stmts),) = (update expr asn expr tSymbol table tprogram) in
let Make(typ , expr list) = tMakeExpr in

match typ with

| CustomType (typ) —-> (

let StructSymbol (name, tStruct) = Semant.lookup symbol by id

tSymbol table (Identifier(typ)) in

if (tStruct.constructor.constructor name <> "") then (
(* We have a constructor *)

let params = tStruct.constructor.constructor params in

let more params_ filtered =
generate extra capture func params from expr list tSymbol table tprogram expr list in

let updated expr list = (List.map2

(cExpr_from tExpr in tCall tSymbol table tprogram) expr list params) in

let anonParams = Semant.anon_defs_ from expr list no_recursion tprogram
expr list in

let update anon def expr list anonList =
List.fold left (fun ((e, slist), dlist) def ->

let ((_, _slist), _dlist) = update expr (AnonFuncDef (def))
tSymbol table tprogram in

((Noexpr, slist@ slist), dlist@ dlist)) ((Noexpr, []), [1])
anonList

in

let ((updated expr, updated slist), updated dlist) =
update anon_def expr list anonParams in

((CCall (0, CNoexpr,

CId(CIdentifier (constructor name from tStruct

tStruct.struct name)),

[CCastExpr (CPointerType (CType (CStruct (cStructName from tStruct
tStruct.struct name)), 2), CPointify(updated el))] @

updated expr list @ [CLiteral(l)]@more params filtered), updated slist),
updated dlist)

) else (
((CCall (0, CNoexpr,

CId(CIdentifier (constructor name from tStruct

tStruct.struct name)),

[CCastExpr (CPointerType (CType (CStruct (cStructName from tStruct

tStruct.struct name)), 2), CPointify(updated el))] @
[CLiteral(1)1), [1), [1)
))
| (ArrayType (array type, ptr, e)) -> (let updated e = fst(fst(update expr

e tSymbol table tprogram)) in let pointer type =
Semant.type of array type

tSymbol table typ 1in let cpointer type = cType from tType tSymbol table
pointer type in (match cpointer type with

| CpPointerType (base, num) ->let ctype to malloc = if (num = 1) then base
else CPointerType (base, num-1) in ((CAsnExpr (updated el, Asn,

CAlloc (base, CBinop (updated e, Mul,

(CId(CIdentifier (sizeof string tSymbol table ctype to malloc)))))), [1),

[HN

and cExpr from tExpr in tCall tSymbol table tprogram tExpr tFuncParam =
let expr type = Semant.type from expr tSymbol table tExpr in
let param type = Semant.type from func param tFuncParam in
match (expr type, param type) with
| (CustomType (a), CustomType (b)) ->
if (Semant.is interface tSymbol table (Identifier(b))) then

CpPointify(CMemAccess (0, fst(fst (update expr tExpr tSymbol table
tprogram)),

CIdentifier (interface field name in struct b a)))
else (if (Semant.tl inherits t2 a b tSymbol table) then
CCastExpr (CType (CStruct (cStructName from tStruct b)),
fst (fst (update_expr tExpr tSymbol table tprogram)))
else fst (fst (update expr tExpr tSymbol table tprogram)))
| (PointerType (CustomType (a), 1),
CustomType (b)) -> CPointify(CMemAccess(l, fst(fst (update expr tExpr

tSymbol table tprogram)),

CIdentifier (interface field name in struct b a)))

| -> fst (fst (update expr tExpr tSymbol table tprogram)

and generate extra capture func params_ from expr list tSym tprogram expr list =
let anonParams = Semant.anon defs from expr list no recursion tprogram expr list in
let capture_struct_instance name_ from anon def def =

let capStruct = capture struct from anon def tprogram def in

let subname = String.sub capStruct.cstruct name 1 ((String.length
capStruct.cstruct name) - 1) in
let structname = "s" ” subname in

structname

in

let capture params from anon def list defList =
List.fold left (fun elist def ->

elist@[CPointify(CId(CIdentifier ((capture_struct_instance name_from_ anon_def
def))))]

) [CNoexpr] defList
in
let more params = capture params_from anon def list anonParams in
let remove noexpr from list elist =
List.filter (fun e ->
match e with
CNoexpr -> false
| => true) elist
in
let more params filtered = remove noexpr from list more params in

more params_filtered

and cCallExpr from tCallExpr expr tSym tprogram func name expr list =
match expr with
| Noexpr -> let sym = StringMap.find func name tSym in

(match sym with

FuncSymbol(, fdecl) ->

let hasAnonParams = Semant.expr list contains anon defs no recursion

expr list in
if (hasAnonParams = true) then
let update anon def expr list anonList =
List.fold left (fun ((e, slist), dlist) def ->

let ((_, _slist), _dlist) = update expr
(AnonFuncDef (def)) tSym tprogram in

((Noexpr, slist@ slist), dlist@ dlist)) ((Noexpr, []),

[1) anonList
in

let more params_filtered =

generate extra capture func params_from expr list tSym tprogram expr list in

let anonParams = Semant.anon_defs from expr list no_recursion

tprogram expr list in

let ((updated expr, updated slist), updated dlist) =
update anon def expr list anonParams in

let paramExpressions = List.rev (List.map2

(cExpr_from tExpr in tCall tSym tprogram) expr list

fdecl.params) in

let ret =
((CCall(0, CNoexpr, CId(CIdentifier (func_ name)),
paramExpressions@more params filtered) , updated slist), updated dlist)
in
ret;
else
if (func_name = "printf") then
let expr list = (List.rev expr_list) in

let replacementParamList =

Semant.func_param list from expr list tSym expr list in
((CCall(0, CNoexpr, CId(CIdentifier (func name)), (List.map2

(cExpr from tExpr in tCall tSym tprogram) expr list
replacementParamList)), [1), [])

else
let ret =

((CCall(0, CNoexpr, CId(CIdentifier(func_name)), (List.map2

(cExpr from tExpr in tCall tSym tprogram) expr list
fdecl.params)), [1), [1)

in

ret
| AnonFuncSymbol (anonName, AnonFuncType(, tlist)) ->
let rec funcParam from tType t = (match t with

_ —> ParamDeclWithType (DeclSpecTypeSpecAny (t)))

and funcParamList from tTypelList tlist = (match tlist with

| [x] -> [funcParam from tType x]

| h::t -> [funcParam from tType
h]@ (funcParamList from tTypelList t))

in
let fParamList = funcParamList from tTypeList tlist in

let fParamExprList = (List.map2 (cExpr from tExpr in tCall tSym
tprogram) expr list fParamList) in

let extraParamName = "cap anon " ”~ func name in
let extraParamExpr = CId(CIdentifier (extraParamName)) in
((CCall(l, CNoexpr, CId(CIdentifier("anon " ~ func name)),
fParamExprList@[extraParamExpr]), [1), []))

~ —> let expr type = Semant.type from expr tSym expr in (match expr type with
| CustomType (a) -> let fdecl = Semant.get fdecl for receiver a

tSym func name in

if (Semant.is interface tSym (Identifier(a))) then
let updated expr = (fst (fst (update expr expr tSym tprogram)))
in
let cexpr list = [CMemAccess (1,
(updated expr), CIdentifier ("body"))] @

(List.map2 (cExpr_ from tExpr in tCall tSym tprogram)

expr list fdecl.params) in

((CCall(l, (fst (fst (update_expr expr

tSym tprogram))),

CId(CIdentifier (func name)), cexpr list), []),
1
else
let hasAnonParams = Semant.expr list contains_anon defs no recursion
expr list in
if (hasAnonParams = true) then

let update anon def expr list anonList =
List.fold left (fun ((e, slist), dlist) def ->

let ((_, _slist), _dlist) = update expr
(AnonFuncDef (def)) tSym tprogram in

((Noexpr, slist@ slist), dlist@ dlist)) ((Noexpr, []),
[1) anonList

in

let extra params =
generate extra capture func params_ from expr list tSym tprogram expr list in

let anonParams = Semant.anon defs from expr list no_recursion
tprogram expr list in

let ((updated expr, updated slist), updated dlist) =
update anon_def expr list anonParams in

let first_arg =
CCastExpr (CPointerType (CType (CPrimitiveType (Cvoid)),
1), CPointify(fst(fst (update expr expr
tSym tprogram
)))) in
((CCall(l, CMemAccess (0, fst (fst((update expr expr
tSym tprogram))), CIdentifier(" virtual")),
CId(CIdentifier (
func_name)), [first arg] @ (List.map2
(cExpr from tExpr in tCall tSym tprogram) expr list
fdecl.params)@extra params), updated slist), updated dlist)
else
let first arg =

CCastExpr (CPointerType (CType (CPrimitiveType (Cvoid)),

1), CPointify(fst(fst (update expr expr

tSym tprogram

)))) in
((CCall(l, CMemAccess (0, fst (fst((update expr expr
tSym tprogram))), Cldentifier(" virtual")),
CId(CIdentifier (
func name)), [first arg] @ (List.map2
(cExpr from tExpr in tCall tSym tprogram) expr list
fdecl.params)), [1), [])

| PointerType (CustomType(a), 1) ->

let hasAnonParams = Semant.expr list contains_anon defs no_recursion
expr list in
if (hasAnonParams = true) then
let fdecl =

Semant.get fdecl for receiver a tSym func name in
let first arg =
CCastExpr (CPointerType (CType (CPrimitiveType (Cvoid)),
1), fst (fst (update expr expr tSym
tprogram
))) in
let update anon def expr list anonList =

List.fold left (fun ((e, slist), dlist) def ->

let ((_, _slist), _dlist) = update expr (AnonFuncDef (def))
tSym tprogram in
((Noexpr, slist@ slist), dlist@ dlist)) ((Noexpr, []), [])
anonList
in
let extra params = generate extra capture func params from expr list
tSym tprogram expr list in
let anonParams = Semant.anon defs from expr list no recursion tprogram

expr list in

let ((updated expr, updated slist), updated dlist) =
update anon def expr list anonParams in

((CCall(1l, CMemAccess (1,

fst (fst(update expr expr tSym tprogram)),

CIdentifier (" _virtual")),
CId(CIdentifier (
func name)), [first arg] @ (List.map2
(cExpr from tExpr in tCall tSym tprogram) expr list
fdecl.params@extra params)), updated slist), updated dlist)
else
let fdecl =
Semant.get fdecl for receiver a tSym func name in
let first arg =
CCastExpr (CPointerType (CType (CPrimitiveType (Cvoid)),
1), fst (fst (update_expr expr tSym
tprogram

))) in

((CCall (1, CMemAccess (1,
fst (fst(update expr expr tSym tprogram)),
CIdentifier (" virtual")),
CId(CIdentifier(
func_name)), [first arg] @ (List.map2
(cExpr_ from tExpr in tCall tSym tprogram) expr list
fdecl.params)), [1), [1)

_ —> raise(Failure("No other functions can call methods")))

let generate virtual table assignments isPointer tStruct tSymbol table id=

let fdecls = Semant.get unique method names for struct tSymbol table tStruct in

List.map (fun tmethod name ->

let inter fdecl = Semant.get fdecl for receiver

tStruct.struct name tSymbol table

tmethod name in

let cFunc_name = cFunc_ from tMethod (fst(inter fdecl.receiver)) tmethod name in

if (isPointer >= 0) then

CExpr (CAsnExpr (CMemAccess (isPointer,CId (CIdentifier(id)),
CIdentifier (tmethod name)),

Asn,
(CId(CIdentifier (cFunc_name)))))
else

CExpr (CAsnExpr (CMemAccess (1,CDeref (CId(CIdentifier (id))),
CIdentifier (tmethod name)),

Asn,
(CId(CIdentifier (cFunc_name))))))

fdecls

let ¢ _init decl from string str =

CInitDeclarator (CDirectDeclarator (CVar (CIdentifier (str))))

let ¢ _init decl from string asn str op cExpr =

CInitDeclaratorAsn(CDirectDeclarator (CVar (CIdentifier(str))), op, cExpr)

let generate decls_and stmts_from id tSymbol table tprogram id decl typ =
match decl with
| Declaration(, InitDeclList([InitDeclarator()])) ->
let ctype = cType from tType tSymbol table typ in
let cinit decl = c_init decl from string id in
([CDeclaration (CDheclSpecTypeSpecAny (ctype),

cinit_decl)], I[1)

| Declaration(, InitDeclList([InitDeclaratorAsn(, op, expr)]l)) ->

let ((updated expr, extra stmts),) = update expr expr

tSymbol table tprogram in

let ctype = cType from tType tSymbol table typ in
let cinit decl = c_init decl from string asn id op

updated expr in

([CDeclaration (CDeclSpecTypeSpecAny (ctype),

cinit decl)], extra stmts)

let update decl for non_custom type id decl tSymbol table tprogram =
let sym = Semant.lookup symbol by id tSymbol table (Identifier(id)) in (match
sym with
| VarSymbol (id, type) -> (match decl with

| Declaration(, InitDeclList([InitDeclarator (DirectDeclarator())1))

generate decls_and stmts from id tSymbol table tprogram
id decl type

| Declaration(, InitDeclarator (DirectDeclarator())) ->
generate decls and stmts from id tSymbol table tprogram
id decl type_

| Declaration(_, InitDeclaratorAsn(declrt, ,)) ->

generate decls and stmts from id tSymbol table tprogram

id decl type

generate decls_and stmts from id tSymbol table tprogram
id decl type)
| FuncSymbol(,) -> raise(Failure("update decl: FuncSymbol not supported"))

| AnonFuncSymbol(,) -> raise(Failure("update decl: AnonFuncSymbol not supported"))

let declare virtual table stack tSymbol table tStruct id =

let virtual table name = virtual table name from tStruct

->

tStruct.struct name in

let virtual table id = String.concat "" [" ";id;virtual table name] in
let virtual table init decl = c_init decl from string (String.concat ""
[" "; id; (virtual table name)]) in
let wvirtual table assignments = generate virtual table assignments 0 tStruct

tSymbol table

virtual table id in

let assign virtual table back to_id = CExpr (CAsnExpr (CMemAccess (0,
CId(CIdentifier(id)),
CIdentifier (" virtual")), Asn,

CPointify(CId(CIdentifier (virtual table id))))) in

([CDeclaration (CDeclSpecTypeSpecAny (CType (CStruct (virtual table name))),
virtual table init decl)], virtual table assignments @

[assign virtual table back to id])

let update interface decl for struct id struct name tSymbol table =

let interface = Semant.get interface tSymbol table

(Semant.get interface for struct struct name tSymbol table) in

let cstruct name for interface = cStructName from tInterface

interface.name in

let cinit decl = ¢ _init decl from string (String.concat ""

[" ";id; (cStructName from tInterface interface.name)]) in

CDheclaration (CDeclSpecTypeSpecAny (CType (CStruct (cstruct name for interface))),

cinit decl)

let interface decl and assignments for struct isPointer struct tSymbol table id

let custom type = struct .struct name in
let implements = Semant.get interface for struct custom type tSymbol table in
if (implements <> "") then (

let interface = Semant.get interface tSymbol table

(Semant.get interface for struct

custom type tSymbol table) in

let interface decl = update interface decl for struct

id custom type tSymbol table in

let cstruct_for interface = cStructName from tInterface

implements in

let access_id = String.concat "" [" ";id;cstruct for interface] in

let fdecls = (List.map (fun fdecl -> Semant.var name_ from direct declarator
fdecl.func name) interface.funcs) in
let interface assignments = List.map (fun tmethod name ->
let inter fdecl = Semant.get fdecl for receiver
custom type tSymbol table

tmethod name in

let cFunc_name = cFunc_from tMethod (fst

(inter fdecl.receiver)) tmethod name in

CExpr (CAsnExpr (CMemAccess (0,CId (CIdentifier (access_id)),
CIdentifier (tmethod name)),
Asn,
(CId(CIdentifier (cFunc_name)))))

) fdecls in

let reference_implementer asn =
let struct expr = if (isPointer = 0) then
CPointify(CId(CIdentifier(id))) else (if
(isPointer > 0) then
(CId(CIdentifier(id)))
else

(CDeref (CId(CIdentifier(id))))) in

CExpr (CAsnExpr (CMemAccess (0,
CId(CIdentifier (access_id)),
CIdentifier ("body")), Asn,

CCastExpr (CPointerType (CType (CPrimitiveType (Cvoid)),

1), struct expr))) in
let interface field name = interface field name in struct implements
custom type in
let cStruct mem access expr = if (isPointer >= 0) then CMemAccess (isPointer,

CId(CIdentifier (id)),
CIdentifier (interface field name))
else (CMemAccess (l, CDeref (CId(CIdentifier(id))),

CIdentifier (interface field name))) in

let implementer add interface assn =

CExpr (CAsnExpr (cStruct_mem_access_expr,

Asn,

CId(CIdentifier(access_id)))) in

let assignments = interface assignments @

[reference implementer asn] @
[implementer add interface assn]

in

([interface decl],

assignments)

