CSEE 4840
Embedded System Design
Lab 3: Peripherals and Device Drivers

Stephen A. Edwards
Columbia University

Spring 2016

Implement on the FPGA a memory-mapped peripheral that can receive communication
from the ARM processors on the Cyclone V. Communicate with your peripheral through a
Linux userspace program that accesses a device driver you have written.

Your peripheral should display a ball on the vGa screen at coordinates given to it through
software. Your device driver should implement an ioct that takes a coordinate from the user
and sends it to your peripheral

1 Introduction

In this lab, you will control your own hardware from your own software, communicating
through a Linux device driver. We supply a base hardware design to extend, a Linux kernel
and root filesystem, a working example of a vGa peripheral that you will have to modify, and
a working device driver for the existing peripheral that you will have to adapt to work with
your own peripheral.

You will implement a video bouncing ball in this setting. Your peripheral will generate an
VGA raster consisting of a ball at a particular location, your userspace C program (software)
will make this ball bounce around the screen, and your device driver will mediate between
your program and your peripheral.

2 Add the véa Component to the Base Design

In this section, you will tell Qsys about a new peripheral component, connect it ultimately to
the ARM processors, and synthesize a new FPGA configuration bitstream.

Download lab3-gsys.tar.gz from the class website and unpack it on your workstation.
Start Quartus and open the supplied lab3.qpf project. From within Quartus, start Qsys
(Tools—Qsys) and open the lab3.gsys project.

Create a new VGA_LED component and connect it to the base design. In Qsys, select
File->New Component.

Under the Component Type tab, set its name to vga_led and its display name to VGA LED

Emulator.

Under the Files tab, under “Synthesis Files,” add the VGA_LED.svand VGA_LED_Emulator.sv
files. The first file contains the code for the memory-mapped peripheral that drives the vca
raster generator in the second. Click on “Analyze Synthesis Files” The top-level module name

should now be “VGA_LED”

2.1 Assigning Signals to Channels

When Qsys analyzes the syn-
thesis files, it makes some good
guesses about the meaning of each
signal on the peripheral, but it is
not perfect. Below, you will fix
these mistakes manually.

Under the Signals tab, create a
new interface by selecting “New Re-
set Sink..” under the Interfaces col-
umn for the reset signal.

Create a new conduit by select-
ing “New Conduit..” under the
Interfaces column for one of the
VGA signals. Set the interface of
each vGa signal to this new “con-
duit_end”

Set the Signal Type of each vGa
signal to “export”

Your signals show now appear
like the list on the right. If errors
remain, the next steps should re-
solve them.

File Templates

(CumpunentT}'pe rFiIes rParameterS rSignals Interfaces

» About Signals
MName Interface Signal Type | Width | Direction
clk clock clk 1 input
reset reset_sink reset 1 input
writedata avalon_slave_0 writedata 8 input
write avalon_slave_0 write 1 input
chipselect avalon_slave_0 chipselect 1 input
address avalon_slave_0 address 3 input
VGA_R conduit_end export a autput
VGA_G conduit_end export 8 output
VGA_B conduit_end export 2 output
VGA_CLK conduit_end export 1 output
WVGA_HS conduit_end export 1 output
VGA_VS conduit_end export 1 output
WGA_BLANK_n |conduit_end export 1 output
WVGA_SYNC_n |conduit_end export 1 output
@ Info: Mo errars or warmnings.
| bew | | deev || neap | | Emisn.

Under the Interfaces Fils Templates

GomponentType | Files | Parameters | Signals | Inerfaces:
tab, click on “Remove In- | #emese g
~ “avalon_slave_0" (Avalon Memory Mapped Slave)
terfaces with no signals” JE— I
Set the associated ClOCk Type: [Avalon Memory Wapped Slave [+]
of “reset sink” to “clock” ::::.:':::i: ZE:: sk H
- .) Assignments: Edit.
Set the associated reset | r— :
f « 1 1 » = Address units [woros_[+]
or “avalon_slave_o” to o i]
« . » avalon_slave_q| Associated reset [reset_sink]
reset_sink’ — i —
"[he avalon_slave_o in_ cdress[2.0] ‘Exnhmtzddress span: [oo0ooooo0o000ooo0000 |
il = Timing =
terface should now ap- o .
. Write wait: 0
pear as it does on the g
right. P
Read latency: [o
Once you have re- Damton e e
solved any errors or — |
~ Read Waveforms
warnings, click on o
write
“Finish” and save the e —
component. This creates —— ‘
the file vga_led_hw.tcl to p—— \ i |
write I
record metadata about e -
writedata 1)
the new component. :
(@ Info: Mo errors or warnings

2.2 Connecting the vea Component

Now that Qsys knows about your custom component, you will connect it to the rest of your
design.

