Graph Application Language

(GAL)

BN

The Team

Anton: GAL language Guru
Andrew: Test Master

Donovan: Manager

Macrina: Standard Library Creator

The Aim

Creating a programming language that makes graph programming a piece of
cake.

Compiler Architecture

(=

SCANNER PARSER

SEMANTIC
CHECKER
CODEGEN I

LLVM
COMPILER

Language Features

/*Types*/

int
string
node
edge
ilist
slist
nlist
elist

/*Declaring a Function*/
int foo(int bar) {

bar = bar+l;
Return bar;

/*Operators*/
!= ! |node/edge]

/*Control Flow*/
while (x==x) {
print str (“HELLO");

Language Features

List of Built-Ins for /0 List of Built-Ins for Graph:

List of Built-Ins for Edges:

and others:
+ length()
+ print_int + next()
+ print_str + pop()
+ print_endline + peek()
+ streq + add()

+ source()
+ dest()
+ weight()

The First Program- Hello World

/*Things written in here are comments
and they are multi line compatible*/

int main () {
string x = “HELLO WORLD!”;

print str(x);

/*Defining a Graph using node*/

node nl = |”A”:2,”B"”,3,”C"”,4,”D"|;
/*Adds an edge to the existing graph and
updates it*/

nl = eadd(|”B”,5,”E”|,nl);

/*standard library function to print the
list of edges*/
print elist (nl);

Test Suite

$./testall.sh -n

-n fail assignment edgel...
test assignment listl... OK

OK -n

-n test boolean false... fail assignment edgeZ...
OK OK

-n test boolean true... -n

OK fail assignment int to s
-n test create edge... tring...

OK OK

-n -n

test get heaviest graph = fail assignment string t
edge. .. o int...

OK OK

DEMO

Lessons Learned

Programming in pairs helps to weed out bugs in more than half the time.
Git commit, Git add and Git push all day

Use Ubuntu

OCaml’s pattern matching is a god send.

+ + + +