) else ([1, [1)

let update decl for custom type id decl custom type tSymbol table tprogram =

let sym = Semant.lookup symbol by id tSymbol table

(Identifier (custom_type)) in

match sym with

| StructSymbol (s, struct) ->

let cstruct type = CustomType (custom type) in

let (cstruct_decl, stmts) = generate decls_and stmts_from id

tSymbol table tprogram id decl cstruct type in

let (virtual table decl, assignments) =

declare virtual table stack tSymbol table

struct id in

let (decls, assigns) =

interface decl and assignments for struct 0

struct tSymbol table id in

(cstruct decl@decls@virtual table decl,

stmts@assigns@assignments)

let update decl tSymbol table tprogram decl =
let id = Semant.var name from declaration decl in

let tType = Semant.type from identifier tSymbol table (Identifier (id))

in

match (tType) with

| PrimitiveType (t) -> update decl for non custom type id decl
tSymbol table tprogram

| CustomType (t) -> update decl for custom type id decl t

tSymbol table tprogram

| _ -> generate decls_and stmts from id tSymbol table tprogram id decl tType

let rec update statement tstmt tSymbol table tprogram = match tstmt with
| CompoundStatement (decls, stmts) ->
let updated symbol table = Semant.add to symbol table tSymbol table decls in
let (new decls, new stmts) =
List.fold left (fun decl stmt acc decl ->
let (n_decls, n_stmts) = update decl
updated symbol table tprogram decl in

((fst (decl stmt acc)) @ n decls, (snd (decl stmt acc) @ n stmts))) ([],
[1) decls in

let more new stmts =

List.fold left (fun stmt acc stmt ->

let ((updated stmt, additional stmts),
additional decls) =

update statement stmt

updated symbol table tprogram in

stmt _acc @ additional stmts @ [updated stmt]) [] stmts
in

let more new decls =
List.fold_left (fun decl acc stmt ->

let ((updated stmt, additional stmts),
additional decls) =

update statement stmt updated symbol table
tprogram in

additional decls@decl acc) [] stmts in

((CCompoundStatement (new_decls@more new decls, new stmts @ more new stmts), []),

| EmptyElse -> ((CEmptyElse, []), [])
| Return(e) -> let ((updated e, stmts), newDecls) = update expr e tSymbol table tprogram
in ((CReturn (updated e), stmts), newDecls)

| If(e, stmtl, stmt2) ->
let ((updated expr, stmts), decls) = update expr e tSymbol table tprogram in

let ((updated stmtl, additional stmts), additional decls) = update statement
stmtl tSymbol table tprogram in

let ((updated stmt2, additional stmts2), additional decls2) = update statement
stmt2 tSymbol table tprogram in

((CIf (updated expr, updated stmtl, updated stmt2), additional stmts@additional stmts2),
[1

| For(el, e2, e3, stmt) -> let ((updated el, stmts el), decls el) = update expr el
tSymbol table tprogram in

let ((updated e2, stmts_e2), decls_e2) = update expr e2
tSymbol table tprogram in

let ((updated e3, stmts_e3), decls e3) = update expr e3
tSymbol table tprogram in

let ((updated stmt, additional stmts), decls stmt) =
update statement stmt tSymbol table tprogram in

let accumulated stmts =
(stmts_el@stmts_e2@stmts_e3@additional stmts) in

let accumulated decls =
(decls_el@decls_e2@decls_e3@decls_stmt) in

((CFor (updated el, updated e2, updated e3, updated stmt),
accumulated stmts), accumulated decls)

| While(el, stmt) ->

let ((updated el, stmts el), decls el) = update expr el tSymbol table tprogram
in

let ((updated stmt, additional stmts), additional decls) = update statement stmt
tSymbol table tprogram in

((CWhile (updated el, updated stmt), stmts el @ additional stmts),
(decls el@additional decls))

| Break -> ((CBreak, [1), [1])
| Expr(e) -> let ((updated e, stmts), decls) = update expr e tSymbol table tprogram in

((CExpr (updated e), stmts), decls)

let cFunc from tDestructor symbol table tprogram destructor tStruct =

let cdestructor name = destructor name from tStruct

tStruct.struct name in

let first param = first param for destructor tStruct.struct name in

let last param = last param for_ destructor in

let augmented decls = List.fold left (fun cdecls tdecl ->

let tdecl id = (Semant.var name from declaration tdecl) in
let tdecl type = (Semant.type from declaration tdecl) in
let (cdecl,) = generate decls and stmts from id symbol table tprogram

tdecl id tdecl tdecl type in cdecls @ cdecl

) [] tStruct.members in

creturn type = CType (CPrimitiveType (Cvoid));

cfunc params = [first param] @ [last param];

cfunc_body = CCompoundStatement (augmented decls,

cfunc_name = cdestructor_name;

let cFunc_from tConstructor symbol table tprogram constructor tStruct =

let cconstructor name = constructor name from tStruct

tStruct.struct name

in

let first param = first param for constructor tStruct.struct name in

let last _param = last param for_ constructor in

let augmented decls = List.fold left (fun cdecls tdecl ->

let tdecl id = (Semant.var name from declaration tdecl) in
let tdecl type = (Semant.type from declaration tdecl) in
let (cdecl,) = generate decls and stmts from id symbol table tprogram

tdecl id tdecl tdecl type in cdecls @ cdecl

) [1 tStruct.members in

let generate void star params =
let anonList =
List.filter (fun p -> match p with
AnonFuncDecl (anonDecl) -> true
| -> false) constructor.constructor params
in
let returned params =
List.map (fun p -> match p with
AnonFuncDecl (anonDecl) ->

(match anonDecl.anon_decl name with

Identifier(s) ->

let paramName = "cap anon " * s in

(CPointerType (CType (CPrimitiveType (Cvoid)), 1),
CIdentifier (paramName)))) anonList

in
returned params
in

let extraParams = generate void star params in

creturn type = CType (CPrimitiveType (Cvoid));

cfunc_params = [first param] @ (List.map
(cFuncParam_from tFuncParam
symbol table)
constructor.constructor_params)

@ [last param]@extraParams;

cfunc body = CCompoundStatement (augmented decls,

[n:

cfunc_name = cconstructor name;

let virtual table struct for tStruct symbol table tStruct =
let all methods_for struct = (List.map(Semant.get fdecl for receiver
tStruct.struct name symbol table)

(Semant.get unique method names for struct symbol table tStruct)) in

let methodMemberSymbols = List.map (cDeclaration from tFdecl

symbol table) all methods for struct in

let virt table name = virtual table name from tStruct

tStruct.struct name in

cstruct name = virt table name;
cstruct members = methodMemberSymbols;

cmethod to functions = StringMap.empty;

let cStruct from tStruct symbol table tprogram tStruct =
let fieldSymbols = List.map (cSymbol from sSymbol
symbol table) (List.map (Semant.symbol from declaration)

tStruct.members) in

let virtual table name = virtual table name from tStruct

tStruct.struct name in

let virtual table_symbol =
CvarSymbol (" virtual",

CPointerType (CType (CStruct (virtual table name)), 1)) in

let defaultStructMemberSymbols = [virtual table symbol] @ fieldSymbols in

(* If there is an interface then add a struct member corresponding to
* the interface to our struct *)

let cStructMemberSymbols = if (Semant.get interface for struct

tStruct.struct name symbol table <> "") then

[bol from Implements (Semant.get interface for struct

tStruct.struct name symbol table) tStruct.struct name] @

defaultStructMemberSymbols else defaultStructMemberSymbols in

let (methods to cfunctions, cfuncs) = (List.fold left (fun (sym, cfunc list)
method ->

(let tfunc_name =
Semant.var name from direct declarator

method .func name in

let initial void param =
create cfunc param for receiver

method .receiver in

let init cast_decl =
create initial cast decl

method .receiver in

let generate void star params =
let anonList =
List.filter (fun p -> match p with
AnonFuncDecl (anonDecl) -> true
| _ -> false) method .params
in
let returned params =
List.map (fun p -> match p with
AnonFuncDecl (anonDecl) ->

(match anonDecl.anon_decl name with

Identifier(s) ->
let paramName = "cap_anon_ " *
s in
(CPointerType (CType (CPrimitiveType (Cvoid)), 1), CIdentifier (paramName)))) anonList

in

returned_params

in
let extraParams = generate void_star_ params in
let cfunc = {

creturn type = (cType from tType
symbol table
(Semant.type from declaration specifiers

method .return type));

cfunc params =
[initial void param] @ (List.map
(cFuncParam_from tFuncParam

symbol table) method .params)@extraParams;

cfunc body =

CCompoundStatement ([init cast decl],

cfunc_name = cFunc_from tMethod

tStruct.struct name tfunc name;

} in (StringMap.add tfunc_name cfunc
sym, cfunc_list @ [cfunc])))

(StringMap.empty, []) tStruct.methods) in

let cFunc_for constructor =

cFunc_from tConstructor symbol table tprogram tStruct.constructor tStruct in

let cFunc for destructor = cFunc from tDestructor symbol table tprogram

tStruct.destructor tStruct in

cstruct name = cStructName from tStruct tStruct.struct name;
cstruct members = cStructMemberSymbols;
cmethod to functions = methods to cfunctions;

}» cfuncs, (tStruct, cFunc_for constructor, cFunc for destructor))

let update cFunc tSymbol table tprogram cFunc tFunc =
let updated symbol table = List.fold left (fun m symbol -> StringMap.add

(Semant.get _id from_ symbol symbol) symbol m) tSymbol table
((Semant.symbols from func params

tFunc.params) @ ([Semant.symbol from receiver tFunc.receiver])) in
let CCompoundStatement (decls, stmts) = cFunc.cfunc body in
let CCompoundStatement (updated decls, updated stmts) = fst (fst (update statement
tFunc.body updated symbol table tprogram)) in
{
cfunc_name = cFunc.cfunc_name;
creturn type = cFunc.creturn type;

cfunc _body = CCompoundStatement (decls @ updated decls,
updated stmts) ;

cfunc_params = cFunc.cfunc params;

let update cFunc_ from anonDef tSymbol table tprogram cFunc anonDef =

let funcCaller = Semant.find func owning anon def tprogram anonDef in
let rcvr = funcCaller.receiver in
let rcvrSymbol = Semant.symbol from receiver rcvr in

let globals = Semant.symbols from decls tprogram.globals in
let builtinDecls = Semant.stdlib_funcs in
let builtinSyms = Semant.symbols from fdecls builtinDecls in

let localDecls = Semant.get decls from compound stmt anonDef.anon body in

let interfaceSymbols = Semant.symbols from interfaces tprogram.interfaces in
let interfaceMethodSymbols =
let interfaces =
List.map (fun (InterfaceSymbol(, iface)) -> iface) interfaceSymbols
in

List.fold left (fun accList iface ->

accList@ (Semant.symbols from fdecls iface.funcs)) [] interfaces
in
let localSyms = Semant.symbols from decls localDecls in
let paramSyms = Semant.symbols from func params anonDef.anon params in
let exceptSyms = Semant.symtable from symlist

(globals@builtinSyms@[rcvrSymbol]@interfaceMethodSymbols@paramSyms@localSyms) in
let id exists in symtable table id =
try
(fun x -> true) (StringMap.find id table)
with = ->
false

in

let rec fix expr locals instance name expr = match expr with
CBinop(el, op, e2) ->
let fel = fix expr locals instance name el in

let fe2 = fix expr locals instance name e2 in

CBinop (fel, op, fe2)

| CAsnExpr (el, aop, €2) ->
let fel = fix expr locals instance name el in
let fe2 = fix expr locals instance name e2 in
CAsnExpr (fel, aop, fe2)

| CCastExpr(t, e) ->
let fe = fix expr locals instance name e in

CCastExpr (t, fe)

| CPostfix (e, pop) ->
let fe = fix expr locals instance name e in
CPostfix (fe, pop)

| CCall(i, el, e2, elist) ->

let fel = fix expr locals instance name el in
let fe2 = fix expr locals instance name e2 in
let felist = fix expr list locals instance name elist in

CCall (i, fel, fe2, felist)

| CDeref (e) ->
let fe = fix expr locals instance name e in
CDeref (fe)

| CCompareExpr(el, lop, e2) ->

let fel = fix expr locals instance name el in
let fe2 = fix expr locals instance name e2 in
CCompareExpr (fel, lop, fe2)
| CPointify(e) ->
let fe = fix expr locals instance name e in
CPointify (fe)
| CMemAccess (i, e, id) ->
let fe = fix expr locals instance name e in
let fixedExpr = fix expr locals instance name (CId(id)) in
(match fixedExpr with
CId(fid) ->
CMemAccess (i, fe, fid)
| CMemAccess(, _, _) -> fixedExpr)
| CId(CIdentifier(s)) ->
if (id exists in symtable tSymbol table s) then
expr
else if (id exists in symtable exceptSyms s) then
expr
else

CMemAccess (1, CId(CIdentifier(instance name)), CIdentifier(s))

| CDeclExpr (CDeclaration(declSpecs, initDecl)) ->
let fInitDecl = fix init declarator locals instance name initDecl in
CDeclExpr (CDeclaration (declSpecs, fInitDecl))

_ —> expr

and fix expr list locals instance name elist = match elist with

| [e] -> [fix expr locals instance name e]

| h::t -> [fix expr locals instance name h]@(fix expr list locals instance name t)

and fix init declarator locals instance name initDecl = match initDecl with
| CInitDeclaratorAsn(dd, aop, e) ->

let CInitDeclarator(fdd) = fix init declarator locals instance name
(CInitDeclarator (dd)) in

let fe = fix_expr locals instance_name e in
CInitDeclaratorAsn (fdd, aop, fe)

_ —> initDecl

and fix declaration locals instance name decl = match decl with
CDeclaration (declSpecs, initDecl) ->
let fidecl = fix init declarator locals instance name initDecl in

CDeclaration (declSpecs, fidecl)

and fix declaration list locals instance name declList = match declList with

| [d] -> [fix declaration locals instance name d]

| h::t -> [fix declaration locals instance name h]@(fix declaration list locals
instance name t)

and fix statement locals instance name stmt = match stmt with
CExpr (e) ->
let fe = fix expr locals instance name e in

CExpr (fe)

| CReturn(e) ->
let fe = fix expr locals instance name e in
CReturn (fe)

| CCompoundStatement (declList, stmtList) ->
let fdl = fix declaration list locals instance name declList in
let fsl = fix statement list locals instance name stmtList in
CCompoundStatement (fdl, fsl)

| CIf(e, sl, s2) ->

let fe = fix expr locals instance name e in
let fsl = fix statement locals instance name sl in
let fs2 = fix statement locals instance name s2 in

CIf (fe, fsl, fs2)

| CFor(el, e2, e3, s) —>

let fel = fix expr locals instance name el in
let fe2 = fix expr locals instance name e2 in
let fe3 = fix expr locals instance name e3 in
let fs = fix statement locals instance name s in

CFor (fel, fe2, fe3, fs)
| CWhile (e, s) ->
let fe = fix expr locals instance name e in
let fs = fix statement locals instance name s in
CWhile (fe, fs)

_ -> stmt

and fix statement list locals instance name stmtList = match stmtList with

| [s] -> [fix statement locals instance name s]

| h::t -> [fix statement locals instance name h]@(fix statement list
instance name t)

in

let updated symbol list =

locals

((Semant.symbols from_ func params anonDef.anon_ params) @
(Semant.symbols from outside scope for anon def tprogram anonDef)@[rcvrSymbol])

in
let updated symbol table =
(List.fold left (fun m symbol ->
StringMap.add (Semant.get id from symbol symbol) symbol m)
tSymbol table (updated symbol list)) in
let anon name = Semant.find name for anon def tprogram anonDef in

"

let instanceName = "s

woA

anon_name in
let structName = "S" * anon name in

let newDecls =
[CDeclaration (CDeclSpecTypeSpecAny (CPointerType (CType (CStruct (structName)), 1)),

CInitDeclaratorAsn (CDirectDeclarator (CVar (CIdentifier (instanceName))), Asn,
CCastExpr (CPointerType (CType (CStruct (structName)), 1), CId(CIdentifier ("capture struct")))))]

in
let CompoundStatement (decls,) = anonDef.anon body in
let locals = Semant.symbols from decls decls in
let CCompoundStatement (decls, stmts) = cFunc.cfunc body in
let cmpstmt = fst (fst (update_statement anonDef.anon body updated symbol table
tprogram)) in
let CCompoundStatement (updated decls, updated stmts) = fix statement
(locals@[rcvrSymbol]) instanceName cmpstmt in
{
cfunc_name = cFunc.cfunc_name;
creturn type = cFunc.creturn type;

cfunc_body = CCompoundStatement (newDecls@updated decls @decls,
updated_stmts) ;

cfunc_params = cFunc.cfunc_params;

let update cDestructor tSymbol table tprogram cFunc tStruct =

let updated symbol table = List.fold left (fun m symbol -> StringMap.add

(Semant.get id from symbol symbol) symbol m) tSymbol table ((Semant.symbols from decls
(Semant.get decls from compound stmt

tStruct.constructor.constructor_body)) @ (Semant.symbols_from decls

tStruct.members) @ (Semant.symbols from func_params

tStruct.constructor.constructor_params)) in

let ancestor destructor = Semant.get ancestors destructor tSymbol table

tStruct in

let parent _destructor_call =
if (ancestor destructor.destructor name <> tStruct.struct name &&
ancestor destructor.destructor name <> "") then

generate stmts for parent destructor tSymbol table tprogram

tStruct.destructor tStruct else [] in

let head assignments = List.fold left (fun assignments tdecl ->

let tdecl id = (Semant.var name from declaration tdecl) in

let asn_expr = CExpr (CAsnExpr (CId(CIdentifier (tdecl id)),

Asn, CMemAccess (1,

CDeref (CId(CIdentifier (" this"))), CIdentifier(tdecl id)))) in assignments @
[asn_expr]) [] tStruct.members in
let CCompoundStatement (original decls, stmts) = cFunc.cfunc body in
let CCompoundStatement (updated decls, updated stmts) = fst (

fst (update statement tStruct.destructor.destructor body

updated symbol table tprogram)) in

let free this = CIf(CId(CIdentifier (" needs free")),

CCompoundStatement ([], [CExpr (CFree (CMemAccess (1,
CDeref (CId(CIdentifier (" this"))),