In Qsys, add an instance of the new VGA LED Emulator component by selecting it under
“Project” in the library and clicking on the green +. By default, it will be named vga_led_o.

On the new vga_led_o component instance, connect the clock to clk from clk_o and connect
the reset_sink to clk_reset from clk_o.

Connect the avalon_slave_o port on vga_led_o to both the h2f_Iw_axi_master port on the
hps_o component (this is the lightweight bus from the arm processors) and to the master port
on master_o (this will allow you to write its registers from the System Console—see below).

Double-click to export vga_led_o’s conduit_end in the Export column. Set the name of the
export to vga.

Run System— Assign Base Addresses to assign the base address for the vga_led o peripheral.

The System Contents tab should now look as it does below.

File Edit System Generate View Tools Help

“ Libray 2 - o o[$2 system Contents Address Map % | Project Settings 3 -go
x| || [E]ose & Name Description Export Clock Base End IRQ_[Tags] Op.
g B ck_0 Clock Source
Project [« || 2% o7 clklin Clack Input el eported =
18 New Component. = O clk_in_resst Reset Input reset B
» vga_led = ———| ck Clock Output clk_0
o= System ——————————— clk_reset Reset Output
Library I B hps_0 Hard Pracessor System multiple| multiple|
» Config-Bypass App Exa = o memory ‘Conduit memory o
¢ Bridges o Conduit hps_io o
o Bridges and Adapters = Resst Output
§ClockandReset [0 7 ClockInput clk_0
<] il [[4X1 Master [h2f_axi_el.
Clock Input cik_0
Now /AX1 Slave [f2h_axi_cl
Clock Input clk_0
————| h2f_w_axi_master [Master (h2f_tw_axi..
I, Hierarchy &% = v B master_0 \JTAG to Avalon Master Bridge
clk Clock Input cik_0
% '“_bam clk_reset Reset Input
——— master \Avalon Memory Mapped Master [l
o »=hps_o master_reset Reset Output
& B= memory Bl vga_led_0 vga_led
o W= reset clock Glack Input clk_0
o = g3 avalon_slave_0 |Avalon Memory Mapped Slave [tlock] 0x0000_6000 |0x0000_0007
o £ clk_0 © conduit_end Conduit vga [tlock]
o B hps_0 resst_sink Reset Input [clock]
o I master_0
o L vga_led_0 4% Messages oEfe
oo i Description Path |
0 Erors, 0 Wamings

Once you have resolved any errors or warnings, run Generate—Generate to have Qsys
generate all the files Quartus needs to synthesize to make the design work.

2.3 Connect the vGa Peripheral to its Pins

The vGa peripheral you just created needs to communicate off-chip through pins. To do this,
add the following connections within the instance of lab3 near the end of the SoCKit_top.v
file:

.vga_R (VGA_R),

.vga_G (VGA_G),

.vga_B (VGA_B),

.vga_CLK (VGA_CLK),

.vga_HS (VGA_HS),

.vga_VS (VGA_VS),
.vga_BLANK_n (VGA_BLANK_n),
.vga_SYNC_n (VGA_SYNC_n)

The lowercase signal names are part of the conduit_end you named “vga” when you con-
nected the component to your design. They are being connected to named pins.
Compile your project in Quartus to produce the output_files/SoCKit_Top.sof file.

3 Use the System Console to Verify Your Peripheral

While we will eventually communicate with our peripheral through the Linux environment,
it is often easier to check the hardware without software in this way.

Altera provides the System Console: an interactive Tcl environment that provides direct
access to system busses. If necessary, start Quartus and compile the design you generated
with Qsys in the previous section.

Download to the FPGA your newly created sys-
tem with the vGa LED emulator peripheral: run
Tools—Programmer from within Quartus and
download the output_files/SoCKit_Top.sof file to
the board as you did in lab 1.

If you connected the outputs on your new peripheral to the appropriate pins, the board
should display the image on the right on the véa monitor attached to the SoCKit board.

3.1 Running the System Console

Back in Quartus, run Tools—System Console—System Console. It should start up, report that
it discovered some JTAG and USB connections, that it “auto-linked” to SOCKit_Top.sof, and
note that a script (system_console_rc.tcl) does not exist, which is harmless.

