
Margaret Mallernee mlm2299
Zachary Silber zs2266
Michael Tong mct2159
Richard Zhang rz2345
Joshua Zweig jmz2135

Programming Languages and Translators, Spring 2017

C% Final Report

2

Contents

1 Introduction 7
1.1 Language Goals . 7

1.1.1 Wrap Large Number Arithmetic . 7
1.1.2 Readability . 7
1.1.3 Encourage Correctness . 7
1.1.4 Extensibility . 8

1.2 Background . 8
1.2.1 Modular arithmetic . 8
1.2.2 General setting . 8
1.2.3 Elliptic curves . 8

2 Language Tutorial 11
2.1 Environment Setup . 11
2.2 Using the Compiler . 11
2.3 Building A Basic Program in C% . 12

2.3.1 File Extension . 12
2.3.2 Parts of a C% Program . 12
2.3.3 Hello World . 12
2.3.4 Variables . 12
2.3.5 Functions . 12
2.3.6 Style and Organization . 13
2.3.7 Using Pointers . 13
2.3.8 Malloc and Free . 13
2.3.9 Utilizing C%’s Built in Types . 14
2.3.10 Code Examples . 15

3 Language Reference Manual 19
3.1 Introduction . 19
3.2 Types . 19

3.2.1 Basic Data Types . 19
3.2.2 Cryptographic types . 20
3.2.3 Grouping . 22

3.3 Lexical Conventions . 22
3.4 Expressions . 23

3.4.1 Primary Expressions . 23
3.4.2 Order of Evaluation . 24

3.5 Operators . 24
3.5.1 Unary operators . 24
3.5.2 Exponential operator . 25
3.5.3 Multiplicative operators . 25
3.5.4 Additive operators . 25

3

3.5.5 Relational operators . 26
3.5.6 Equality operators . 26
3.5.7 Assignment operator . 27

3.6 Statements . 27
3.6.1 Statement Terminator & Blocks . 27
3.6.2 Control flow . 27

3.7 Program Structure . 30
3.7.1 Functions . 31
3.7.2 Scope . 31

3.8 File I/O . 32
3.8.1 I/O Channels . 32
3.8.2 printf() . 32
3.8.3 scanf() . 32

4 Project Plan 33
4.1 Planning Process . 33
4.2 Specification Process . 33
4.3 Development Process . 33
4.4 Testing Process . 33
4.5 Team Responsibilities . 34
4.6 Github Stats . 34
4.7 Project Log . 35
4.8 Development Environments . 35
4.9 Style Guide . 36

5 System Architecture and Design 77
5.1 The Compiler . 77

5.1.1 Scanner . 77
5.1.2 Parser . 77
5.1.3 Semantic Checker . 78
5.1.4 Preprocessor . 79
5.1.5 Code Generator . 79

5.2 Supplementary Code . 80
5.2.1 Cryptography Library . 80
5.2.2 Big-Num Integration and Memory Management 81
5.2.3 Built-in Functions . 83

6 Test Plan 85
6.1 Testing Phases . 85

6.1.1 Grammar Testing . 85
6.1.2 TravisCI Performance . 88

6.2 C% to LLVM IR . 89
6.2.1 Example 1 . 89
6.2.2 Example 2 . 91
6.2.3 Example 3 . 92

7 Lessons Learned 93
7.0.1 Zack . 93
7.0.2 Michael . 93
7.0.3 Josh . 94
7.0.4 Maggie . 95
7.0.5 Richard . 95

4

8 Appendix on Elliptic Curve Cryptography 97
8.1 Background and definitions . 97
8.2 Addition formula . 98
8.3 Translation to cryptography . 98
8.4 Comparison with modular arithmetic . 98

9 Code Listing 99
9.1 Compiler Source . 99

9.1.1 Primary . 99
9.1.2 Preprocessing . 125
9.1.3 C Wrappers . 127

9.2 Compiler Interface . 136
9.3 Testing . 138
9.4 Libraries . 172

9.4.1 ElGamal Encryption . 172
9.4.2 Standard Diffie Hellman . 174
9.4.3 Eliptic Curve Diffie Hellman . 175

5

6

Chapter 1

Introduction

C% is a C-like language purposed for applications in cryptography. The issue in the cur-
rent state of the art cryptography is not in the theory of Diffie Hellman, but rather in
the cryptology of how the protocol is implemented in specific applications and contexts.
Easing the implementation of cryptographic protocols for encryption is a large field in cur-
rent research, with obvious benefits to society at large. The easier these protocols are to
implement, the more likely they are to be implemented correctly or at all, thereby reducing
security risks. Additionally, this ease of use primes C% for use as a teaching language for
beginners in cryptographic protocol implementation.