CIdentifier (" virtual"))))]@[CExpr (CFree (CDeref (CId(CIdentifier (" this™)))))]),
CEmptyElse) in

cfunc_name = cFunc.cfunc_name;

creturn_type = cFunc.creturn_type;

cfunc _body = CCompoundStatement (original decls @ updated decls,

head assignments @ parent destructor call @ updated stmts @ [free this]);

cfunc_params = cFunc.cfunc params;

let update cConstructor tSymbol table tprogram cFunc tStruct =
let updated symbol table = List.fold left (fun m symbol -> StringMap.add
(Semant.get id from symbol symbol) symbol m) tSymbol table ((Semant.symbols from decls
(Semant.get decls from compound stmt
tStruct.constructor.constructor_body)) @ (Semant.symbols_from decls
tStruct.members) @ (Semant.symbols from func_params

tStruct.constructor.constructor_params)) in

let ctype = cType from tType tSymbol table

(CustomType (tStruct.struct name)) in

let virtual table name = virtual table name from tStruct

tStruct.struct name in

let virtual table type =

CType (CStruct (virtual table name)) in

let alloc virtual table =
CExpr (CAsnExpr (CMemAccess (1, CDeref (CId(CIdentifier (" this"))),
CIdentifier (" virtual")),

Asn, CAlloc(virtual table type, CId(CIdentifier (sizeof string tSymbol table

virtual table type))))) in

let alloc _this = CIf(CId(CIdentifier (" needs malloc")),
CExpr (CAsnExpr (CDeref (CId(CIdentifier (" _this"))),

Asn, CAlloc(ctype, CId(CIdentifier((sizeof string tSymbol table

ctype)))))), CExpr (CNoexpr)) in

let virt table assignments = generate virtual table assignments 1 tStruct tSymbol table

"(*_this)-> virtual" in

let (interface decls, interface assignments) =
interface decl and assignments for struct (-1) tStruct

tSymbol table " this" in

let tail assignments = List.fold left (fun assignments tdecl ->

let tdecl id = (Semant.var name from declaration tdecl) in

let asn_expr = CExpr (CAsnExpr (CMemAccess (1,
CDeref (CId(CIdentifier (" this"))), CIdentifier(tdecl id)),

Asn, CId(CIdentifier(tdecl_id)))) in assignments @ [asn_expr]) []
tStruct.members in

let stmts for super =
if (Semant.constructor has super tStruct.constructor) then

(let Expr(Super(expr_ list)) = Semant.get super expr
tStruct.constructor.constructor body in

generate stmts for super expr list updated symbol table tprogram
tStruct.constructor tStruct)

else

[]

in

let CCompoundStatement (original decls, stmts) = cFunc.cfunc body in

let CCompoundStatement (updated decls, updated stmts) = fst (
fst (update_ statement tStruct.constructor.constructor body

updated symbol table tprogram)) in

cfunc_name = cFunc.cfunc_name;

creturn_type = cFunc.creturn type;

cfunc_body = CCompoundStatement (original decls @ interface decls

@ updated decls,

[alloc_this] @ [alloc virtual table] @ stmts for super @ updated stmts @ stmts @
tail assignments@virt table assignments @ interface assignments);

cfunc_params = cFunc.cfunc params;

let rec cFunc_ from anonDef symbol table tprogram anonDef =
let rec convert anon params symbol table params =

(match params with

[1] -> [(CPointerType (CType (CPrimitiveType (Cvoid)), 1),
CIdentifier ("capture struct"))]
| [p] - > [cFuncParam_ from tFuncParam symbol table
pl@[(CPointerType (CType (CPrimitiveType (Cvoid)), 1), CIdentifier ("capture struct"))]
| h::t -> let htype = (cFuncParam from tFuncParam symbol table h) in
let ttype = (convert anon params symbol table t) in
[htype]@ttype)
in
{
cfunc_name = anonDef.anon_name;
cfunc_body = CCompoundStatement ([], []);
cfunc _params = (convert anon params symbol table anonDef.anon params);

creturn_type = cType from tType symbol table anonDef.anon return type }

and cFunc_list from anonDef list symbol table tprogram adlist =

match adlist with

| [x] -> [cFunc_from anonDef symbol table tprogram x]

| h::t -> let hfuncs = [(cFunc_from anonDef symbol table tprogram h)] in
let tfuncs = (cFunc_list from anonDef list symbol table tprogram t) in
hfuncs@tfuncs

let cProgram from tProgram program =

let updated program = Semant.update structs in program program in

let tSymbol table = Semant.build symbol table updated program in

let cstructs_and functions = List.map (cStruct from tStruct tSymbol table program)
updated program.structs in

let cstructs = List.map (fun (structs, ,) -> structs) cstructs and functions in

let virt table structs = List.map (
virtual table struct for tStruct tSymbol table)

updated program.structs in

let cfuncs methods = List.concat (List.map (fun(, methods,) ->

methods) cstructs_and functions) in

let cconstructors = List.map (fun(_, _, constructor) -> constructor)

(List.filter (fun(, , (_, const,)) -> if (const.cfunc name = "") then false

else true) cstructs_and functions) in

(*let cdestructors = List.map (fun(_, _, constructor) -> constructor)¥*)

(*(List.filter (fun(_, _, (_, _, destr)) -> if (destr.cfunc name = "") then false*)

(*else true) cstructs_and functions) in¥)

let cglobals = List.fold left (fun acc (decls,) -> acc @
decls) [] (List.map (update decl tSymbol table updated program)

updated program.globals) in

let cStructs = virt table structs @ (List.map (cStruct from tInterface

tSymbol table) program.interfaces) @ cstructs in

let tAnonDefs = Semant.anon defs from tprogram program in

let cFuncsTranslatedFromAnonDefs = cFunc list from anonDef list tSymbol table program
tAnonDefs in

let capture structs = capture struct list from anon def list program tAnonDefs in
(* The function bodies have not been filled out yet. Just the parameters
* and return types *)

let cDeclaredMethodsAndFuncs = cfuncs _methods @ (List.rev (List.map (cFunc_ from tFunc
tSymbol table)

(List.filter (fun fdecl ->
if (fdecl.receiver = ("", "")) then true else

false) program.functions))) in

let cUpdatedDeclaredMethodsAndFuncs = List.fold left (fun acc cFunc ->
let sym = StringMap.find

cFunc.cfunc name tSymbol table in (match sym with

| FuncSymbol(_, fdecl) -> acc @ [update cFunc tSymbol table
program
cFunc fdecl]
| _ -> raise(Failure("error")))
) [] cDeclaredMethodsAndFuncs in
let cConstructors = List.fold left (fun acc (tStruct, cConst,) ->

acc @ [update cConstructor tSymbol table program cConst tStruct]) I[]

cconstructors in

let cDestructors = List.fold left (fun acc (tStruct, , cDestr) ->
acc @ [update cDestructor tSymbol table program cDestr tStruct]) I[]

cconstructors in

let anon def for function fn =
List.find (fun af ->
if (af.anon_name = fn.cfunc name) then
true
else
false) tAnonDefs

in

let cUpdatedFuncsTranslatedFromAnonDefs =
List.map (fun £ ->
let anonDef = anon_def for function f in

update cFunc_ from anonDef tSymbol table program f anonDef)
cFuncsTranslatedFromAnonDefs

in

let cFuncs = cConstructors @ cDestructors @ cUpdatedDeclaredMethodsAndFuncs @
cUpdatedFuncsTranslatedFromAnonDefs

in

cstructs = cStructs@capture structs;
cglobals = cglobals;

cfunctions = cFuncs;

Ccodegen.ml

open Ast

module StringMap = Map.Make (String)

type cIdentifier = CIdentifier of string

type cPrimitive =
Cvoid
| Cchar
| Cshort
| Cint
| Clong
| Cfloat

| Cdouble

type cProgram = ({
cstructs: cStruct list;
cglobals: cDeclaration list;

cfunctions: cFunc list;

and cStruct = {
cstruct name: string;
cstruct members: cSymbol list;

cmethod to functions: cFunc StringMap.t;

and cFuncSignature = {
func return type: cType;

func_param types: cType list;

and cFunc = {
cfunc_name: string;
cfunc_body: cStatement;
cfunc_params: cFuncParam list;

creturn type: cType;

and cFuncDecl = {
cfdecl name: string;
cfdecl params: cType list;

cfdecl return type: cType;

and cNonPointerType =
CPrimitiveType of cPrimitive

| CStruct of string

and cPointer =
CPointer of cNonPointerType

| CPointerPointer of cPointer

and cType =
CType of cNonPointerType
| CPointerType of cType * int

| CFuncPointer of cFuncSignature

and cExpr =
CBinop of cExpr * tOperator * cExpr
| CAsnExpr of cExpr * tAssignmentOperator * cExpr

| CLiteral of int

CFloatLiteral of float
CStringLiteral of string

CCastExpr of cType * cExpr

CPostfix of cExpr * tPostfixOperator

CCall of int * cExpr * cExpr * cExpr list (* The int field is a flag to

indiciate it is a pointer dereference *)

CAlloc of cType * cExpr

CNeg of cExpr

CFree of cExpr

CDeref of cExpr

CArrayAccess of cExpr * cExpr

CCompareExpr of cExpr * tLogicalOperator * cExpr
CPointify of cExpr

CMemAccess of int * cExpr * cIdentifier (* The int field is a flag to

indicate it is a pointer dereference *)

CId of cIdentifier

CDeclExpr of cDeclaration

CNoexpr

CNull

and cStatement =

and

CExpr of cExpr

| CEmptyElse

| CReturn of cExpr

| CCompoundStatement of cDeclaration list * cStatement list

| CIf of cExpr * cStatement * cStatement

| CFor of cExpr * cExpr * cExpr * cStatement

| CWhile of cExpr * cStatement

| CBreak

cDirectDeclarator =

CVar of cIdentifier

and cDeclarator =

CDirectDeclarator of cDirectDeclarator

and cInitDeclarator =

CInitDeclarator of cDeclarator

CInitDeclaratorAsn of cDeclarator * tAssignmentOperator * cExpr

and cDeclarationSpecifiers =

CDeclSpecTypeSpecAny of cType

and cFuncParam = cType * cIdentifier

and cDeclaration =

CDeclaration of cDeclarationSpecifiers * cInitDeclarator

and cSymbol =
CVarSymbol of string * cType
| CFuncSymbol of string * cFunc

| CStructSymbol of string * cStruct

let cStructName from tInterface name =

String.concat "" [" interface"; name]

let interface field name in struct interface name struct name =

String.concat "" [" "; (String.concat " " [interface name;struct name])]

let cStructName from tStruct name =

String.concat "" [" struct"; name]

let virtual table name from tStruct name =

String.concat "" [" virtual";name]

let constructor name from tStruct name =

String.concat " " [" constructor";name]

let destructor name from tStruct name =

"

String.concat "_" [" _destructor";name]
let cType from tTypeSpec = function
Void -> CType (CPrimitiveType (Cvoid))
| Char -> CType (CPrimitiveType (Cchar))
| Short -> CType (CPrimitiveType (Cshort))
| Int -> CType (CPrimitiveType (Cint))
| Long -> CType (CPrimitiveType (Clong))
| Float -> CType (CPrimitiveType (Cfloat))
| Double -> CType (CPrimitiveType (Cdouble))
| Signed -> raise(Failure ("cType from tTypeSpec: Error, Signed unsuported at the moment"))
| Unsigned -> raise(Failure("cType from tTypeSpec: Error, Unsigned unsuported at the moment"))
| String -> CPointerType (CType (CPrimitiveType (Cchar)), 1)

(*|] _ -> raise(Failure("cType from tTypeSpec: Error, unsupported tTypeSpec"))™*)

let rec print pointers n =

if (n = 1) then "*" else

(String.concat "" ["*"; (print pointers (n-1))])

let rec sizeof string tSymbol table typ = match typ with

| CType (CPrimitiveType (Cvoid)) -> "void"

| CType (CPrimitiveType (Cchar)) -> "char"

| CType (CPrimitiveType (Cint)) -> "int"

| CType (CPrimitiveType (Clong)) -> "long"

| CType (CPrimitiveType (Cfloat)) -> "float"

| CType (CPrimitiveType (Cdouble)) -> "double"

| CType (CStruct(t)) -> String.concat " " ["struct"; t]

| CPointerType (base, n) -> String.concat " " [(sizeof string tSymbol table

base); (print pointers n)]

let rec cType from tType symbol table = function
PrimitiveType (typeSpec) -> cType from tTypeSpec typeSpec
| PointerType (base type, num) -> CPointerType (cType from tType symbol table base type,
num)
| ArrayType (array type, ptr, e) -> (let tl = Semant.type of array type
symbol table (ArrayType(array type, ptr, e)) in cType from tType symbol table
tl)
| CustomType (s) -> (let sym = StringMap.find s symbol table in
match sym with
| StructSymbol (name,) ->
CType (CStruct (cStructName from tStruct
name))

| InterfaceSymbol (name,) ->

CPointerType (CType (CStruct (cStructName from tInterface
name)), 1))
| AnonFuncType (t, tlist) ->
let anonRetType = (cType from tType symbol table t) in
let anonParamTypes = List.map (fun x -> (cType from tType symbol table x)) tlist in
let captureParam = CPointerType (CType (CPrimitiveType (Cvoid)), 1) in
CFuncPointer ({
func_return type = anonRetType;
func_param types = anonParamTypes@[captureParam]
b

_ —> raise(Failure("Haven't filled out yet"))

let id exists in symtable symbols id =

try

StringMap.find (Astutil.string of identifier id) symbols;

true

with -> false

let id exists in symlist symlist id =

let check sym id equal sym id =
match sym with

VarSymbol (name,) -> if (name = (Astutil.string of identifier id)) then true else false

| FuncSymbol (name,) -> if (name = (Astutil.string of identifier id)) then true else false
| AnonFuncSymbol (name,) -> if (name =

(Astutil.string of identifier id))
false

then true else

in

let compare symbol with id (id, (hasBeenFound, foundSymbol)) sym =

match hasBeenFound with

false -> if (check sym id equal sym id) == true then (id, (true, sym))

else (id, (hasBeenFound, foundSymbol))

| true -> (id, (hasBeenFound, foundSymbol))

in

let (_, (isFound, foundSym)) =

(List.fold left
VarSymbol ("ERROR SYMBOL",

compare symbol with id (id,
PrimitiveType (Void)))) symlist)

(false,
in isFound

let lookup symbol from symlist by id symlist id

let check sym id equal sym id =

match sym with

VarSymbol (name,) -> name == (Astutil.string of identifier id)
| FuncSymbol (name,) -> name == (Astutil.string of identifier id)
| AnonFuncSymbol (name,) -> name == (Astutil.string of identifier id)

in

let compare symbol with id (id, (hasBeenFound, foundSymbol)) sym =

match hasBeenFound with
false -> if (check sym id equal sym id)

== true then (id, (true, sym))

else (id, (hasBeenFound, foundSymbol))

| true -> (id, (hasBeenFound, foundSymbol))
in

match (List.fold left compare symbol with id (id, (false, VarSymbol ("ERROR SYMBOL",
PrimitiveType (Void)))) symlist) with

(_, (true, foundSym)) -> foundSym

| _ -> raise(Failure("lookup symbol from symlist by id: Error, symbol not in table."))

let cDeclarationSpecifiers from tDeclarationSpecifiers symbol table tDeclSpecs = function
| DeclSpecTypeSpecAny (tType) ->

CDeclSpecTypeSpecAny (cType from tType symbol table tType)

let cDeclaration from tFdecl symbol table fdecl =
let first argument = [CPointerType (CType (CPrimitiveType (Cvoid)), 1)] in
let cfunc param types = first argument @ List.map (cType from tType symbol table)
(Semant.type list from func param list fdecl.params) in
let generate void star param types =
let anonList =
List.filter (fun p -> match p with
AnonFuncDecl (anonDecl) -> true
| _ -> false) fdecl.params
in
let returned param types =
List.map (fun p -> match p with
AnonFuncDecl (anonDecl) ->
CPointerType (CType (CPrimitiveType (Cvoid)), 1)) anonList
in
returned param types
in
let extraParamTypes = generate void star param types in
let cfunc_return type =

cType from tType symbol table (Semant.type from declaration specifiers

fdecl.return type) in
let func signature = {

func return type = cfunc return type;

func_param types = cfunc param types@extraParamTypes;

} in

CVarSymbol ((Semant.var name from direct declarator fdecl.func name),

CFuncPointer (func_signature))

(* The C Struct corresponding to the Cimple Interface consists of

* 1) Function pointers instead of methods. The first argument is a void star *)

let cStruct from tInterface symbol table interface =
let cBodySymbol = [CVarSymbol ("body",
CPointerType (CType (CPrimitiveType (Cvoid)),

1))] in (* This is the void * body that we apply to all the functions *)

let cSymbols = List.map (cDeclaration from tFdecl symbol table) interface.funcs in

cstruct members = cBodySymbol @ cSymbols;
cstruct name = cStructName from tInterface interface.name;

cmethod to functions = StringMap.empty

let cSymbol from Implements implements =
let cstruct name = cStructName from tInterface implements in

CVarSymbol (cstruct name, CPointerType (CType (CStruct (cstruct name)), 1))

let cFuncParam from tFuncParam symbol table tFuncParam =

(cType from tType symbol table (Semant.type from func param
(CIdentifier (Semant.var name from func param tFuncParam)))

let create cfunc param for receiver receiver =

(CPointerType (CType (CPrimitiveType (Cvoid)), 1),

tFuncParam),

CIdentifier (" body"))

let create initial cast decl receiver =
let cstruct name = cStructName from tStruct (fst receiver) in
CDeclaration (CDeclSpecTypeSpecAny (CPointerType (CType (CStruct (cstruct name)),
1)), CInitDeclaratorAsn (CDirectDeclarator (CVar (CIdentifier (snd receiver)))
, Asn, CCastExpr (CPointerType (CType (CStruct (cstruct name)), 1),

CId(CIdentifier (" body™)))))

let number of anon func parameters in tFuncParamList plist =
List.fold left (fun acc f ->
(match f with
AnonFuncDecl() -> (acc + 1)

| _ ->acc)) 0 plist

let number of anon_ func parameters_in_ tFuncDecl fdecl =

number of anon_func parameters in tFuncParamList fdecl.params

let cFunc_from tFunc symbol table tFunc =

creturn_type = cType from tType symbol table

(Semant.type from declaration specifiers tFunc.return type);

cfunc_params = List.rev (List.map (cFuncParam from tFuncParam

symbol table) tFunc.params);

cfunc body = CCompoundStatement ([], []);

cfunc_name = Semant.var name from direct declarator

tFunc. func_name;

let rec cSymbol from sSymbol symbol table sym = match sym with
VarSymbol (s, t) -> CVarSymbol (s, (cType from tType symbol table t))
| FuncSymbol (s, fdecl) -> CFuncSymbol (s, (cFunc from tFunc symbol table fdecl))
| StructSymbol (s, strct) ->
let (newStrct,) = cStruct from tStruct symbol table strct in
CStructSymbol (s, newStrct)

_ —> raise(Failure("Not completed"))

* This function returns a list of Ast.sSymbols representing the variables referenced within the
body of

* an anonymous function that are declared outside of it's scope. This list will form the data
* members of a special c¢ struct that will be passed to a normal c¢ function whenevever

* an anonymous function in cimple is instantiated.