In the Tcl Console sub-window, type

source syscon-test. tcl

This should load and run the syscon-test.tcl script that was provided for you in the lab3-
gsys.tar.gz file. If all is well, it should report

Started system-console-test-script

Opened jtag_debug

Checking the JTAG chain loopback: 0x01 0x02 0x03 0x04 0x05 0x06
Sampling the clock: 100100101001

Checking reset state: 1

Closed jtag_debug

Opened master

Closed master

The script establishes contact with the jTAG de-
bugging chain, establishes that the chain works by
pumping a short sequence of numbers through it,
verifies that the clock is toggling (your sequence
may be different: all is well provided you see both
U’s and 0’s), resets the bus, then writes a test pat-
tern to the registers that should change the dis-
play to what is shown on the right.

The System Console can be an invaluable debugging tool to verify the operation of the
hardware without the interference of (potentially flawed) software. For your project, I suggest
you write a similar script to exercise your hardware without trying to debug it with untested
softwware.

4 Communicate with Your Peripheral Through Software

Once you are satisfied your hardware peripherals work properly by testing them with the
System Console, it is easier to configure the FPGA during the boot process rather than with
the Quartus programmer.

Enter the output_files directory of your Quartus project and from the command-line, run

quartus_cpf -c SoCKit_Top.sof soc_system.rbf

to convert the .sof file generated by Quartus to an .rbf file that our boards download and
program into the FPGA as part of the boot process (e.g., as done in lab 2).

Copy soc_system.rbf to the /sockit/lab3-XXX directory on your workstation, where XXX is
your or your partner’s UNI (e.g., se2007).

Now, turn on the board, connect to its console as you did in lab 2 using

screen /dev/ttyUSBO 57600

select your lab3-XXX image to boot and make sure the FPGA is configured as part of the
boot process, displays “4840LAb3” on the vGa display, and delivers you to a root prompt (e.g.,
root@linaro-nano:~#).

4.1 Compile and Run the Sample Program

Download lab3-sw.tar.gz from the class website and unpack it in your workstation’s /sockit/labs-
XXX/root/root directory.

Compile the device driver and user program, install the kernel module, and verify that it
works. This should look like

root@linaro-nano:~/lab3-sw# make
make -C /usr/src/linux SUBDIRS=/root/lab3-sw modules
make[1]: Entering directory °‘/usr/src/linux’
CC [M] /root/lab3-sw/vga_led.o
Building modules, stage 2.
MODPOST 1 modules
CcC /root/lab3-sw/vga_led.mod.o
LD [M] /root/lab3-sw/vga_led.ko
make[1]: Leaving directory °/usr/src/linux’
cc hello.c -0 hello
root@linaro-nano:~/lab3-sw# insmod vga_led.ko
root@linaro-nano:~/lab3-sw# ./hello
VGA LED Userspace program started
initial state: 3e 7d 77 08 38 79 5e 00
current state: 39 6d 79 79 66 7f 66 3f
VGA LED Userspace program terminating

root@linaro-nano:~/lab3-sw# rmmod vga_led

“make” compiles the kernel module (vga_led.ko) and the userspace program (hello).

“insmod” loads the generated kernel module. In the supplied device driver, doing this
should change the display.

The hello program is a userspace program that communicates with the vga_led device driver
primarily through the ioctl system call. It opens the device, reads its state, writes its state, and
animates the display for a little while.

“rmmod” removes the kernel module, which is necessary any time you modify and re-
compile the module.

5 What to Do

Modify the hardware and software in the skeleton you have been provided to display a
bouncing ball. Change both the interface and contents of the hardware peripheral so that
it displays a stationary ball at a software-controllable set of coordinates. Like the segments
of the faux LED display, have the peripheral respond to writes to one or more addresses that
control the location of the ball.

Adapt the provided device driver to communicate with your peripheral. E.g., create an ioctl
that sets the coordinates of the ball.

You will need to modify the /sockit/lab3-XXX/socfpga.dtb file to pass information about
your new peripheral to the kernel. Modify the provided socfpga.dts file and replace the vga_led
entry with yours. Compile it to a .dtb file, by running on the SoCKit board,

/usr/src/linux/scripts/dtc/dtc -0 dtb -o socfpga.dtb socfpga.dts

Write a userspace program that bounces the ball by repeatedly communicating the new
coordinates to your peripheral through your device driver.

6 What to turn in

Find an overworked TA or instructor, and show him/er your bouncing ball. Once s/he is
satisfied, collect just the files you wrote or modified for this lab in a directory called “lab3,”
make a tarball with tar zcf lab3.tar.gz lab3, and submit that via CourseWorks. This should
include the SystemVerilog for your peripheral and source for your device driver and userspace
program.

Do not submit everything in your lab3-qsys directory: it is too big.

7 Qsys Hints

7.1

If you modify the Sys-
temVerilog for your compo-
nent (e.g., to fix a bug), you
need to regenerate your sys-
tem in Qsys before re-running
Quartus. Open Qsys from
Quartus (Tools—Qsys), open
your .gsys file, select your
component under “Project,”
and click “Edit” This should
bring up the Component
Editor window.