With this in mind, C% provides built in types, operators and functionality that are designed
to relieve the programmer from the burden of carrying around large primes and taking care
of many modular calculations. C% programs follow the basic structure of C, including
many of the same basic types, operators, and control flow statements. Also, C% leaves
heap memory management to the user with malloc() and free(), just as in C. Finally,
C% handles user input with printf() and scanf().

1.1 Language Goals

1.1.1 Wrap Large Number Arithmetic

One of the main benefits of C% to users is the increased ease of use through encapsulation of
the OpenSSL BigNum library. This library is the industry standard for dealing with large
numbers as needed in cryptography for holding large primes. However, it is incredibly
difficult to use, so C% wraps the functionality of this library in its more intuitive type
system. This allows the user to implement cryptographic protocols much more easily.

1.1.2 Readability

C% was designed to allow users to save time in implementing common cryptographic
protocols by encapsulating the operations over the groups of integers over a prime modulus
and points over an elliptic curve. With C%’s robust type system, the user no longer has to
define functions or consult external libraries to perform operations as simple as addition.
This, in addition to the built in big num capability and intuitive type names, makes
implementations of cryptographic protocols shorter and easier to read.

1.1.3 Encourage Correctness

Ease of use and readability are goals that clearly benefit the user, but perhaps the most
important benefit of these is their ability to encourage correctness. C% was motivated

7

by the difficulty of using existing cryptography libraries and the vulnerabilities introduced
when developers attempt to add security features without truly understanding how to
properly integrate them into their software. C% is a language aimed at providing the
core functionality of C with cryptographic types allowing secure protocols to be easily
integrated into programs. This continuity encourages these protocols to be implemented
correctly.

1.1.4 Extensibility

C% was designed and written with extensibility in mind. It’s C-like syntax can be expanded
to include more of the functionality C provides, and the standard library of readily available
cryptographic protocols can be easily expanded to include more examples of modular and
elliptic curve cryptography. This is especially useful for the language’s application as a
teaching language, while also being convenient for all users. Finally, the language is primed
for extension to other mathematical foundations of cryptography, such as the potential for
arithmetic over more general finite fields.

1.2 Background

1.2.1 Modular arithmetic

Most readers are likely familiar with modular arithmetic. It is the arithmetic of integers
where only the remainder of the number when divided by a fixed modulus is considered,
so for example one would take 3 ∗ 5 = 15 and take the remainder when divided by the
modulus 7, which is 1.

Modular arithmetic lies at the heart of cryptography, which concerns itself with sending
information securely such that it cannot be read by any ordinary person unless they have
access to some other private information (typically referred to as a key). Indeed, the secu-
rity of modern cryptography protocols relies on various properties (or at least properties
which are widely believed, but yet unproven) of the multiplication of integers when taken
with a large (usually prime) modulus. For example, many security protocols rely on the
hardness of the discrete log problem: given a prime modulus p and two integers α and β
taken mod p, find an integer k for which αk ≡ β (mod p).

1.2.2 General setting

Much of cryptography has historically been studied and implemented within this framework
of modular arithmetic. However, from a more abstract point of view, the core of what we
are working with here is a set of things (in this case, non-negative integers less than p) with a
binary operation (in this case, modular multiplication). In particular, the binary operation
of modular multiplication enjoys nice properties: it is associative (that is, (a·b)·c = a·(b·c)),
it has an identity element (there is some element e so that for every a, we have e · a =
a · e = a), and it can be inverted (for every a, there is some other element b so that
a · b = b · a = e). Indeed, in abstract algebra, a set equipped with a binary operation
satisfying these properties is called a group, and cryptography can be done with general
groups instead of just on modular arithmetic. This ties nicely into our implementation of
elliptic curves.