* Parameters:
* symbols: A StringMap of symbols from outside the scope of the anonymous function def
* psymbols: A symbol table of parameters to this anonymous function
* members: A list of function parameters declared in the anon function definition

* body: An Ast.tStatement (specifically a CompoundStatement) that is the body of the
anonymous function

and struct members from anon body symbols psymbols members body =

let rec print member m = Printf.printf "$s\n" (Astutil.string of symbol m)

and print member list mlist = match mlist with

| [x] -> print member x

| h::t -> print member h; print member list t

in

let symbol is capturable = function
VarSymbol(,) -> true

| -> false

in

let rec members from expr symbols psymbols members e = match e with
Id(id) ->
if (id _exists in symtable psymbols id) then []
else if (id exists in symlist members id) = true then
[]
else if (id exists in symtable symbols id) = true then
let sym = Semant.lookup symbol by id symbols id in
if (symbol is capturable sym) then
[sym]
else
[1
(*else if (id exists in symtable psymbols id) then []¥*)
else (match id with
Identifier(s) ->
print member list members;
raise(Failure ("members from expr: Error - undeclared symbol '"™ "~ s ©~ "'")))
| Binop(el, , e2) -> let elMembers = members from expr symbols psymbols members el in

let eZMembers = members from expr symbols psymbols (members@elMembers)
e2 in

elMembers@e2Members
| AsnExpr(el, , e2) -> let elMembers = members from expr symbols psymbols members el in

let e2Members = members from expr symbols psymbols
(members@elMembers) e2 in

elMembers@e2Members
| Postfix(el,) -> let elMembers = members from expr symbols psymbols members el in
elMembers

| Call(, e, elist) -> let eMembers = members from expr symbols psymbols members e in

let elistMembers = members from expr list symbols psymbols
(members@eMembers) elist in

eMembers@elistMembers
| Make(, elist) -> members from expr list symbols psymbols members elist
| Pointify(e) -> members from expr symbols psymbols members e

| MemAccess (e, id2) -> let idlMembers = members from expr symbols psymbols members e in

let id2Members = members from expr symbols psymbols
(members@idlMembers) e in

idlMembers@id2Members

| AnonFuncDef (def) -> raise(Failure("members from expr: Error - nested anonymous functions not
supported"))

| DeclExpr(decl) -> members from declaration symbols psymbols members decl

| StringLiteral() -> []

| => []

and members from expr list symbols psymbols members elist = match elist with
[1 -> 11
| [x] -> members from expr symbols psymbols members x
| h::t -> let hMembers = members from expr symbols psymbols members h in
let tMembers = members from expr list symbols psymbols (members@hMembers) t in

hMembers@tMembers

and members from init declarator symbols psymbols members initDecl =

match initDecl with

InitDeclaratorAsn(_, , e) -> members_ from expr symbols psymbols members e
| InitDeclList(l) -> members_ from init declarator_list symbols psymbols members 1
I => 11

and members from init declarator list symbols psymbols members declList =
match declList with

(*[] -> members from expr symbols psymbols members Noexpr¥*)

1 ->1

| [x] -> members from init declarator symbols psymbols members x

| h::t -> let hmembers = members from init declarator symbols psymbols members h in

hmembers@ (members from init declarator list symbols psymbols (members@hmembers) t)

and members from declaration symbols psymbols members decl = match decl with

Declaration(_, initDecl) ->

members from init declarator symbols psymbols members initDecl

(*I _ => []1 [> Other types of declarations wouldn't reference variables from outside scope

and members from declaration list symbols psymbols members declList = match declList with

| [x] -> (members from declaration symbols psymbols members x)
| h::t -> let hmembers = members from declaration symbols psymbols members h in

hmembers@ (members from declaration list symbols psymbols (members@hmembers) t)

and members from statement list symbols psymbols members stmtList = match stmtList with

| [x] -> (members from statement symbols psymbols members x)
| h::t -> let hmembers = members from statement symbols psymbols members h in

(hmembers) @ (members from statement list symbols psymbols (members@hmembers) t)

and members from statement symbols psymbols members stmt = match stmt with
CompoundStatement (decls, stmtList) ->
let dmembers = (members from declaration list symbols psymbols members decls) in
dmembers@members from statement list symbols psymbols (members@dmembers) stmtList
| Expr(e) -> members from expr symbols psymbols members e
| Return(e) -> members from expr symbols psymbols members e
| If(e, sl, s2) -> let eMembers = members from expr symbols psymbols members e in

let slMembers = members from statement symbols psymbols (members@eMembers)
sl in

let s2Members = members from statement symbols psymbols
(members@eMembers@slMembers) s2 in

eMembers@slMembers@s2Members

| For(el, e2, e3, s) -> let elMembers =

members from expr symbols psymbols members el in

let e2Members = members from expr symbols psymbols (members@elMembers)
e2 in

let e3Members = members from expr symbols psymbols
(members@elMembers@e2Members) e3 in

let sMembers =

(members@elMembers@e2Members@e3Members) s in

members from statement symbols psymbols

elMembers@e2Members@e3Members@sMembers
| While(e, s) -> let eMembers = members from expr symbols psymbols members e in

let sMembers members from statement symbols psymbols (members@eMembers) s
in

eMembers@sMembers

in

let mems = members from statement symbols psymbols members body in

mems

* Returns a C struct to be used as a copy of the variables used within the body of an

* anonymous function that were declared outside of its scope.

* Parameters:

* program: an Ast.tProgram.

* def: The Ast.tAnonFuncDef whose body we are looking through to find captured variables

and capture_struct from anon_def program def

let func = Semant.find func containing anon def program def in

let receiverSymbols =

= [Semant.symbol from receiver func.receiver] in
let interfaceSymbols =

Semant.symbols from interfaces program.interfaces in

let interfaceMethodSymbols =

let interfaces

List.map (fun (InterfaceSymbol(, iface)) -> iface) interfaceSymbols

in

List.fold left (fun acclList iface ->
accList@ (Semant.symbols from fdecls iface.funcs)) [] interfaces
in

(* (Astutil.print symbol table (Semant.symtable from symlist interfaceMethodSymbols));*)

let extraSymbols = receiverSymbols@interfaceSymbols@interfaceMethodSymbols in
let symlist = (Semant.symbols from outside scope for anon def program def)@extraSymbols in
let symbols = Semant.symtable from symlist symlist in

let builtinDecls = Semant.stdlib_funcs in
let builtinSyms = Semant.symbols from fdecls builtinDecls in
let rec symconvert m = cSymbol from sSymbol symbols m in
let internal anon_symbols = (fun stmt -> match stmt with

CompoundStatement (declList,) ->

Semant.symbols from decls declList) def.anon body in

let param symbols = (Semant.symbols from func params def.anon params)@internal anon symbols in
let param symtable = (Semant.symtable from symlist param symbols) in

let updated symbols = Semant.symtable from symlist (builtinSyms@symlist) in

cstruct name = "S" * def.anon name; (* 's' for 'struct' ¥)
cstruct members = (List.map symconvert (struct members from anon body updated symbols
param _symtable [] def.anon body));

cmethod to functions = StringMap.empty

and capture struct list from anon def list program defList = match defList with

| [x] -> [capture_struct from anon_def program x]

| h::t -> [capture struct from anon def program h]Q@capture struct list from anon def list
program t

and cFunc_from tMethod cStruct Name tFuncName = String.concat " " [cStruct Name;tFuncName]

and cStruct from tStruct symbol table tStruct =

let symconvert m = cSymbol from sSymbol symbol table m in

let defaultStructMemberSymbols = List.map symconvert (List.map
(Semant.symbol from declaration) tStruct.members) in

(* If there is an interface then add a struct member corresponding to
* the interface to our struct *)
let cStructMemberSymbols = if (Semant.get interface for struct
tStruct.struct name symbol table <> "") then

[cSymbol from Implements tStruct.implements] @

defaultStructMemberSymbols else defaultStructMemberSymbols in

let (methods to cfunctions, cfuncs) = (List.fold left (fun (sym, cfunc list)
method ->

(let tfunc_name =
Semant.var name from direct declarator

method_.func_name in

let initial void param =
create_cfunc_param for receiver

method .receiver in

let init cast decl =
create initial cast decl

method .receiver in

let cfunc = {
creturn_type = (cType from tType
symbol table
(Semant.type from declaration specifiers

method .return type));

cfunc_params =

[initial void param] @ (List.map
(cFuncParam from tFuncParam

symbol table) method .params);

cfunc_body =

CCompoundStatement ([init cast decl],

cfunc_name = cFunc_from tMethod
(cStructName from tStruct

tStruct.struct name) tfunc name;

} in (StringMap.add tfunc name cfunc
sym, cfunc_list @ [cfunc])))

(StringMap.empty, []) tStruct.methods) in

cstruct name = cStructName from tStruct tStruct.struct name;
cstruct members = cStructMemberSymbols;
cmethod to functions = methods to cfunctions;

}, cfuncs)

let cDeclarationSpecifiers from tDeclarationSpecifiers symbol table tDeclSpecs = function
| DeclSpecTypeSpecAny (tType) ->

CDeclSpecTypeSpecAny (cType from tType symbol table tType)

let cDeclaration from tFdecl symbol table fdecl =
let first argument = [CPointerType (CType (CPrimitiveType (Cvoid)), 1)] in
let cfunc param types = first argument @ List.map (cType from tType symbol table)
(Semant.type list from func param list fdecl.params) in
let generate void star param types =

let anonlList =

List.filter (fun p -> match p with
AnonFuncDecl (anonDecl) -> true
| -> false) fdecl.params
in
let returned param types =
List.map (fun p -> match p with
AnonFuncDecl (anonDecl) ->
CPointerType (CType (CPrimitiveType (Cvoid)), 1)) anonList
in
returned param types
in
let extraParamTypes = generate void star param types in
let cfunc return type =
cType from tType symbol table (Semant.type from declaration specifiers
fdecl.return type) in

let func_signature = {

func return type = cfunc return type;
func_param_types = cfunc_param_ types@extraParamTypes;

} in

CVarSymbol ((Semant.var_name from direct declarator fdecl.func name),
CFuncPointer (func_signature))

(* The C Struct corresponding to the Cimple Interface consists of

* 1) Function pointers instead of methods. The first argument is a void star *)

let cStruct from tInterface symbol table interface =
let cBodySymbol = [CVarSymbol ("body",
CPointerType (CType (CPrimitiveType (Cvoid)),
1))] in (* This is the void * body that we apply to all the functions *)

let bols = List.map (cDeclaration from tFdecl symbol table) interface.funcs in

cstruct members = cBodySymbol @ bols;
cstruct name = cStructName from tInterface interface.name;

cmethod to functions = StringMap.empty

let bol from Implements implements struct name =
let cstruct name = cStructName from tInterface implements in
let interface field name = interface field name in struct implements
struct name in

CVarSymbol (interface field name, CType (CStruct (cstruct name)))

let cFuncParam from tFuncParam symbol table tFuncParam =
match tFuncParam with
AnonFuncDecl () ->

let newName = "anon " ”~ (Semant.var name from func param tFuncParam) in

(cType_from tType symbol table (Semant.type from func param tFuncParam),
(CIdentifier (newName)))
| ->

(cType from tType symbol table (Semant.type from func param tFuncParam),
(CIdentifier (Semant.var name from func param tFuncParam)))

let create cfunc param for receiver receiver =
(CPointerType (CType (CPrimitiveType (Cvoid)), 1),

CIdentifier (" _body"))

let create initial cast decl receiver =
let cstruct name = cStructName from tStruct (fst receiver) in
CDheclaration (CDeclSpecTypeSpecAny (CPointerType (CType (CStruct (cstruct name)),
1)), CInitDeclaratorAsn(CDirectDeclarator (CVar (CIdentifier (snd receiver)))
, Asn, CCastExpr (CPointerType (CType (CStruct (cstruct name)), 1),

CId(CIdentifier (" body")))))

let cFunc_from tFunc symbol table tFunc =
let generate n void star params n =
let anonList =
List.filter (fun p -> match p with
AnonFuncDecl (anonDecl) -> true
| _ -> false) tFunc.params
in
let returned params =
List.map (fun p -> match p with
AnonFuncDecl (anonDecl) ->

(match anonDecl.anon_decl name with

Identifier(s) ->
let paramName = "cap anon " * s in
(CPointerType (CType (CPrimitiveType (Cvoid)), 1),
CIdentifier (paramName)))) anonList

in
returned_params
in
let n = number of anon func parameters in tFuncDecl tFunc in

let extraParams = generate n void star params n in

creturn_type = cType from tType symbol table

(Semant.type from declaration specifiers tFunc.return type);

cfunc params =List.rev (((extraParams)@List.map (cFuncParam from tFuncParam

symbol table) tFunc.params));

cfunc body = CCompoundStatement ([], []);

cfunc_name = Semant.var name from direct declarator tFunc.func_ name;

let cFunc_from tMethod tStructName tFuncName =

Semant.symbol table key for method tStructName tFuncName

let first param for constructor struct name =
(CPointerType (CType (CStruct (cStructName from tStruct struct name)), 2),

CIdentifier (" this"))

let first param for destructor struct name =
(CPointerType (CType (CStruct (cStructName from tStruct struct name)), 2),

CIdentifier (" this"))

let last param for constructor =

(CType (CPrimitiveType (Cint)), CIdentifier (" needs malloc"))

let last param for destructor =

(CType (CPrimitiveType (Cint)), CIdentifier (" needs free"))

and cFunction from tMethod object type method tSymbol table =

match object type with

| CustomType (name) -> (let typ symbol =
Semant.lookup symbol by id tSymbol table (Identifier(name)) in match
typ symbol with
| StructSymbol(,) -> cFunc_ from tMethod
(name) method
| InterfaceSymbol(,) -> method)

| PointerType (CustomType (name), 1) -> (let typ symbol =
Semant.lookup symbol by id tSymbol table (Identifier(name)) in match
typ_symbol with
| StructSymbol(_ ,) -> cFunc_from tMethod

(name) method

| InterfaceSymbol(,) -> method)

_ —> raise(Failure("not done"))

* This function takes a cimple expression and returns the pair ((C expression,
* statement([]), cDeclaration[]). The idea is that some cimple expression may generate multiple
* assignment statements such as a make expression with a constructor.
* Expressions should not create more declarations, only declarations create
* more declarations.
*)
let rec update expr texpr tSymbol table tprogram = match texpr with
| Neg(e) -> (let ((updated el, el stmts), decls) = update expr e
tSymbol table tprogram in ((CNeg(updated el), el stmts), decls))
| Binop(el, op, e2) -> (let ((updated el, el stmts),) = update expr el
tSymbol table tprogram in
let ((updated e2, e2 stmts),) = update expr e2

tSymbol table tprogram in

((CBinop (updated el, op, updated e2), (el stmts@e2 stmts)), []))

| CompareExpr (el, op, e2) ->

let ((updated el, el stmts),) = update expr el tSymbol table tprogram in
let ((updated e2, e2 stmts),) = update expr e2 tSymbol table tprogram in

((CCompareExpr (updated el, op, updated e2), (el stmts @ e2 stmts)), [])

| Clean(e) -> (let tl = Semant.type from expr tSymbol table e in
let ((updated e, e stmts), decls) = update expr e tSymbol table tprogram in
match tl with
| PointerType (CustomType(s),) -> ((CCall(0, CNoexpr,

CId(CIdentifier (destructor name from tStruct s)),

[CCastExpr (CPointerType (CType (CStruct (cStructName from tStruct
s)), 2), CPointify(updated e))] @

[CLiteral (1) 1), [1), [1)

| PointerType(,) —-> ((CFree(updated e), e stmts),

decls))

| AsnExpr(el, op, e2) ->
(match e2 with

| Make(typ , expr list) -> cAllocExpr from tMakeExpr tSymbol table
tprogram el e2

[=>
let ((updated el, el stmts),) = update expr el
tSymbol table tprogram in
let ((updated e2, e2 stmts),) = update expr e2

tSymbol table tprogram in

let el type = Semant.type from expr tSymbol table el in

let e2 type = Semant.type from expr tSymbol table e2 in

(match (el type, e2 type) with

(* Check if we are assigning custom types. Since we are

* past semantic analysis the only possibilities are 1.