Click on the “Files” tab and
then “Analyze Synthesis Files.”
Once your files compile suc-
cessfully, click on the “Com-
ponent Type” tab, increase the
version number, click “Finish,”
and “Yes, Save” to save the
change and return to the Qsys
main window.

In Qsys, select File—Refresh Sys-
tem (or just press Fs). It should
complete with a reassuring warn-
ing indicating the version of your
component has changed. Hover-
ing over the instance of your com-
ponent should also indicate its ver-

sion has changed.

Now, select Generate—Generate. ..

can recompile it.

Editing the Source of Your Qsys Component

Eile Templates

8 Type | Files | | signals | interfaces |
b ADOUFiles
Synthesis Files

These files describe this component's implementation, and will be created when a Quartus || synthesis model is gensrated.
The parameters and signals faund in the top-level module will be used for this component's parameters and signals,

Output Path | Saurcs File | Type Aftributes
VGA_LED.sv VGA_LED sv System Verilog HDL [Top-level File
VGA_LED_Emulator.sv VGA_LED_Emulator sv System Verilog HDL Ino attributes

|:| [Anayze Synthesis Files | [create synthesis File from signals |
SORNEIRENET v v i comps
o

@ Info: programming logic devices manufactured by Altera and sold by =
@ Info: Altera or fts authorized distributars. Please referto the
@ Info: applicable agreement for further details
@ Info: Processing started: Mon Mar 3 19:04:26 2014
@ Info: Command: quartus_map not_a_praject -g ite_hdl_i
|:| Copy from Synthesi @ Info: Quartus Il 32-bit Generate HOL Interface was successful. 0 erars, 0 wamings
@ info: Peakvinual memory: 353 megabytes
\HDL Simulation Files @ Info: Processing endad: Mon Mar 3 18:04:27 2014
Info: Elapsed time: 00:00:01
These files will be produced wher 8"% " —

Total CPU time (on al pracessors): 00:00:01 ~
OutputPath 1l I] ol

Verilog Simulation Files
These files will be produced when
Output Path

LT

(@ Analyzing Synthesis Files: completed successtully

|
[T

|:| Copy fiom Synthesis Files

@ Info: Mo errars or warnings

‘ Help ‘ ‘ 4 Prev H Next b | ‘ Einish.

O SIS =omICom [or M—
olsle]

@ Info: foptialtera/13. 1/quartus/commonlfibrarianfactories/**/* matched 4 filed—
@ Info: jopt/altera/ 3. 1/quartus/sopc_builder bin/$IP_IPX_PATH matched 1 fil
@ Info: foptialtera/13. 1/quartus/sopc_builderhinfroot_components.ipx descri
@ Infa: joptialtera/13.1/quartus/sopc_builderbinroot_components.ipx match
@ Info: Loading pressts

&, Warning:vga_led_0; Usedvga_led 1.1 (instead of 1.0) hd
<] i | [+]

+, Refresh Systermn: completed with 3 warning.

to instruct Qsys to regenerate your system so Quartus

72 Don’t Edit Copies

Do not edit the files in the synthesis directory (e.g., in lab3/synthesis/submodules). These are
copied or automatically generated by Qsys and will be overwritten the next time Qsys runs.

73 Verilog For a System Instance

Qsys can automatically generate a Verilog template for instantiating your system. Select
Generate—~HDL Example... then copy-and-paste the sample. You will need to edit the names
of all the “connected-to-" signals to complete the connections. The instance of lab3 in the
SoCKit_top.v file was generated in this way.

7.4 Viewing Components as Blocks

Select a component and then View—Block Symbol. This g
. : ¢ Block Symbol
shows the interface to a component.

Show signals

vga_led O

clk

writedata
write:
chipselect

address

conduit_end
GA_R[7..0]
GA_G[7.0]
GA_B[7.0]
GA_CLK
GA_HS
GA_VS
GA_BLAMNK_n expert

YGA_SYNC n
export

reset_sink

fLLeset

expart
expart
export
export
export
expart

	Introduction
	Add the vga Component to the Base Design
	Assigning Signals to Channels
	Connecting the vga Component
	Connect the vga Peripheral to its Pins

	Use the System Console to Verify Your Peripheral
	Running the System Console

	Communicate with Your Peripheral Through Software
	Compile and Run the Sample Program

	What to Do
	What to turn in
	Qsys Hints
	Editing the Source of Your Qsys Component
	Don't Edit Copies
	Verilog For a System Instance
	Viewing Components as Blocks