1.2.3 Elliptic curves

Our language will offer tremendous support for a newer brand of cryptography where the
group in question consists of points lying on an object called an elliptic curve. How this

8

works is highly technical, and we leave the explanation of the intricacies to the cryptography
appendix.

9

10

Chapter 2

Language Tutorial

2.1 Environment Setup

C% has several dependencies. First of all, it requires OCAML. Using Homebrew, one can
install OCAML using $brew install OCAML. C% also requires LLVM 3.6 or higher, which
can also be installed using Homebrew. The user should also ensure that the LLC variable
in cmc.sh is correct, linking to their LLVM compiler, which will generate machine code
from LLVM IR code that C%’s compiler will produce. C% also relies on python, openSSL,
clang, and shell scripting (bash, sh), most of which should be already installed on the user’s
machine.

2.2 Using the Compiler

. Once inside the C% (C-) directory, type make all. Once the make is complete, you will
have your very own C% compiler, which accepts ’.cm’ files. The actual compiler will be
stored in a bin folder, and the usage is as follows:
$./bin/cmc [-h help] [-t token] [-a ast] [-l llvm] [-c ll-file] [-s s-file] [-e exe-file] <file-name>.cm

By default, the compiler will generate the .ll file corresponding to the program. However,
the optional flags allow the user access to each step in the compilation process.

• -h - help - This option simply prints the help page and usage for the compiler.

• -t - token - This option prints the tokenized program to stdout.

• -a - ast - This option prints the abstract syntax tree of the program to stdout.

• -l - llvm - Compiles <file-name>.cm to llvm and prints the result to stdout.

• -c - ll-file - Compiles <file-name>.cm to llvm and puts the result in <file-name>.ll.
This is the default option.

• -s - assembly - Compiles <file-name>.cm to llvm, translates to assembly, and puts
the result in <file-name>.s (leaves <file-name>.ll in directory as well)

• -e - executable - Creates the executable version of <file-name>.cm, simply called
<file-name> to be run ./<file-name> (leaves behind the corresponding .ll and .s
files as well)

These options allow a variety of choices for the user. Basic compiling to LLVM can be
done as follows, with the example program helloworld.cm:

$./bin/cmc helloworld.cm

11

2.3 Building A Basic Program in C%

2.3.1 File Extension

A C% program can be as short as three lines, to millions of lines long. It should be written
into text files with the file extension ".cm"; As an example, the first program that will be
shown is written in a text filed named helloworld.cm.

2.3.2 Parts of a C% Program

A C% Program consists of the following parts:

• Function and Variable Declarations

• Statements and Expressions

• Comments

This section will only briefly go over these parts. More in-depth documentation can be
found in the Language Reference Manual (LRM) later in this report.

2.3.3 Hello World

In this subsection, we will go over a simple program that prints "Hello World!". The
following is the source code for helloworld.cm:

int main() {
printf("%s\n", "Hello World!");
return 0;

}

As per the LRM’s section 8 on Program Structure, each program requires a main function.
C% is modeled after C, and thus the main function should always return 0. The line int
main() is where program execution begins. The next line printf(...) uses a function
available in C% that outputs "Hello World!" to the stdout. The next line return 0;
defines what the main() function returns, before the function (and in this case program)
terminates with the closing curly bracket.

2.3.4 Variables

In C%, variables are declared in the format of type variableName. Variables can be
declared anywhere in a block, but unlike C, variables must be declared in a line separate
from their assignment. For instance, the line of code int c = 0; will produce an error. A
basic variable declaration can be seen below:

int c;
c = 0;

Generally, declared variables are local to the block in which they are declared. For
more details on scoping, please see the section on Scope in the LRM (Section 3.7.2).

2.3.5 Functions

Functions are declared before the main function. In C%, they have the following format:

12

returnType functionName(argsType1 args1, argsType2 args2, ...){
declarations, statements, expressions

return variableOfReturnType;
}
int main(){...}

This function declaration format is standard to C, and provides all of the functionality a
user would expect: encapsulating chunks of code for sharing and reuse, with all the relevant
information stored in the function signature.