* we are assining a derived class to its ancestor or 2.
* we are assigning the same types. In those cases we

* need to cast *)

| (PointerType (CustomType(s),),
PointerType (CustomType (t),)) ->
(1f (Semant.tl inherits t2 s t tSymbol table) then
((CAsnExpr (updated _el, op,

CCastExpr ((cType_ from tType tSymbol table el type),
updated e2)),

in

(el stmts@e2 stmts)), [])

else
((CAsnExpr (updated el, op, updated e2), el stmts
@ e2 stmts), []))
| (CustomType (s), CustomType(t)) -> (if

(Semant.tl inherits t2 s t tSymbol table) then
((CAsnExpr (updated el, op,
CCastExpr ((cType from tType tSymbol table

el type), updated e2)), (el stmts@e2 stmts)), [])

else
((CAsnExpr (updated el, op, updated e2), el stmts

@ e2 stmts), [1))

| -> ((CAsnExpr (updated el, op, updated e2), el stmts

@ e2_stmts), [1))))

| Call(expr, Id(Identifier(s)), expr list) ->

let ret = cCallExpr from tCallExpr expr tSymbol table tprogram s expr list

ret

| Super() -> ((CNoexpr, [1), [])
| ArrayAccess(el, e2) -> ((CArrayAccess (fst(fst(update expr el tSymbol table
tprogram)), fst(fst(update expr e2 tSymbol table tprogram))), []), [])
| MemAccess (expr, Identifier(s)) -> (let typ = Semant.type from expr
tSymbol table expr in match (typ) with

| CustomType (name) -> ((CMemAccess (0, fst(fst (update expr expr

tSymbol table tprogram)), CIdentifier(s)), [1), [1])

| PointerType (CustomType (name), 1) -> ((CMemAccess(l, fst(fst

(update expr expr tSymbol table tprogram)), CIdentifier(s)),

[,

| _ -> raise(Failure("Bad Mem Access")))
| Id(Identifier(s)) -> ((CId(CIdentifier(s)), [1), [1)
| Literal(d) -> ((CLiteral(d), [1), [1)
| Make (typ , expr list) -> (let ctype = cType from tType tSymbol table typ
in match typ_ with

| PrimitiveType(s) -> ((CAlloc (ctype,

CId(CIdentifier((sizeof string tSymbol table ctype)))), [1), [])

| ArrayType (array type, ptr, e) ->(let updated e = fst(fst(update expr

e tSymbol table tprogram)) in let pointer type =
Semant.type of array type

tSymbol table typ in let cpointer type = cType from tType tSymbol table
pointer type in (match cpointer type with

| CPointerType (base, num) ->let ctype to malloc = if (num = 1) then base
else CPointerType (base, num-1) in (

CAlloc (base, CBinop (updated e, Mul,

(CId(CIdentifier(sizeof string tSymbol table ctype to malloc))))), [1),

[

| CustomType (s) -> ((CAlloc(ctype, CId(CIdentifier (sizeof string tSymbol table
ctype))), (1), [1))
| FloatLiteral(d) -> ((CFloatLiteral(d), []1), [1)
| StringLiteral(s) -> ((CStringLiteral(s), [1), I[1)
| Postfix(el, op) -> (let ((updated el, el stmts),) = update expr el

tSymbol table tprogram in ((CPostfix(updated el, op), el stmts),

| AnonFuncDef (anonDef) ->

let anon _name = Semant.find name for anon def tprogram anonDef in
let instanceName = "s" ”* anon name in
let structName = "S" ~ anon name in
let decls = [CDeclaration (CDeclSpecTypeSpecAny (CType (CStruct (structName))),
CInitDeclarator (CDirectDeclarator (CVar (CIdentifier (instanceName)))))] in

let assignments from capture struct c =

List.map (fun csym ->

(match csym with
CvarSymbol(s,) ->

CExpr (CAsnExpr (CMemAccess (0, CId(CIdentifier (instanceName)),
CIdentifier(s)), Asn, CId(CIdentifier(s))))

| -> raise(Failure("update expr: Invalid CSymbol parameter")))

c.cstruct members

in

let captures = capture struct from anon def tprogram anonDef in

let newAssignments = assignments from capture struct captures in
((CId(CIdentifier (anon name)), newAssignments), decls)
| Noexpr -> ((CNoexpr, [1), [1)
| Pointify(e) -> let ((updated e, stmts), decls) = update expr e
tSymbol table tprogram in ((CPointify(updated e), stmts), decls)
| Deref(e) -> let ((updated e, stmts), decls) = update expr e tSymbol table
tprogram in ((CDeref (updated e), stmts), decls)

| Nil -> ((CNull, []), [1)

let expr type = Astutil.string of expr texpr in

raise(Failure ("not finished for type " ~ expr type))

and update expr list texpr list tSymbol table tprogram = match texpr list with

| [e] -> [update expr e tSymbol table tprogram]

| h::t -> [update expr h tSymbol table tprogram]Qupdate expr list t tSymbol table tprogram

and generate stmts for parent destructor symbol table tprogram destructor

tStruct =

let ancestor destructor = Semant.get ancestors destructor symbol table

tStruct in

let c_ancestor destructor name = destructor name from tStruct

ancestor_destructor.destructor name in

let first arg = CCastExpr (CPointerType (cType from tType symbol table
(CustomType (ancestor destructor.destructor name)), 2),

CId(CIdentifier(" this"))) in

let last arg = CLiteral(0) in

[(CExpr (CCall (0, CNoexpr,

CId(CIdentifier(c_ancestor destructor name)), [first argl]@[last _arg])))]

and generate stmts for super expr list symbol table tprogram constructor tStruct =
let ancestor constructor = Semant.get ancestors constructor

symbol table tStruct in

let c ancestor constructor name = constructor name from tStruct

ancestor_constructor.constructor_name in

let first arg = CCastExpr (CPointerType (cType from tType symbol table

(CustomType (ancestor_ constructor.constructor name)), 2), CId(CIdentifier (" this")))

in

let last _arg = CLiteral(0) in

let cstParams = constructor.constructor params in

let funcParamSymbols = Semant.symbols from func params cstParams in

let anonParamSymbols = List.filter (fun sym ->

(match sym with
AnonFuncSymbol(_,) —-> true

| -> false)) funcParamSymbols

in

let anonParamSymbolTable = Semant.symtable from symlist anonParamSymbols in
let is_in symtable id =
try
StringMap.mem id anonParamSymbolTable
with
_ —> false
in
let fixedExprList =
List.map (fun e ->
(match e with
Id(Identifier (id)) ->
if ((is_in symtable id) = true) then
Id(Identifier ("anon " ~ id))
else

e)) expr_ list

in
let caplds =
List.fold left (fun accList expr ->
(match expr with
Id(Identifier (id)) ->
if ((is_in symtable id) = true) then
accList@([CId(CIdentifier("cap _anon " * id))]
else
accList
_ —> raise(Failure("Invalid expr")))) [] expr list
in

let fixedAnonParamSymbols

let fix anon name str =
try
let sub = String.sub str 0 5 in
if (sub <> "anon ") then

"anon " ~ str

else
str
with

~

_ —> "anon_ " str
in
List.map (fun sym ->
(match sym with
AnonFuncSymbol (anonName, t) -> AnonFuncSymbol ((fix anon name anonName), t)
| _ -> sym)) anonParamSymbols
in

let symbol table = Semant.add symbol list to symbol table symbol table
fixedAnonParamSymbols in

let call to_super constructor stmt = [(CExpr(CCall (0, CNoexpr, CId(CIdentifier(
c_ancestor constructor name)), [first arg]@(List.map2

(cExpr_from_ tExpr_in_tCall symbol table tprogram) fixedExprList

ancestor constructor.constructor params)@[last arg]@capIds)))] in
let StructSymbol(, ancestor struct) = Semant.lookup symbol by id symbol table
(Identifier (ancestor constructor.constructor name)) in
let local reassignment of members = List.fold left (fun assignments

member -> let member id = Semant.var name from declaration member
in assignments @ [CExpr (CAsnExpr (CId(CIdentifier (member id)), Asn, CMemAccess (1,
CDheref (CId(CIdentifier (" this"))),

(CIdentifier (member id)))))]) [] ancestor struct.members in

call to super constructor stmt @ local reassignment of members

and cAllocExpr from tMakeExpr tSymbol table tprogram asn_expr tMakeExpr =
let ((updated el, updated stmts),) = (update expr asn expr tSymbol table tprogram) in
let Make(typ , expr list) = tMakeExpr in
match typ with

| CustomType (typ) —-> (

let StructSymbol (name, tStruct) = Semant.lookup symbol by id

tSymbol table (Identifier(typ)) in

if (tStruct.constructor.constructor name <> "") then (
(* We have a constructor *)

let params

tStruct.constructor.constructor params in

let more_params_filtered =
generate extra capture func params from expr list tSymbol table tprogram expr list in

let updated expr list = (List.map2

(cExpr from tExpr in tCall tSymbol table tprogram) expr list params) in

let anonParams = Semant.anon defs from expr list no recursion tprogram
expr list in

let update anon def expr list anonList =
List.fold left (fun ((e, slist), dlist) def ->

let ((_, _slist), _dlist) = update expr (AnonFuncDef (def))
tSymbol table tprogram in

((Noexpr, slist@ slist), dlist@ dlist)) ((Noexpr, []), [1])
anonList

in

let ((updated expr, updated slist), updated dlist) =
update anon def expr list anonParams in

((CCall (0, CNoexpr,

CId(CIdentifier (constructor name from tStruct

tStruct.struct name)),

[CCastExpr (CPointerType (CType (CStruct (cStructName from tStruct
tStruct.struct name)), 2), CPointify(updated el))] @

updated expr list @ [CLiteral(l)]@more params filtered), updated slist),
updated dlist)

) else (
((CCall (0, CNoexpr,
CId(CIdentifier (constructor name from tStruct

tStruct.struct name)),

[CCastExpr (CPointerType (CType (CStruct (cStructName from tStruct

tStruct.struct name)), 2), CPointify(updated el))] @
[CLiteral(1)1), [1), [1)
))
| (ArrayType (array type, ptr, e)) -> (let updated e = fst(fst(update expr

e tSymbol table tprogram)) in let pointer type =
Semant.type of array type

tSymbol table typ in let cpointer type = cType from tType tSymbol table
pointer type in (match cpointer type with

| CPointerType (base, num) ->let ctype to malloc = if (num = 1) then base
else CPointerType (base, num-1) in ((CAsnExpr (updated el, Asn,

CAlloc (base, CBinop(updated e, Mul,

(CId(CIdentifier(sizeof string tSymbol table ctype to malloc)))))), [1),

[tnn»

and cExpr_ from tExpr in tCall tSymbol table tprogram tExpr tFuncParam =
let expr type = Semant.type from expr tSymbol table tExpr in
let param type = Semant.type from func param tFuncParam in
match (expr type, param type) with
| (CustomType (a), CustomType (b)) ->
if (Semant.is interface tSymbol table (Identifier(b))) then

CPointify (CMemAccess (0, fst(fst (update expr tExpr tSymbol table
tprogram)),

CIdentifier (interface field name in struct b a)))
else (if (Semant.tl inherits t2 a b tSymbol table) then
CCastExpr (CType (CStruct (cStructName from tStruct b)),
fst (fst (update expr tExpr tSymbol table tprogram)))
else fst (fst (update_ expr tExpr tSymbol table tprogram)))
| (PointerType (CustomType (a), 1),
CustomType (b)) -> CPointify(CMemAccess(l, fst(fst (update expr tExpr
tSymbol table tprogram)),

CIdentifier (interface field name in struct b a)))

| _ -> fst (fst (update expr tExpr tSymbol table tprogram)

and generate extra capture func params from expr list tSym tprogram expr list =
let anonParams = Semant.anon defs from expr list no recursion tprogram expr list in

let capture_struct instance name from anon def def =

let capStruct = capture struct from anon def tprogram def in
let subname = String.sub capStruct.cstruct name 1 ((String.length
capStruct.cstruct name) - 1) in
let structname = "s" ~ subname in
structname

in
let capture params_from anon def list deflList =
List.fold left (fun elist def ->

elist@[CPointify(CId(CIdentifier ((capture_struct_instance name_from_ anon_def
def))))]

) [CNoexpr] deflist
in
let more params = capture params_from anon def list anonParams in
let remove noexpr from list elist =
List.filter (fun e ->
match e with
CNoexpr -> false
| -> true) elist
in
let more params_filtered = remove noexpr from list more params in

more params_filtered

and cCallExpr from tCallExpr expr tSym tprogram func name expr list =
match expr with
| Noexpr -> let sym = StringMap.find func name tSym in
(match sym with

FuncSymbol(, fdecl) ->

let hasAnonParams = Semant.expr list contains_anon defs no recursion

expr list in
if (hasAnonParams = true) then
let update anon def expr list anonList =
List.fold left (fun ((e, slist), dlist) def ->

let ((_, _slist), _dlist) = update expr
(AnonFuncDef (def)) tSym tprogram in

((Noexpr, slist@ slist), dlist@ dlist)) ((Noexpr, []),

[1) anonList
in

let more params filtered =

generate extra capture func params_ from expr list tSym tprogram expr list in

let anonParams = Semant.anon defs from expr list no_ recursion

tprogram expr list in

let ((updated expr, updated slist), updated dlist) =
update anon_def expr list anonParams in

let paramExpressions = List.rev (List.map2

(cExpr from tExpr in tCall tSym tprogram) expr list
fdecl.params) in

let ret =

((CCall(0, CNoexpr, CId(CIdentifier (func_name)),
paramExpressions@more params filtered) , updated slist), updated dlist)

in
ret;
else
if (func_name = "printf") then
let expr list = (List.rev expr_ list) in

let replacementParamList =

Semant.func_param list from expr list tSym expr list in
((CCall(0, CNoexpr, CId(CIdentifier (func name)), (List.map2

(cExpr from tExpr in tCall tSym tprogram) expr list

replacementParamList)), []1), [])
else
let ret =

((CCall(0, CNoexpr, CId(CIdentifier (func name)), (List.map2

(cExpr from tExpr in tCall tSym tprogram) expr list
fdecl.params)), [1), [1)

in

ret
| AnonFuncSymbol (anonName, AnonFuncType(, tlist)) ->
let rec funcParam from tType t = (match t with

_ —> ParamDeclWithType (DeclSpecTypeSpecAny (t)))

and funcParamList from tTypelList tlist = (match tlist with

| [x] -> [funcParam from tType x]

| h::t -> [funcParam from tType
h]@ (funcParamList from tTypelList t))

in
let fParamList = funcParamList from tTypeList tlist in

let fParamExprList = (List.map2 (cExpr from tExpr in tCall tSym
tprogram) expr list fParamList) in

let extraParamName = "cap anon " ”~ func name in
let extraParamExpr = CId(CIdentifier (extraParamName)) in
((CCall(l, CNoexpr, CId(CIdentifier("anon " ~ func name)),
fParamExprList@[extraParamExpr]), [1), []))

~ —> let expr type = Semant.type from expr tSym expr in (match expr type with
| CustomType (a) -> let fdecl = Semant.get fdecl for receiver a

tSym func name in

if (Semant.is interface tSym (Identifier(a))) then
let updated expr = (fst (fst (update expr expr tSym tprogram)))
in
let cexpr list = [CMemAccess (1,
(updated expr), CIdentifier ("body"))] @

(List.map2 (cExpr_ from tExpr in tCall tSym tprogram)

expr list fdecl.params) in

((CCall(l, (fst (fst (update_expr expr

tSym tprogram))),

CId(CIdentifier (func name)), cexpr list), []),
1
else
let hasAnonParams = Semant.expr list contains_anon defs no recursion
expr list in
if (hasAnonParams = true) then

let update anon def expr list anonList =
List.fold left (fun ((e, slist), dlist) def ->

let ((_, _slist), _dlist) = update expr
(AnonFuncDef (def)) tSym tprogram in

((Noexpr, slist@ slist), dlist@ dlist)) ((Noexpr, []),
[1) anonList

in

let extra params =
generate extra capture func params_ from expr list tSym tprogram expr list in

let anonParams = Semant.anon defs from expr list no_recursion
tprogram expr list in

let ((updated expr, updated slist), updated dlist) =
update anon_def expr list anonParams in

let first_arg =
CCastExpr (CPointerType (CType (CPrimitiveType (Cvoid)),
1), CPointify(fst(fst (update expr expr
tSym tprogram
)))) in
((CCall(l, CMemAccess (0, fst (fst((update expr expr
tSym tprogram))), CIdentifier(" virtual")),
CId(CIdentifier (
func_name)), [first arg] @ (List.map2
(cExpr from tExpr in tCall tSym tprogram) expr list
fdecl.params)@extra params), updated slist), updated dlist)
else
let first arg =

