
Set
A Language for Set Theory

Heather Preslier

Introduction/Motivation
● Language based in C
● Compiled down to LLVM
● Goals:

○ Simplify the formulation of complex algorithms by creating a concise language
that mirrors set notation

○ Simplify the handling and manipulating of sets
○ Remove the need for type declarations
○ Maintain functionality for basic programming

Syntax
● Syntax inspired by set theoretic notation
● Full type inference
● Built-in functionality for the manipulation and operation of sets
● Overloaded operators

def remove_duplicates(a){
b = [];
(0<=i<#a | a[i]?b == false)
b = b + [a[i]];
print(b); /* print the new set */
return b;

}

Syntax
● Syntax inspired by set theoretic notation
● Full type inference
● Built-in functionality for the manipulation and operation of sets
● Overloaded operators

def remove_duplicates(a){
b = [];
(0<=i<#a | a[i]?b == false)
b = b + [a[i]];
print(b); /* print the new set */
return b;

}

overloaded operators

Built-in set operatorsFunction inference

Type inference

Type inference

Set Theoretic Iterator

StdLib Function
Comments

Syntax
● File extension: .sc
● Required main function
● Types: bools, ints, floats, strings, sets
● Initialization by assignment

○ Inferred types are bound after initialization
○ Empty set types are bound after first use

● Functions
○ Need only be preceded by the keyword def
○ Functions types and parameters are inferred
○ Sets are pass by reference

example1.sc:

 1 a = “setc”; /* global */
 2
 3 def main(){
 4 b = 3; /* initialization */
 5 c = [];
 6 c = c + [b]; /* c -> int */
 7 d = func(c);
 8 print(d); /* true */
 9
10 def func(a) {
11 a[0] = 5;
12 return true;
13 }

Special Features
● Optimizations of functions

○ Some functions will not be semantically
checked and code will not be generated

● Standard Library/Built-In Functionality
○ Print functionality for all types
○ Intersection (*), union (&), difference(-),

append(+), slice(:), set, in(?), cardinality(#)
operations for sets

○ Split function: string -> set
○ File I/O: open, close, read, write

example2.sc:

 1 def main(){
 2 a = [1,2,3];
 3 b = [1,4,2];
 4 a * b; /* [1,2] */
 5 a + b; /* [1,2,3,1,4,2]*/
 6 a & b; /* [1,2,3,4] */
 7 a - b; /* [3] */
 8 a[1:3]; /* [2,3] */
 9 2?a; /* true */
10 a[1:3]; /* [2,3] */
11 #a; /* 3 */
12 print(a); /* 1 2 3 */
13 c = “hello world”;
14 d = split(c, “ “);
15 /* d -> set */

Tasks
Semantics:
● Constraints

○ Precedence
● Overloading operators and

functions
○ Considering the IR

● Type Inference algorithm
○ Third time's the charm

● Sets/empty set
○ Type inference of an empty set
○ Compile time vs. runtime decision

Code Generation:
● Sets

○ Pointer implementation
○ Length: compile time vs. runtime

decision

Testing:
● Unit and Integration testing
● 102 tests total

Lessons Learned
● Need to consider the IR more when making design and

implementation choices for the language

Demos
Demo 1: Basic functionality

○ Bubble Sort Algorithm
Demo 2: Function inference

○ GCD algorithm
○ Euler’s phi function
○ Coprimality of sets

Demo 3: Algorithm
○ Perceptron Learning Algorithm

