

COMS W4115 Programming Languages

& Translators

GIRAPHE

 ​Name UNI
 Dianya Jiang dj2459
 Vince Pallone vgp2105
 Minh Truong mt3077
 Tongyun Wu tw2568

 Yoki Yuan yy2738

Motivation/ Introduction:
Graphs appear naturally in problems of various areas like chemistry, sociology, and
many other disciplines. It intuitively expresses entities and complex relationships among
them. It is especially prevalent in the fields of computer science, math, and data science
where graphs are often used to represent data and social networks.

But there does not seem to exist any computer language that provides the essential
features in defining and utilizing graphs. In most case, you need to define a set of
vertexes and edges in order to define a graph, which is complicated and not very
efficient. We would like to build a language that has many graph-based features which
will allow users to effectively define, manipulate, and process their graph data.

Language Description:
GIRAPHE is a graph creation and manipulation language that allows users to define
and process graphs specific to their use cases. Using GIRAPHE, most of simple graph
(directed or undirected graph, edge with or without values) could be created by a single
statement. Several graph operations are also supported in GIRAPHE such as merging
two graphs. As we know, most graphs are composed of nodes and lines, and GIRAPHE
enables users to define and manipulate graphs in a more convenient and clear way. In
addition, GIRAPHE supports plotting graph. Users can plot graphs using “plot” function,
in which the process of realization and visualization is simplified.

Design and Syntax:

Primitive Data Types:

Integer int

Floating point number float

String string

Character char

Boolean bool

Lists List, literal: []

1

Tuple Tuple<type1,...,typeN>, literal: (5, … ,’A’
)

Dict Dict<valueType>, literal: { }

NULL null

Void void

Graph:
Graph - contains Nodes and graph data.
Has methods for basic use, i.e. shortest path, articulation points, merge graphs

Node (interface):
Contains value and list of neighbor nodes
Node - the language will provide a basic class but will also allow the user to implement
the interface in order to have Node types specific to their need

Operators:
Basic:

>, <, <=, >=, ==, != comparison operators for basic types

!, &&, || logical NOT, AND, OR for bool type

+,-,∗, /, % arithmetic operators for int and float

[] list access

= assignment operator

; end of line

Node:

 +
Node n1 + Node n2 = Graph g’

Return graph of two nodes

-
Node n1 - Node n = Edge e

Return edge between nodes

2

Statement and Blocks:

; end of line

// Start of a one line comment

/* Start of a comment block

*/ End of a comment block

Control Flow:

if (expression) {
 ...
}

if statement. If expression is evaluated to
true, the statements between {} will be
executed.

if (expression) {
 ...
} else {
 ...
}

if statement can also have an optional
else statement. One can also nest the
if​-else statement.

while (loop condition) {
 ...
}

\

do {
 …
} while (loop condition)

\

for (initialization; loop condition;
increment;) {
 …
}

\

for (​member​ in ​collection​) {
 …
}

For-each loop.

continue \

break \

return \

3

in \

Built-in functions:

API of Graph(G)

Name Function Expression Description

add G.add(n) Add node to graph

merge G.merge(g) Merge Graph g with Graph G and
return a new graph.

contains G.contains(n) Check whether node n is in the graph

size G.size() Return the number of nodes in G

path G.path(n1,n2) Return shortest path between nodes

is empty G.isEmpty() Return whether the graph has node or
not

remove G.remove(n) Remove node from Graph G

get articulation
points

G.articulations() Get articulation points

get a node G.getNode(int id) Returns the node with specified id

get all nodes G.getAllNodes() returns the list of nodes in the graph

get all edges G.getAllEdges() returns the list of edges in the graph

get edge count G.getEdgeCount() returns the number of edges in the
graph

get node count G.getNodeCount() returns the number of nodes in the
graph

plot G.plot() Plot out the Graph G

4

API of Node(N)

Name Function
Expression

Description

value N.value() Return the value of node

neighbor N.nbr() Return a list of all connected nodes in an undirected
graph

child N.child() Return a list of nodes which are children of the
current node in a directed graph

parent N.parent() Return the parents of a node in a directed graph

getID N.getID() Returns the unique integer ID of the specified node

API of Edge(E)

Name Function
Expression

Description

start E.start() Return the starting point of one edge

end E.end() Return the end of one edge

weight E.weight() Set the weight of the edge

nodes E.nodes() Return a list of two nodes connected by the edge E

label E.label() Return the boolean value, true if the edge is been
labeled

remove E.remove() Remove edge E

5

Example Program:

6

7