CCastExpr (CPointerType (CType (CPrimitiveType (Cvoid)),

1), CPointify(fst(fst (update expr expr

tSym tprogram

)))) in
((CCall(l, CMemAccess (0, fst (fst((update expr expr
tSym tprogram))), Cldentifier(" virtual")),
CId(CIdentifier (
func name)), [first arg] @ (List.map2
(cExpr from tExpr in tCall tSym tprogram) expr list
fdecl.params)), [1), [])

| PointerType (CustomType(a), 1) ->

let hasAnonParams = Semant.expr list contains_anon defs no_recursion
expr list in
if (hasAnonParams = true) then
let fdecl =

Semant.get fdecl for receiver a tSym func name in
let first arg =
CCastExpr (CPointerType (CType (CPrimitiveType (Cvoid)),
1), fst (fst (update expr expr tSym
tprogram
))) in
let update anon def expr list anonList =

List.fold left (fun ((e, slist), dlist) def ->

let ((_, _slist), _dlist) = update expr (AnonFuncDef (def))
tSym tprogram in
((Noexpr, slist@ slist), dlist@ dlist)) ((Noexpr, []), [])
anonList
in
let extra params = generate extra capture func params from expr list
tSym tprogram expr list in
let anonParams = Semant.anon defs from expr list no recursion tprogram

expr list in

let ((updated expr, updated slist), updated dlist) =
update anon def expr list anonParams in

((CCall(1l, CMemAccess (1,

fst (fst(update expr expr tSym tprogram)),

CIdentifier (" _virtual")),
CId(CIdentifier (
func name)), [first arg] @ (List.map2
(cExpr from tExpr in tCall tSym tprogram) expr list
fdecl.params@extra params)), updated slist), updated dlist)
else
let fdecl =
Semant.get fdecl for receiver a tSym func name in
let first arg =
CCastExpr (CPointerType (CType (CPrimitiveType (Cvoid)),
1), fst (fst (update_expr expr tSym
tprogram

))) in

((CCall (1, CMemAccess (1,
fst (fst(update expr expr tSym tprogram)),
CIdentifier (" virtual")),
CId(CIdentifier(
func_name)), [first arg] @ (List.map2
(cExpr_ from tExpr in tCall tSym tprogram) expr list
fdecl.params)), [1), [1)

_ —> raise(Failure("No other functions can call methods")))

let generate virtual table assignments isPointer tStruct tSymbol table id=

let fdecls = Semant.get unique method names for struct tSymbol table tStruct in

List.map (fun tmethod name ->

let inter fdecl = Semant.get fdecl for receiver

tStruct.struct name tSymbol table

tmethod name in

let cFunc_name = cFunc_ from tMethod (fst(inter fdecl.receiver)) tmethod name in

if (isPointer >= 0) then

CExpr (CAsnExpr (CMemAccess (isPointer,CId (CIdentifier(id)),
CIdentifier (tmethod name)),

Asn,
(CId(CIdentifier (cFunc_name)))))
else

CExpr (CAsnExpr (CMemAccess (1,CDeref (CId(CIdentifier (id))),
CIdentifier (tmethod name)),

Asn,
(CId(CIdentifier (cFunc_name))))))

fdecls

let ¢ _init decl from string str =

CInitDeclarator (CDirectDeclarator (CVar (CIdentifier (str))))

let ¢ _init decl from string asn str op cExpr =

CInitDeclaratorAsn(CDirectDeclarator (CVar (CIdentifier(str))), op, cExpr)

let generate decls_and stmts_from id tSymbol table tprogram id decl typ =
match decl with
| Declaration(, InitDeclList([InitDeclarator()])) ->
let ctype = cType from tType tSymbol table typ in
let cinit decl = c_init decl from string id in
([CDeclaration (CDheclSpecTypeSpecAny (ctype),

cinit_decl)], I[1)

| Declaration(, InitDeclList([InitDeclaratorAsn(, op, expr)]l)) ->

let ((updated expr, extra stmts),) = update expr expr

tSymbol table tprogram in

let ctype = cType from tType tSymbol table typ in
let cinit decl = c_init decl from string asn id op

updated expr in

([CDeclaration (CDeclSpecTypeSpecAny (ctype),

cinit decl)], extra stmts)

let update decl for non_custom type id decl tSymbol table tprogram =
let sym = Semant.lookup symbol by id tSymbol table (Identifier(id)) in (match
sym with
| VarSymbol (id, type) -> (match decl with

| Declaration(, InitDeclList([InitDeclarator (DirectDeclarator())1))

generate decls_and stmts from id tSymbol table tprogram
id decl type

| Declaration(, InitDeclarator (DirectDeclarator())) ->
generate decls and stmts from id tSymbol table tprogram
id decl type_

| Declaration(_, InitDeclaratorAsn(declrt, ,)) ->

generate decls and stmts from id tSymbol table tprogram

id decl type

generate decls_and stmts from id tSymbol table tprogram
id decl type)
| FuncSymbol(,) -> raise(Failure("update decl: FuncSymbol not supported"))

| AnonFuncSymbol(,) -> raise(Failure("update decl: AnonFuncSymbol not supported"))

let declare virtual table stack tSymbol table tStruct id =

let virtual table name = virtual table name from tStruct

->

tStruct.struct name in

let virtual table id = String.concat "" [" ";id;virtual table name] in
let virtual table init decl = c_init decl from string (String.concat ""
[" "; id; (virtual table name)]) in
let wvirtual table assignments = generate virtual table assignments 0 tStruct

tSymbol table

virtual table id in

let assign virtual table back to_id = CExpr (CAsnExpr (CMemAccess (0,
CId(CIdentifier(id)),
CIdentifier (" virtual")), Asn,

CPointify(CId(CIdentifier (virtual table id))))) in

([CDeclaration (CDeclSpecTypeSpecAny (CType (CStruct (virtual table name))),
virtual table init decl)], virtual table assignments @

[assign virtual table back to id])

let update interface decl for struct id struct name tSymbol table =

let interface = Semant.get interface tSymbol table

(Semant.get interface for struct struct name tSymbol table) in

let cstruct name for interface = cStructName from tInterface

interface.name in

let cinit decl = ¢ _init decl from string (String.concat ""

[" ";id; (cStructName from tInterface interface.name)]) in

CDheclaration (CDeclSpecTypeSpecAny (CType (CStruct (cstruct name for interface))),

cinit decl)

let interface decl and assignments for struct isPointer struct tSymbol table id

let custom type = struct .struct name in
let implements = Semant.get interface for struct custom type tSymbol table in
if (implements <> "") then (

let interface = Semant.get interface tSymbol table

(Semant.get interface for struct

custom type tSymbol table) in

let interface decl = update interface decl for struct

id custom type tSymbol table in

let cstruct_for interface = cStructName from tInterface

implements in

let access_id = String.concat "" [" ";id;cstruct for interface] in

let fdecls = (List.map (fun fdecl -> Semant.var name_ from direct declarator
fdecl.func name) interface.funcs) in
let interface assignments = List.map (fun tmethod name ->
let inter fdecl = Semant.get fdecl for receiver
custom type tSymbol table

tmethod name in

let cFunc_name = cFunc_from tMethod (fst

(inter fdecl.receiver)) tmethod name in

CExpr (CAsnExpr (CMemAccess (0,CId (CIdentifier (access_id)),
CIdentifier (tmethod name)),
Asn,
(CId(CIdentifier (cFunc_name)))))

) fdecls in

let reference_implementer asn =
let struct expr = if (isPointer = 0) then
CPointify(CId(CIdentifier(id))) else (if
(isPointer > 0) then
(CId(CIdentifier(id)))
else

(CDeref (CId(CIdentifier(id))))) in

CExpr (CAsnExpr (CMemAccess (0,
CId(CIdentifier (access_id)),
CIdentifier ("body")), Asn,

CCastExpr (CPointerType (CType (CPrimitiveType (Cvoid)),

1), struct expr))) in
let interface field name = interface field name in struct implements
custom type in
let cStruct mem access expr = if (isPointer >= 0) then CMemAccess (isPointer,

CId(CIdentifier (id)),
CIdentifier (interface field name))
else (CMemAccess (l, CDeref (CId(CIdentifier(id))),

CIdentifier (interface field name))) in

let implementer add interface assn =

CExpr (CAsnExpr (cStruct_mem_access_expr,

Asn,

CId(CIdentifier(access_id)))) in

let assignments = interface assignments @

[reference implementer asn] @
[implementer add interface assn]

in

([interface decl],

assignments)

) else ([1, [1)

let update decl for custom type id decl custom type tSymbol table tprogram =

let sym = Semant.lookup symbol by id tSymbol table

(Identifier (custom_type)) in

match sym with

| StructSymbol (s, struct) ->

let cstruct type = CustomType (custom type) in

let (cstruct_decl, stmts) = generate decls_and stmts_from id

tSymbol table tprogram id decl cstruct type in

let (virtual table decl, assignments) =

declare virtual table stack tSymbol table

struct id in

let (decls, assigns) =

interface decl and assignments for struct 0

struct tSymbol table id in

(cstruct decl@decls@virtual table decl,

stmts@assigns@assignments)

let update decl tSymbol table tprogram decl =
let id = Semant.var name from declaration decl in

let tType = Semant.type from identifier tSymbol table (Identifier (id))

in

match (tType) with

| PrimitiveType (t) -> update decl for non custom type id decl
tSymbol table tprogram

| CustomType (t) -> update decl for custom type id decl t

tSymbol table tprogram

| _ -> generate decls_and stmts from id tSymbol table tprogram id decl tType

let rec update statement tstmt tSymbol table tprogram = match tstmt with
| CompoundStatement (decls, stmts) ->
let updated symbol table = Semant.add to symbol table tSymbol table decls in
let (new decls, new stmts) =
List.fold left (fun decl stmt acc decl ->
let (n_decls, n_stmts) = update decl
updated symbol table tprogram decl in

((fst (decl stmt acc)) @ n decls, (snd (decl stmt acc) @ n stmts))) ([],
[1) decls in

let more new stmts =

List.fold left (fun stmt acc stmt ->

let ((updated stmt, additional stmts),
additional decls) =

update statement stmt

updated symbol table tprogram in

stmt _acc @ additional stmts @ [updated stmt]) [] stmts
in

let more new decls =
List.fold_left (fun decl acc stmt ->

let ((updated stmt, additional stmts),
additional decls) =

update statement stmt updated symbol table
tprogram in

additional decls@decl acc) [] stmts in

((CCompoundStatement (new_decls@more new decls, new stmts @ more new stmts), []),

| EmptyElse -> ((CEmptyElse, []), [])
| Return(e) -> let ((updated e, stmts), newDecls) = update expr e tSymbol table tprogram
in ((CReturn (updated e), stmts), newDecls)

| If(e, stmtl, stmt2) ->
let ((updated expr, stmts), decls) = update expr e tSymbol table tprogram in

let ((updated stmtl, additional stmts), additional decls) = update statement
stmtl tSymbol table tprogram in

let ((updated stmt2, additional stmts2), additional decls2) = update statement
stmt2 tSymbol table tprogram in

((CIf (updated expr, updated stmtl, updated stmt2), additional stmts@additional stmts2),
[1

| For(el, e2, e3, stmt) -> let ((updated el, stmts el), decls el) = update expr el
tSymbol table tprogram in

let ((updated e2, stmts_e2), decls_e2) = update expr e2
tSymbol table tprogram in

let ((updated e3, stmts_e3), decls e3) = update expr e3
tSymbol table tprogram in

let ((updated stmt, additional stmts), decls stmt) =
update statement stmt tSymbol table tprogram in

let accumulated stmts =
(stmts_el@stmts_e2@stmts_e3@additional stmts) in

let accumulated decls =
(decls_el@decls_e2@decls_e3@decls_stmt) in

((CFor (updated el, updated e2, updated e3, updated stmt),
accumulated stmts), accumulated decls)

| While(el, stmt) ->

let ((updated el, stmts el), decls el) = update expr el tSymbol table tprogram
in

let ((updated stmt, additional stmts), additional decls) = update statement stmt
tSymbol table tprogram in

((CWhile (updated el, updated stmt), stmts el @ additional stmts),
(decls el@additional decls))

| Break -> ((CBreak, [1), [1])
| Expr(e) -> let ((updated e, stmts), decls) = update expr e tSymbol table tprogram in

((CExpr (updated e), stmts), decls)

let cFunc from tDestructor symbol table tprogram destructor tStruct =

let cdestructor name = destructor name from tStruct

tStruct.struct name in

let first param = first param for destructor tStruct.struct name in

let last param = last param for_ destructor in

let augmented decls = List.fold left (fun cdecls tdecl ->

let tdecl id = (Semant.var name from declaration tdecl) in
let tdecl type = (Semant.type from declaration tdecl) in
let (cdecl,) = generate decls and stmts from id symbol table tprogram

tdecl id tdecl tdecl type in cdecls @ cdecl

) [] tStruct.members in

creturn type = CType (CPrimitiveType (Cvoid));

cfunc params = [first param] @ [last param];

cfunc_body = CCompoundStatement (augmented decls,

cfunc_name = cdestructor_name;

let cFunc_from tConstructor symbol table tprogram constructor tStruct =

let cconstructor name = constructor name from tStruct

tStruct.struct name

in

let first param = first param for constructor tStruct.struct name in

let last _param = last param for_ constructor in

let augmented decls = List.fold left (fun cdecls tdecl ->

let tdecl id = (Semant.var name from declaration tdecl) in
let tdecl type = (Semant.type from declaration tdecl) in
let (cdecl,) = generate decls and stmts from id symbol table tprogram

tdecl id tdecl tdecl type in cdecls @ cdecl

) [1 tStruct.members in

let generate void star params =
let anonList =
List.filter (fun p -> match p with
AnonFuncDecl (anonDecl) -> true
| -> false) constructor.constructor params
in
let returned params =
List.map (fun p -> match p with
AnonFuncDecl (anonDecl) ->

(match anonDecl.anon_decl name with

Identifier(s) ->

let paramName = "cap anon " * s in

(CPointerType (CType (CPrimitiveType (Cvoid)), 1),
CIdentifier (paramName)))) anonList

in
returned params
in

let extraParams = generate void star params in

creturn type = CType (CPrimitiveType (Cvoid));

cfunc_params = [first param] @ (List.map
(cFuncParam_from tFuncParam
symbol table)
constructor.constructor_params)

@ [last param]@extraParams;

cfunc body = CCompoundStatement (augmented decls,

[n:

cfunc_name = cconstructor name;

let virtual table struct for tStruct symbol table tStruct =
let all methods_for struct = (List.map(Semant.get fdecl for receiver
tStruct.struct name symbol table)

(Semant.get unique method names for struct symbol table tStruct)) in

let methodMemberSymbols = List.map (cDeclaration from tFdecl

symbol table) all methods for struct in

let virt table name = virtual table name from tStruct

tStruct.struct name in

cstruct name = virt table name;
cstruct members = methodMemberSymbols;

cmethod to functions = StringMap.empty;

let cStruct from tStruct symbol table tprogram tStruct =
let fieldSymbols = List.map (cSymbol from sSymbol
symbol table) (List.map (Semant.symbol from declaration)

tStruct.members) in

let virtual table name = virtual table name from tStruct

tStruct.struct name in

let virtual table_symbol =
CvarSymbol (" virtual",

CPointerType (CType (CStruct (virtual table name)), 1)) in

let defaultStructMemberSymbols = [virtual table symbol] @ fieldSymbols in

(* If there is an interface then add a struct member corresponding to
* the interface to our struct *)

let cStructMemberSymbols = if (Semant.get interface for struct

tStruct.struct name symbol table <> "") then

[bol from Implements (Semant.get interface for struct

tStruct.struct name symbol table) tStruct.struct name] @

defaultStructMemberSymbols else defaultStructMemberSymbols in

let (methods to cfunctions, cfuncs) = (List.fold left (fun (sym, cfunc list)
method ->

(let tfunc_name =
Semant.var name from direct declarator

method .func name in

let initial void param =
create cfunc param for receiver

method .receiver in

let init cast_decl =
create initial cast decl

method .receiver in

let generate void star params =
let anonList =
List.filter (fun p -> match p with
AnonFuncDecl (anonDecl) -> true
| _ -> false) method .params
in
let returned params =
List.map (fun p -> match p with
AnonFuncDecl (anonDecl) ->

(match anonDecl.anon_decl name with

Identifier(s) ->
let paramName = "cap_anon_ " *
s in
(CPointerType (CType (CPrimitiveType (Cvoid)), 1), CIdentifier (paramName)))) anonList

in

returned_params

in
let extraParams = generate void_star_ params in
let cfunc = {

creturn type = (cType from tType
symbol table
(Semant.type from declaration specifiers

method .return type));

cfunc params =
[initial void param] @ (List.map
(cFuncParam_from tFuncParam

symbol table) method .params)@extraParams;

cfunc body =

CCompoundStatement ([init cast decl],

cfunc_name = cFunc_from tMethod

tStruct.struct name tfunc name;

} in (StringMap.add tfunc_name cfunc
sym, cfunc_list @ [cfunc])))

(StringMap.empty, []) tStruct.methods) in

let cFunc_for constructor =

cFunc_from tConstructor symbol table tprogram tStruct.constructor tStruct in

let cFunc for destructor = cFunc from tDestructor symbol table tprogram

tStruct.destructor tStruct in

cstruct name = cStructName from tStruct tStruct.struct name;
cstruct members = cStructMemberSymbols;
cmethod to functions = methods to cfunctions;