2.3.6 Style and Organization

The style recommended for writing C% programs is not much different from that of writing
C programs. Variable and function names should use camelCase. As per Wikipedia’s
definition, it is "is the practice of writing compound words or phrases such that each word
or abbreviation in the middle of the phrase begins with a capital letter, with no intervening
spaces or punctuation." In the case of C% and other languages utilizing camelCase, the
first letter of the first word is not capitalized. Additionally, Lines of code should also not
exceed 80 characters.

2.3.7 Using Pointers

Pointers are denoted in C% with the * symbol. Pointers are simply references to a spe-
cific memory location, and can be assigned to reference different values of the same type.
Pointers are useful in the sense that they can be passed into functions, so that the entire
memory block that holds an object doesn’t need to be duplicated and then passed into a
function.

Pointers can be dereferenced with "*" to modify the actual objects found at the memory
pointed at. We can see this in the following example:

int x;
int *pointerToInt;
x = *pointerToInt; // assigns x = 4

2.3.8 Malloc and Free

C% is a language that uses the malloc function for memory allocation. malloc is a
function that allocates the specified amount of space on the heap and returns a pointer to
the relevant address. This memory can then be freed by the free function. For example:

int *p;
p = malloc(4*2);
*p = 1;
*(p+1) = 2;
free(p);

In this example, we allocate 4*2 bytes of memory for two ints, which are 4 bytes each,
hence the 4 and the 2. This is assigned to a pointer to an int p. It is then dereferenced, and
then assigned values of 1 at the location p is pointing at, and then the memory location
that is one over from p is given the value of 2. At the end of it all, the memory is freed.
This memory management system is very similar to that of C.

13

2.3.9 Utilizing C%’s Built in Types

Most unique to C% are its built-in types. This section will describe how to use them and
their various use cases. Basic types that aren’t specific to C% can be viewed in the LRM.

Stones

Stones are C%’s implementation of large ints. Cryptographic applications commonly call
for very big prime numbers which would exceed the maximum int capacity. They are
mutable, such that they can be altered, reassigned, and do not have static values. All of
the operators that work with ints work with Stones. Stones, however, do not have the
capability of interacting with ints in the same way. Stones are declared with quotes, as
shown below:

stone a;
stone = "99";

In general, Stones are the backbone of C%. They should be used whenever one is working
with large numbers, or potentially large numbers, and form the basis of all other crypto-
graphic types.

Mints

A mint is short for ModInt. It is a data type that holds its current value, and an immutable
modulus, which are both objects of the stone type. They are declared using <,> brackets,
as seen here:

stone val;
val = "10000";
stone mod;
mod = "9";
mint m;
m = <val,mod>;

Mints also have their own arithmetic. All the arithmetic that is applied to mints can be
seen in the LRM, and these include all the basic arithmetic functions that can be applied
to ints and stones. Furthermore, the cost of modular arithmetic is much lower than
regular arithmetic using stones, and then applying the moduli afterwards. In particular,
our algorithm for modular exponentiation is much less costly than a naive one that simply
exponentiates the value and reduces it (this will be explained later in the report).

Curves

The curve data type holds the information used to describe an elliptic curve. Elliptic
curves are becoming increasingly important as elliptic curve cryptography continues to
gain popularity. Along with points, they can be used in encryption applications like the
Diffie-Hellman key exchange or El-Gamal encryptions just as modular integers can. They
are declared with two mints that share the same moduli:

stone a;
stone b;
stone p;
p = "61";
a = "7";
b = "26";

14

mint A;
mint B;
A = <a, p>;
B = <b, p>;

curve *E;
E = <A,B>;

Points

The point data type is a data type that represents points on an elliptic curve. They
have their own arithmetic with respect to the curve on which they were declared, and
point arithmetic is prominent in all elliptic curve-based encryption algorithms. They are
constructed with the <curve E, stone x, stone y> signature. Continuing the example
from the Curve section above:

point *P;
a = "25";
b = "37";
P = <E, a, b>;

Note that arithmetic is done on pointers to points. This is so our helper functions can
pass the points by reference.

Of course, the user needs to know whether or not this is actually a point on the curve
– in all reasonable applications, the user will know since a responsible cryptographer will
want to use carefully picked points on the curve which have good properties (e.g. high
order in the group).