}» cfuncs, (tStruct, cFunc_for constructor, cFunc for destructor))

let update cFunc tSymbol table tprogram cFunc tFunc =
let updated symbol table = List.fold left (fun m symbol -> StringMap.add

(Semant.get _id from_ symbol symbol) symbol m) tSymbol table
((Semant.symbols from func params

tFunc.params) @ ([Semant.symbol from receiver tFunc.receiver])) in
let CCompoundStatement (decls, stmts) = cFunc.cfunc body in
let CCompoundStatement (updated decls, updated stmts) = fst (fst (update statement
tFunc.body updated symbol table tprogram)) in
{
cfunc_name = cFunc.cfunc_name;
creturn type = cFunc.creturn type;

cfunc _body = CCompoundStatement (decls @ updated decls,
updated stmts) ;

cfunc_params = cFunc.cfunc params;

let update cFunc_ from anonDef tSymbol table tprogram cFunc anonDef =

let funcCaller = Semant.find func owning anon def tprogram anonDef in
let rcvr = funcCaller.receiver in
let rcvrSymbol = Semant.symbol from receiver rcvr in

let globals = Semant.symbols from decls tprogram.globals in
let builtinDecls = Semant.stdlib_funcs in
let builtinSyms = Semant.symbols from fdecls builtinDecls in

let localDecls = Semant.get decls from compound stmt anonDef.anon body in

let interfaceSymbols = Semant.symbols from interfaces tprogram.interfaces in
let interfaceMethodSymbols =
let interfaces =
List.map (fun (InterfaceSymbol(, iface)) -> iface) interfaceSymbols
in

List.fold left (fun accList iface ->

accList@ (Semant.symbols from fdecls iface.funcs)) [] interfaces
in
let localSyms = Semant.symbols from decls localDecls in
let paramSyms = Semant.symbols from func params anonDef.anon params in
let exceptSyms = Semant.symtable from symlist

(globals@builtinSyms@[rcvrSymbol]@interfaceMethodSymbols@paramSyms@localSyms) in
let id exists in symtable table id =
try
(fun x -> true) (StringMap.find id table)
with = ->
false

in

let rec fix expr locals instance name expr = match expr with
CBinop(el, op, e2) ->
let fel = fix expr locals instance name el in

let fe2 = fix expr locals instance name e2 in

CBinop (fel, op, fe2)

| CAsnExpr (el, aop, €2) ->
let fel = fix expr locals instance name el in
let fe2 = fix expr locals instance name e2 in
CAsnExpr (fel, aop, fe2)

| CCastExpr(t, e) ->
let fe = fix expr locals instance name e in

CCastExpr (t, fe)

| CPostfix (e, pop) ->
let fe = fix expr locals instance name e in
CPostfix (fe, pop)

| CCall(i, el, e2, elist) ->

let fel = fix expr locals instance name el in
let fe2 = fix expr locals instance name e2 in
let felist = fix expr list locals instance name elist in

CCall (i, fel, fe2, felist)

| CDeref (e) ->
let fe = fix expr locals instance name e in
CDeref (fe)

| CCompareExpr(el, lop, e2) ->

let fel = fix expr locals instance name el in
let fe2 = fix expr locals instance name e2 in
CCompareExpr (fel, lop, fe2)
| CPointify(e) ->
let fe = fix expr locals instance name e in
CPointify (fe)
| CMemAccess (i, e, id) ->
let fe = fix expr locals instance name e in
let fixedExpr = fix expr locals instance name (CId(id)) in
(match fixedExpr with
CId(fid) ->
CMemAccess (i, fe, fid)
| CMemAccess(, _, _) -> fixedExpr)
| CId(CIdentifier(s)) ->
if (id exists in symtable tSymbol table s) then
expr
else if (id exists in symtable exceptSyms s) then
expr
else

CMemAccess (1, CId(CIdentifier(instance name)), CIdentifier(s))

| CDeclExpr (CDeclaration(declSpecs, initDecl)) ->
let fInitDecl = fix init declarator locals instance name initDecl in
CDeclExpr (CDeclaration (declSpecs, fInitDecl))

_ —> expr

and fix expr list locals instance name elist = match elist with

| [e] -> [fix expr locals instance name e]

| h::t -> [fix expr locals instance name h]@(fix expr list locals instance name t)

and fix init declarator locals instance name initDecl = match initDecl with
| CInitDeclaratorAsn(dd, aop, e) ->

let CInitDeclarator(fdd) = fix init declarator locals instance name
(CInitDeclarator (dd)) in

let fe = fix_expr locals instance_name e in
CInitDeclaratorAsn (fdd, aop, fe)

_ —> initDecl

and fix declaration locals instance name decl = match decl with
CDeclaration (declSpecs, initDecl) ->
let fidecl = fix init declarator locals instance name initDecl in

CDeclaration (declSpecs, fidecl)

and fix declaration list locals instance name declList = match declList with

| [d] -> [fix declaration locals instance name d]

| h::t -> [fix declaration locals instance name h]@(fix declaration list locals
instance name t)

and fix statement locals instance name stmt = match stmt with
CExpr (e) ->
let fe = fix expr locals instance name e in

CExpr (fe)

| CReturn(e) ->
let fe = fix expr locals instance name e in
CReturn (fe)

| CCompoundStatement (declList, stmtList) ->
let fdl = fix declaration list locals instance name declList in
let fsl = fix statement list locals instance name stmtList in
CCompoundStatement (fdl, fsl)

| CIf(e, sl, s2) ->

let fe = fix expr locals instance name e in
let fsl = fix statement locals instance name sl in
let fs2 = fix statement locals instance name s2 in

CIf (fe, fsl, fs2)

| CFor(el, e2, e3, s) —>

let fel = fix expr locals instance name el in
let fe2 = fix expr locals instance name e2 in
let fe3 = fix expr locals instance name e3 in
let fs = fix statement locals instance name s in

CFor (fel, fe2, fe3, fs)
| CWhile (e, s) ->
let fe = fix expr locals instance name e in
let fs = fix statement locals instance name s in
CWhile (fe, fs)

_ -> stmt

and fix statement list locals instance name stmtList = match stmtList with

| [s] -> [fix statement locals instance name s]

| h::t -> [fix statement locals instance name h]@(fix statement list
instance name t)

in

let updated symbol list =

locals

((Semant.symbols from_ func params anonDef.anon_ params) @
(Semant.symbols from outside scope for anon def tprogram anonDef)@[rcvrSymbol])

in
let updated symbol table =
(List.fold left (fun m symbol ->
StringMap.add (Semant.get id from symbol symbol) symbol m)
tSymbol table (updated symbol list)) in
let anon name = Semant.find name for anon def tprogram anonDef in

"

let instanceName = "s

woA

anon_name in
let structName = "S" * anon name in

let newDecls =
[CDeclaration (CDeclSpecTypeSpecAny (CPointerType (CType (CStruct (structName)), 1)),

CInitDeclaratorAsn (CDirectDeclarator (CVar (CIdentifier (instanceName))), Asn,
CCastExpr (CPointerType (CType (CStruct (structName)), 1), CId(CIdentifier ("capture struct")))))]

in
let CompoundStatement (decls,) = anonDef.anon body in
let locals = Semant.symbols from decls decls in
let CCompoundStatement (decls, stmts) = cFunc.cfunc body in
let cmpstmt = fst (fst (update_statement anonDef.anon body updated symbol table
tprogram)) in
let CCompoundStatement (updated decls, updated stmts) = fix statement
(locals@[rcvrSymbol]) instanceName cmpstmt in
{
cfunc_name = cFunc.cfunc_name;
creturn type = cFunc.creturn type;

cfunc_body = CCompoundStatement (newDecls@updated decls @decls,
updated_stmts) ;

cfunc_params = cFunc.cfunc_params;

let update cDestructor tSymbol table tprogram cFunc tStruct =

let updated symbol table = List.fold left (fun m symbol -> StringMap.add

(Semant.get id from symbol symbol) symbol m) tSymbol table ((Semant.symbols from decls
(Semant.get decls from compound stmt

tStruct.constructor.constructor_body)) @ (Semant.symbols_from decls

tStruct.members) @ (Semant.symbols from func_params

tStruct.constructor.constructor_params)) in

let ancestor destructor = Semant.get ancestors destructor tSymbol table

tStruct in

let parent _destructor_call =
if (ancestor destructor.destructor name <> tStruct.struct name &&
ancestor destructor.destructor name <> "") then

generate stmts for parent destructor tSymbol table tprogram

tStruct.destructor tStruct else [] in

let head assignments = List.fold left (fun assignments tdecl ->

let tdecl id = (Semant.var name from declaration tdecl) in

let asn_expr = CExpr (CAsnExpr (CId(CIdentifier (tdecl id)),

Asn, CMemAccess (1,

CDeref (CId(CIdentifier (" this"))), CIdentifier(tdecl id)))) in assignments @
[asn_expr]) [] tStruct.members in
let CCompoundStatement (original decls, stmts) = cFunc.cfunc body in
let CCompoundStatement (updated decls, updated stmts) = fst (

fst (update statement tStruct.destructor.destructor body

updated symbol table tprogram)) in

let free this = CIf(CId(CIdentifier (" needs free")),

CCompoundStatement ([], [CExpr (CFree (CMemAccess (1,
CDeref (CId(CIdentifier (" this"))),

CIdentifier (" virtual"))))]@[CExpr (CFree (CDeref (CId(CIdentifier (" this™)))))]),
CEmptyElse) in

cfunc_name = cFunc.cfunc_name;

creturn_type = cFunc.creturn_type;

cfunc _body = CCompoundStatement (original decls @ updated decls,

head assignments @ parent destructor call @ updated stmts @ [free this]);

cfunc_params = cFunc.cfunc params;

let update cConstructor tSymbol table tprogram cFunc tStruct =
let updated symbol table = List.fold left (fun m symbol -> StringMap.add
(Semant.get id from symbol symbol) symbol m) tSymbol table ((Semant.symbols from decls
(Semant.get decls from compound stmt
tStruct.constructor.constructor_body)) @ (Semant.symbols_from decls
tStruct.members) @ (Semant.symbols from func_params

tStruct.constructor.constructor_params)) in

let ctype = cType from tType tSymbol table

(CustomType (tStruct.struct name)) in

let virtual table name = virtual table name from tStruct

tStruct.struct name in

let virtual table type =

CType (CStruct (virtual table name)) in

let alloc virtual table =
CExpr (CAsnExpr (CMemAccess (1, CDeref (CId(CIdentifier (" this"))),
CIdentifier (" virtual")),

Asn, CAlloc(virtual table type, CId(CIdentifier (sizeof string tSymbol table

virtual table type))))) in

let alloc _this = CIf(CId(CIdentifier (" needs malloc")),
CExpr (CAsnExpr (CDeref (CId(CIdentifier (" _this"))),

Asn, CAlloc(ctype, CId(CIdentifier((sizeof string tSymbol table

ctype)))))), CExpr (CNoexpr)) in

let virt table assignments = generate virtual table assignments 1 tStruct tSymbol table

"(*_this)-> virtual" in

let (interface decls, interface assignments) =
interface decl and assignments for struct (-1) tStruct

tSymbol table " this" in

let tail assignments = List.fold left (fun assignments tdecl ->

let tdecl id = (Semant.var name from declaration tdecl) in

let asn_expr = CExpr (CAsnExpr (CMemAccess (1,
CDeref (CId(CIdentifier (" this"))), CIdentifier(tdecl id)),

Asn, CId(CIdentifier(tdecl_id)))) in assignments @ [asn_expr]) []
tStruct.members in

let stmts for super =
if (Semant.constructor has super tStruct.constructor) then

(let Expr(Super(expr_ list)) = Semant.get super expr
tStruct.constructor.constructor body in

generate stmts for super expr list updated symbol table tprogram
tStruct.constructor tStruct)

else

[]

in

let CCompoundStatement (original decls, stmts) = cFunc.cfunc body in

let CCompoundStatement (updated decls, updated stmts) = fst (
fst (update_ statement tStruct.constructor.constructor body

updated symbol table tprogram)) in

cfunc_name = cFunc.cfunc_name;

creturn_type = cFunc.creturn type;

cfunc_body = CCompoundStatement (original decls @ interface decls

@ updated decls,

[alloc_this] @ [alloc virtual table] @ stmts for super @ updated stmts @ stmts @
tail assignments@virt table assignments @ interface assignments);

cfunc_params = cFunc.cfunc params;

let rec cFunc_ from anonDef symbol table tprogram anonDef =
let rec convert anon params symbol table params =

(match params with

[1] -> [(CPointerType (CType (CPrimitiveType (Cvoid)), 1),
CIdentifier ("capture struct"))]
| [p] - > [cFuncParam_ from tFuncParam symbol table
pl@[(CPointerType (CType (CPrimitiveType (Cvoid)), 1), CIdentifier ("capture struct"))]
| h::t -> let htype = (cFuncParam from tFuncParam symbol table h) in
let ttype = (convert anon params symbol table t) in
[htype]@ttype)
in
{
cfunc_name = anonDef.anon_name;
cfunc_body = CCompoundStatement ([], []);
cfunc _params = (convert anon params symbol table anonDef.anon params);

creturn_type = cType from tType symbol table anonDef.anon return type }

and cFunc_list from anonDef list symbol table tprogram adlist =

match adlist with

| [x] -> [cFunc_from anonDef symbol table tprogram x]

| h::t -> let hfuncs = [(cFunc_from anonDef symbol table tprogram h)] in
let tfuncs = (cFunc_list from anonDef list symbol table tprogram t) in
hfuncs@tfuncs

let cProgram from tProgram program =

let updated program = Semant.update structs in program program in

let tSymbol table = Semant.build symbol table updated program in

let cstructs_and functions = List.map (cStruct from tStruct tSymbol table program)
updated program.structs in

let cstructs = List.map (fun (structs, ,) -> structs) cstructs and functions in

let virt table structs = List.map (
virtual table struct for tStruct tSymbol table)

updated program.structs in

let cfuncs methods = List.concat (List.map (fun(, methods,) ->

methods) cstructs_and functions) in

let cconstructors = List.map (fun(_, _, constructor) -> constructor)

(List.filter (fun(, , (_, const,)) -> if (const.cfunc name = "") then false

else true) cstructs_and functions) in

(*let cdestructors = List.map (fun(_, _, constructor) -> constructor)¥*)

(*(List.filter (fun(_, _, (_, _, destr)) -> if (destr.cfunc name = "") then false*)

(*else true) cstructs_and functions) in¥)

let cglobals = List.fold left (fun acc (decls,) -> acc @
decls) [] (List.map (update decl tSymbol table updated program)

updated program.globals) in

let cStructs = virt table structs @ (List.map (cStruct from tInterface

tSymbol table) program.interfaces) @ cstructs in

let tAnonDefs = Semant.anon defs from tprogram program in

let cFuncsTranslatedFromAnonDefs = cFunc list from anonDef list tSymbol table program
tAnonDefs in

let capture structs = capture struct list from anon def list program tAnonDefs in
(* The function bodies have not been filled out yet. Just the parameters
* and return types *)

let cDeclaredMethodsAndFuncs = cfuncs _methods @ (List.rev (List.map (cFunc_ from tFunc
tSymbol table)

(List.filter (fun fdecl ->
if (fdecl.receiver = ("", "")) then true else

false) program.functions))) in

let cUpdatedDeclaredMethodsAndFuncs = List.fold left (fun acc cFunc ->
let sym = StringMap.find

cFunc.cfunc name tSymbol table in (match sym with

| FuncSymbol(_, fdecl) -> acc @ [update cFunc tSymbol table
program
cFunc fdecl]
| _ -> raise(Failure("error")))
) [] cDeclaredMethodsAndFuncs in
let cConstructors = List.fold left (fun acc (tStruct, cConst,) ->

acc @ [update cConstructor tSymbol table program cConst tStruct]) I[]

cconstructors in

let cDestructors = List.fold left (fun acc (tStruct, , cDestr) ->
acc @ [update cDestructor tSymbol table program cDestr tStruct]) I[]

cconstructors in

let anon def for function fn =
List.find (fun af ->
if (af.anon_name = fn.cfunc name) then
true
else
false) tAnonDefs

in

let cUpdatedFuncsTranslatedFromAnonDefs =
List.map (fun £ ->
let anonDef = anon_def for function f in

update cFunc_ from anonDef tSymbol table program f anonDef)
cFuncsTranslatedFromAnonDefs

in

let cFuncs = cConstructors @ cDestructors @ cUpdatedDeclaredMethodsAndFuncs @
cUpdatedFuncsTranslatedFromAnonDefs

in

cstructs = cStructs@capture structs;
cglobals = cglobals;

cfunctions = cFuncs;