2.3.10 Code Examples

RC4 Stream Cipher in C%

// Key Scheduling Algorithm
// Input: state - the state used to generate the keystream
// key - Key to use to initialize the state
// len - length of key in bytes
void ksa(char *state, char *key, int len)
{

mint j;
int t;
int i;

for (i=0; *i < 256; i = i+1){
*(state+i) = i;

}
j = 0;
for (i=0; i < 256; i = i+1) {

mint temp;
temp = <i,len>;
int key_index;
key_index = access(temp,0);
j = <(j + *(state+i) + *(key+key_index),256>;

15

t = *(state+i);
*(state+i) = *(state+j);
*(state+access(j,0)) = t;

}
}

// Pseudo-Random Generator Algorithm
// Input: state - the state used to generate the keystream
// out - Must be of at least "len" length
// len - number of bytes to generate
void prga(char *state, char *out, int len)
{

mint i;
int j;
int x;
int t;

i = "0";
j = 0;
char key;

for (x=0; x < len; ++x) {
i = <(i + 1, 256>;
j = <(j + *(state+i)), 256>;
t = *(state+i);
*(state+i) = *(state+j);
*(state+j) = t;
mint out_temp;
out_temp = <(*(state + *(state+i) + *(state+j))),256>;
*(out+x) = access(out_temp,0);

}
}
int main(){

char *state;
char *key;
key = malloc(20);

printf("Enter key: ");
scanf(key);

int len;
len = 18;

ksa(state,key,len);

char *out;
out = malloc(20);

prga(state,out,len);

16

printf("%s\n",out);
return 0;

}

Elgamal Encryption in C%

int main() {
stone g_div;
stone h_div;
stone p;
mint g;
mint h;

//public keys
p = "977";
g_div = "3";
h_div = "249"; //alice’s g^x for her secret x
g = <g_div, p>;
h = <h_div, p>;

//bob’s private key
stone y;
y = "77";

//shared secret g^xy
mint s;
s = h^y;

char *x;
x = malloc(100);
int msg_len;
int i;
scanf(x);
msg_len = atoi(x);
printf("%s\n", x);
for (i = 0; i < msg_len; i = i + 1) {

scanf(x);
stone z_div;
mint z;
z_div = x;
z = <z_div, p>;

print_div(g^y);
print_div(z * s);

}
}

17

18

Chapter 3

Language Reference Manual

3.1 Introduction

C% is a C like language purposed for applications of cryptography.The issue in the current
state of the art cryptography is not in the theory of Diffie Hellman, but rather in the
cryptology of how the protocol is implemented in specific applications and contexts. With
this in mind, C% provides built in types, operators and functionality that are designed to
remove the burden of carrying around large primes and keeping care over many modular
calculations from the programmer.

The aforementioned functionality is built into a familiar and powerful C like language spec-
ified in this manual. Subsequently, in the specification of this language and development
of this manual many ideas and notions are purposed from the C Reference Manual 1 as
well as Kernighan and Ritchie’s The C Programming Language2.

3.2 Types

Each data type will be given a name and stored in a variable. These names are case-
sensitive and made up of alphanumeric characters (Including ’_’). Certain keywords used
elsewhere in the language will be reserved and unable to be used as variable names ("int",
"if", "for"). (Cite K&R)

3.2.1 Basic Data Types

The basic data types listed will be implemented similarly to C.

int

An Int is a 4 byte representation of an integer. An Int ranges in value from -2,147,483,648
to 2,147,483,647. When an Int overflows in either direction behavior is not defined.

Ints can be declared with or without an initial value. If no initial value is given it will have
an undefined value until something is defined.

int x;
x = 5;

1https://www.bell-labs.com/usr/dmr/www/cman.pdf
2Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language. Vol. 2. Englewood

Cliffs: Prentice-Hall, 1988.

19

char

A Char is a 1 byte representation of any ASCII character.

Chars are declared by giving a character surrounded by apostrophes. If no initial value is
given it will have an undefined value until something is defined.

char x1 = ’c’;
char x2 = ’\n’;

Note that our language has string literals which will allow character arrays to be used
similarly to Strings.

void

Void is reserved as a type to allow functions to return nothing.