Astutil.ml

open Ast

module StringMap = Map.Make (String)

let string of op = function
Add -> "PLUS"
| Sub -> "MINUS"
| Mul -> "TIMES"
| Div -> "DIVIDE"
| Mod -> "MOD"
| And -> "AND"
| Or -> "OR"
| BitAnd -> "BITWISE AND"
| BitOr -> "BITWISE OR"
| Xor -=-> "XOR"
| Not -> "NOT"
| Lsh -> "LSHIFT"
| Rsh -> "RSHIFT"
let string of postfix op = function
| PostPlusPlus -> "++"
| PostMinusMinus -> "--=-"

| PostEmptyOp -> ""

let string of assignment op = function
Asn -> "EQUALS"
| MulAsn -> "TIMES EQUALS"

| DivAsn -> "DIVIDE EQUALS"

| ModAsn -> "MOD EQUALS"

| AddAsn -> "ADD EQUALS"

| SubAsn -> "MINUS EQUALS"
| LshAsn -> "LSHIFT EQUALS"
| RshAsn -> "RSHIFT EQUALS"
| AndAsn -> "AND EQUALS"

| XorAsn -> "XOR EQUALS"

| OrAsn -> "OR EQUALS"

let string of logical op = function
Egl -> "EQUALS"
| NotEgl -> "NOT EQUALS"
| Less -> "LESS THAN"
| LessEgl -> "LESS THAN EQUALS"
| Greater -> "GREATER THAN"
| GreaterEql -> "GREATER THAN EQUALS"
| LogicalAnd -> "LOGICAL AND"

| LogicalOr -> "LOGICAL OR"

let string of type qualifier = function
Const -> "const"

| Volatile -> "volatile"

let string of type spec = function
Void -> "void"
| Char -> "char"
| Short -> "short"
| Int -> "int"
| Long -> "long"

| Float -> "float"

| Double -> "double"
| Signed -> "signed"
| Unsigned -> "unsigned"

| String -> "string"

let rec string of ptr = function

A ~

PtrType(x, y) -> "Pointer (" string of ptr x
string of ptr y ~ ")"

| Pointer -> "Pointer"

| NoPointer -> ""

let rec string of type = function
PrimitiveType (t) -> string of type spec t
| PointerType(t, d) -> string of type t ~ " depth: " * string of int d
| ArrayType (t, ptr, expr) -> "[" © string of type t ”~ string of ptr ptr ~"]"
| CustomType(t) -> t

| NilType -> "NilType"

A A A

| AnonFuncType (t, types) -> "AnonFuncType (" string of type t ,

(String.concat "," (List.map string of type types))

let string of storage class spec = function
Auto -> "auto"
| Register -> "register"
| Static -> "static"
| Extern -> "extern"

| Typedef -> "typedef"

let string of identifier = function

Identifier(s) -> s

let rec string of declaration specifiers = function

A A

DeclSpecTypeSpec (tspec) —-> "DeclSpecTypeSpec (" string of type spec tspec

") "

A

| DeclSpecTypeSpecInitlList(t, idspecs) -> "DeclSpecTypeSpecInitList ("
string of type t ~ ", " ~ string of declaration specifiers idspecs *~ ")"

| DeclSpecTypeSpecAny (t) -> string of type t

let string of type spec indicator = function

A

TypeSpec (tspec) -> "TypeSpec (" string of type spec tspec ~ ")"

| TypeSpecWithDeclSpec (tspec, declSpec) -> "TypeSpecWithDeclSpec(" ~*
string of type spec tspec © ", " ” string of declaration specifiers declSpec ~ ")"
let string of unary op = function

PlusPlus -> "PlusPlus"

let string of variable = function
Var (id) -> "Var (" * string of identifier id ~ ")"
let string of declarator = function

DirectDeclarator(v) -> string of variable v
| PointerDirDecl (ptr, decl) -> string of ptr ptr ~ " ("

A

string of variable decl ~ ")"

let string of receiver receiver =
match (receiver) with
("", "") _> mn

| (d, u) -> "RECEIVER("AdA","Au“’) n

let rec string of expr = function
Literal(x) -> "Int("™ Stringiofiint x ~ mmn

| FloatLiteral(x) -> "Float(" " string of float x ~ ")"

| StringlLiteral(s) -> "String("™ ~ s ~ ")"
| Id (x) -> "Identifier(" ” string of identifier x ~ ")"

| Deref(e) -> "Deref (" " string of expr e ~ ")"

| Pointify(e) -> "Pointify(" ”~ string of expr e ~ ")"

| Neg(e) -> "-" "~ string of expr e

| Postfix(el, op) -> "Postfix (" ~ string of expr el ~ "," *

(string of postfix op op) ~ ")"

| CompareExpr(el, op, e2) -> "Compare(" ~ string of expr el ~ "," *

string of logical op op *~ "," * string of expr e2 ~ ")"

| ArrayAccess(el, e2) -> "ArrayAccess" * string of expr el ~ "[" ~

string of expr e2 ~ "]"

| Noexpr -> ""

| Nil -> "NIL"

| Clean(expr) -> "Clean(" » string of expr expr ~ ")"

| AsnExpr (el, asnOp, e) -> string of assignment op asnOp ~ " (" *

string of expr el ~ ", " ”~ string of expr e ~ ")"

| Super (expr list) -> "Super(" ” string of expr list expr list ~ ")"
| Binop(el, op, e2) -> string of op op ~ "(" * string of expr el ~ ", " *

string of expr e2 ~ ")"

| Unop (e, unOp) -> string of unary op unOp "~ " (" ~ string of expr e ~ ")"
| Call(e, e2, exprList) -> "Call(" ~ "Receiver (" ~ string of expr e *")" ~
"FunctionName: " ~ (string of expr e2) ~ " Params: " ~ (string of expr list

exprList) ~ ")"

A A

| Make(typ , exprList) -> "Make (" string of type typ string of expr list

exprList ~ ")"
| MemAccess (e, Identifier(t)) -> "Access(" ~ "Var(" ~ string of expr e ~ ")" ~ " "
A t /\")"
| AnonFuncDef (anonDef) -> "AnonFuncDef (ReturnType: " ~ (string of type
anonDef.anon return type) ~ ", Params: " * (string of func param_ list
anonDef.anon params) "~ ", Body: " * (string of statement anonDef.anon body) ~ ")"

| DeclExpr(d) -> "DeclExpr(" " string of declaration d ~ ")"

and string of func param list = function

[] —> nn

| [x] -> string of func param x

| h::t -> (string of func param h) ~ ", " *~ (string of func param list t)

and string of expr list = function
[] —_> nn
| [e] -> string of expr e

| h::t -> string of expr h * string of expr list t

and string of init declarator = function
InitDeclarator(x) -> string of declarator x

| InitDeclList([]) -> ""

| InitDeclList(h::t) -> let string of init decl list str

initdecl = str * (string of init declarator initdecl) in

string of init declarator h ~ "," ~ (List.fold left string of init decl list

nwn t)

| InitDeclaratorAsn(decl, asnop, expr) -> string of assignment op asnop ~ " ("

~ string of declarator decl ~ " " ” string of expr expr
and string of anon func decl d = "AnonFuncDecl (Name: " ~ (string of identifier
d.anon decl name) ~ ", ReturnType: " *~ (string of type d.anon decl return type) ~ ",
Params: " ”~ (string of func param list d.anon decl params) =~ ")"
and string of anon def d = "AnonDef (AnonName: " ~ d.anon name ”~ ", AnonReturnType: " *
string of type d.anon return type ~ ", AnonParams: " ~ string of func param list
d.anon params ”~ ", AnonBody: " * string of statement d.anon body ~ ")"
and string of declaration = function Declaration (x, v) -> " (" ~
string of declaration specifiers x ~ " " *

string of init declarator y ~ ")"
and string of declaration list = function

[] —> nmn

| h :: t -> string of declaration h ~ ", " * (string of declaration list t)

and string of statement = function

Expr(e) -> "Statement (" "~ string of expr e "~ ")"

| Return(e) -> "RETURN (" * (string_of_expr e) ~M"

| If(e, sl, s2) -> "IF " * (string of expr e) """ " * (string of statement sl1)”™ "
" 7~ (string of statement s2)

| EmptyElse -> ""

| Break -> "BREAK"

| For(el, e2, e3, s) -> "FOR " ~ (string of expr el) ~ " " ~ (string of expr

e2) ~ " "™ ~ (string of expr e3) ~ " " ~ (string of statement s)

| While(e, s) -> "WHILE " "~ (string of expr e) ~ " " * (string of statement s)

| CompoundStatement (dl, sl) -> "CompoundStatement (Declarations: " ~
string of declaration list dl1 ~ "™ " ~"StatementList: " ~ String.concat ", " (List.map

string of statement sl) ~ ")"

and string of statement list = function
[] _> nmn

| h :: t -> string of statement h ~ ", " * (string of statement list t)

and string of func param = function
FuncParamsDeclared(decl specs, declarator) ->
"PARAM (" ~ string of declaration specifiers
decl specs ~ " " ~©
string of declarator declarator ~ ") "
| ParamDeclWithType (decl specs) -> "PARAM(" "
string of declaration specifiers decl specs ~ ") "

| AnonFuncDecl (afd) -> string of anon func decl afd

let string of constructor constructor = "Constructor (" ~ constructor.constructor name

~ "Body:

" ~ string of statement (constructor.constructor body) ~ ")"

let string of func fdecl = "FuncDecl (Name: " *

A A

string of declarator fdecl.func name " ReturnType: "

A

string of receiver fdecl.receiver string of declaration specifiers

fdecl.return type © " Parameters: " *
String.concat ", " (List.map
string of func param fdecl.params) ~ " Body: " " string of statement

fdecl.body ~ ") "

let string of struct struct decl = "Struct(" *
string of declaration list struct decl.members ~ ", " %
struct decl.struct name ~ ", " *~ (string of constructor
struct decl.constructor) ~ "," ~ struct decl.extends ~ ", " *

struct decl.implements ~ ")"

let string of list objs f list objs = String.concat ", " (List.map f list objs)

let string of interface interface = "INTERFACE (" ~ interface.name *

(string of list objs string of func interface.funcs) ~ ")"

let string of program program =
string of declaration list program.globals * (string of list objs
string of interface program.interfaces) " (string of list objs

A

string of struct program.structs) (string of list objs string of func

program. functions)

let string of symbol = function

VarSymbol (s, t) -> "Variable Symbol (Name: " ~ s ~ ", Type: " 7~ string of type t

") "
| FuncSymbol (s, fdecl) ->

"Function Symbol (Name: " ~ s ~ ")"

| StructSymbol (s, strct) -> "Struct Symbol" (* Finish me! ¥*)
| InterfaceSymbol(s, ti) -> "Interface Symbol" (* Finish me! *)

| AnonFuncSymbol (s, t) -> "AnonymousFunction Symbol (Name: " * s ~ ", Type: "
string of type t ~ ")"

let string of symbol simple = function
VarSymbol (s, t) -> s
| FuncSymbol (s, fdecl) -> s
| StructSymbol (s, strct) -> s
| InterfaceSymbol (s, ti) -> s

| AnonFuncSymbol (s, t) -> s

let rec string of symbol list 1 = match 1 with

[] —> nn
| [x] -> string of symbol x

| h::t -> string of symbol h * string of symbol list t

let rec string of func decl list dlist = match dlist with
[] -> n\nu
| [x] -> (string of func x) ~ "\n\n"

| h::t -> (string of func h) ~ "\n\n" * (string of func decl list t) ~ "\n\n"

(*let apply name to anon def (prefix, count) adef = {¥*)

A

(*anon name = prefix ~ " " * (string of int count);*)
(*anon return type = adef.anon return type;*)

(*anon params = adef.anon params; *)

(*anon_body = adef.anon body;*)

(*17%)

(*let rec anon defs from expr (prefix, count) expr = match expr with*)

(*AnonFuncDef (anonDef) ->([(apply name to anon def (prefix, count) anonbDef)],
(count + 1))%*)

(*| Binop(el, op, e2) -> *)
(*let (defsl, countl) = (anon defs from expr (prefix, count) el) in*)
(*let (defs2, count2) = (anon defs from expr (prefix, countl) e2) in¥*)
(* (defsl@defs2, count2)*)

(*| AsnExpr(, , e) —-> anon defs from expr (prefix, count) e%*)

(*| Postfix(el,) -> (anon _defs from expr (prefix, count) el)™*)

(*| Call(, e, elist) -> *)

(*let (defsl, countl) = (anon_defs from expr (prefix, count) e) in¥*)

(*let (defs2, count2) = (anon defs from expr list (prefix, countl) elist)

in*)
(* (defsl@defs2, count2);*)

(*I _ -> ([], count) [> Other expression types cannot possibly contain anonymous
function definitions <] *)

(*and anon_defs from expr list (prefix, count) elist = match elist with *)
(*[1 -> ([1, count)™*)
(*| [e] -> anon _defs from expr (prefix, count) e*)
(*] h::t =->*)
(*let (defsl, countl) = (anon defs from expr (prefix, count) h) in¥*)
(*let (defs2, count2) = (anon _defs from expr list (prefix, countl) t) in¥*)

(* (defsl@defs2, (count2))*)

(*let rec anon defs from declaration (prefix, count) decl = match decl with¥)

-> anon defs from init declarator (prefix,

(*Declaration (declSpecs, initDecl)

count) initDecl¥*)

(*and anon_defs from declaration list (prefix, count) declList = match declList with¥*)

(*[1 -> ([], count)¥)

(*| [d] -> anon defs from declaration (prefix, count) d*)

(*] h::t =->*)
count) h) in¥*)

(*let (defsl, countl) = (anon defs from declaration (prefix,

(*let (defs2, count2) = (anon _defs from declaration list (prefix, countl)

t) in¥*)

(* (defsl@defs2, count2)*)

(*and anon _defs from init declarator (prefix, count) idecl = match idecl with¥)

(*InitDeclaratorAsn(, , e) -> anon defs from expr (prefix, count) e¥)

(*| InitDeclList (initDeclList) -> anon _defs from init declarator list

(prefix, count) initDeclList¥)

(*I _ => ([], count)?*)

(*and anon defs from init declarator list (prefix, count) ideclList = match ideclList

with¥*)

(*[1 -> ([], count)*)

(*| [decl] -> anon defs from init declarator (prefix, count) decl¥)

(*] h::t =-> *)

(*let (defsl, countl) = (anon defs from init declarator (prefix, count) h)
in*)
(prefix,

(*let (defs2, count2) = (anon defs from init declarator list

countl) t) in¥)

(* (defsl@defs2, (count2))*)

(*let rec anon defs from statement (prefix, count) stmt = match stmt with*)

(*Expr (e) -> anon defs from expr (prefix, count) e*)

(*| Return(e) -> anon defs from expr (prefix, count) e¥*)

(*| If(e, sl, s2) -> *)
(*let (defsl, countl) = (anon _defs from expr (prefix, count) e) in¥*)
(*let (defs2, count2) = (anon _defs from statement (prefix, countl) sl) in*)
(*let (defs3, count3) = (anon defs from statement (prefix, count2) s2) in*)
(* (defsl@defs2@defs3, count3)*)

(*| For(el, e2, e3, s) —-> *)
(*let (defsl, countl) = (anon defs from expr (prefix, count) el) in*)
(*let (defs2, count2) = (anon defs from expr (prefix, countl) e2) in¥)
(*let (defs3, count3) = (anon _defs from expr (prefix, count2) e3) in¥)
(*let (defs4, countd4) = (anon defs from statement (prefix, count3) s) in%*)
(* (defsl@defs2@defs3@defs4, countd) *)

(*] While(e, s) =-> *)
(*let (defsl, countl) = (anon defs from expr (prefix, count) e) in¥)
(*let (defs2, count2) = (anon _defs from statement (prefix, countl) s) in*)
(* (defsl@defs2, count2)*)

(*| CompoundStatement (declList, stmtList) ->*)
(*let newSymbols = Semant.symbols from fdecl *)

(*let (defsl, countl) = (anon defs from declaration list (prefix, count)
declList) in¥*)
(*let (defs2, count2) = (anon _defs from statement list (prefix, countl)
stmtList) 1in*)

(* (defsl@defs2,

count?2) *)

(*and anon _defs from statement list (prefix, count) stmtList = match stmtList with*)
(*[1 -> ([], count)¥*)
(*I [s] —-> anon defs from statement (prefix, count) s*)
(*] h::t =>%)
(*let (defsl, countl) = (anon defs from statement (prefix, count) h) in*)
(*let (defs2, count2) = (anon defs from statement list (prefix, countl) t)

in*)

(* (defsl@defs2,

count2) *)

(*let rec anon _defs from func decl (prefix, count) fdecl = *)
(*let newPrefix = *)
(* (match fdecl.func name with*)
(*DirectDeclarator (Var (Identifier(s))) -> "a " » s¥*)
(*| PointerDirDecl(, Var(Identifier(s))) -> "a " © s)*)
(*in*)

(*anon defs from statement (newPrefix, 0) fdecl.body*)

(*and anon_defs from func decl list (prefix, count) fdlist = match fdlist with*)
(*[1 -> ([1, count)*)
(*| [x] -> anon_defs from func decl (prefix, count) x%*)
(*] h::t ->%*)
(*let (defsl, countl) = (anon defs from func decl (prefix, count) h) in*)

(*let (defs2, count2) = (anon _defs from func decl list (prefix, countl) t)
in¥*)

(* (defsl@defs2, count2)*)

(*let anon defs from tprogram tprog =*)

(*let (defs,) = (anon_defs from func decl list ("_", 0) (List.rev
tprog.functions)) in¥*)

(*List.rev defs*)

(*let rec print anon def anonDef = *)
(*Printf.printf "\n%s\n" (string of anon def anonDef) *)
(*and print anon defs = function¥*)

(*[1 => 0O™*)
(*] [x] -—> print_anon_def x*)

(*| h::t -> print anon def h; print anon defs t*)

let print symbol table symtable =

let 1 = StringMap.bindings symtable in

List.iter (fun (name, sym) -> Printf.printf "%$s\n" name) 1