3.2.2 Cryptographic types

These cryptographic types represent algebraic structures that are useful for the types of
programs C% is intended for. These types of programs often deal with number much
larger than a reasonably sized Integer type could handle. Thus, the building block of all of
the cryptographic types is a Stone, which will be implemented similarly to BigNum. All
following types are declared with stones in order to facilitate calculations on unbounded
numbers.

stone

A Stone is the building block of most of the other cryptographic types. Stones are repre-
sented as a linked list of integers and grow in size every time they run out of space to hold
the current number. Thus, a Stone is effectively an unbounded integer. Stone’s are used
to represent the large numbers and primes that our programs are intended to work with.

A Stone is defined as simply as string literal or char * and many of the same operators
will apply to it. The value must be assigned as such because arbitrary size integers are to
wide to fit well into any sane bit width.

stone x = "5";
stone x = "999999999999999";

mint

A ModInt is a data type that holds two things; a current value and an immutable modulus.
ModInt’s are used to represent a number under a certain modulus to be used for all of
its calculations. Because it only makes sense to perform operations on ModInt’s with the
same modulus at any given time, behavior is undefined if a user attempts to apply binary
operations on two ModInt’s with differing moduli.

A ModInt will only be able to be defined with two Stones to enable to work with unbounded
integers. The value will be listed before the modulus in the declaration.

stone s1 = "3";
stone s2 = "7";
mint x = <s1, s2>;

20

curve

Curves represent elliptic curves. Mathematically, the data of an elliptic curve is just its
two coefficients a and b (see Appendix). Thus, Curves are declared with two ModInts.
There is not any defined behavior if the two ModInt’s have different moduli.

mint x1;
x1 = <"5", "7">;
mint x2;
x2 = <"3", "7">;
curve *c;
c = <x1, x2>;

Note that the numbers in the ModInt declarations will be interpreted as Stones and not
Ints

point

Finally, Points are a fundamental data type for our language. Operations on Points are
defined through a given curve. Mathematically, the data of a point consists of its two
coordinates and the curve that it is on. In our language the two coordinates are represented
with Stone’s and the Curve will be given in the declaration as well. Note that operations
will only have a defined behavior on two Point’s under the same Curve.

point *p;
p = <c, "5", "6">;
point *pInf;
pInf = <c, ~>;

It is certainly possible that a point to may take on the value of "infinity" (see Appendix).
In this case the user can define a point with the ∼ keyword for infinity.

access

Many cryptographic types are made up of multiple stored values. In fact, all of C%’s
cryptographic types can be reduced to a set of Stones. The set of access functions is
comprised of access_mint(), access_curve(), and access_point(), which give the user
a method to read these component values for each respective type, by index. The Stones
are in the same order as the type declarations. The syntax is as follows:

stone a;
stone b;
mint m;

a = "3";
b = "5";
m = <a, b>;

stone m1;
m1 = access_mint(m, 0); //m1 is assigned "3"

The access functions for Mints, Curves, and Points, accept varying index ranges corre-
sponding to the actual number of component parts. A Mint breaks down into the two
Stones used to construct it, so access_mint() will return those with second parameter
(index) 0 or 1, respectively. Similarly, access_curve() breaks a Curve down into two

21

Mints, and then two Stones each, allowing access via indices 0-3. access_point(), follow-
ing the same logic, allows access to Stones at indices 0-5, the first four corresponding to the
Curve broken down, and the last two corresponding to the ’coordinates’ of the Point used
in declaration. If the user enters an index value that is outside the range of component
parts, the access functions return the last stone by default.

3.2.3 Grouping

Pointers and Arrays will both generally be handled as they are in C.

pointer

Pointers are stored with 8 bytes and represent a specific address in memory. Pointers
can be incremented or decremented to look at adjacent blocks of memory. Pointers will
specifically be useful in referencing Stone’s which can be arbitrarily large.

Pointers are declared by naming the type of data to be pointed to and using the derefer-
encing (*) and referencing (&) unary operators.

int x = 7;
int* ptr = &x;

stone s = "17"
stone* sPtr = &s;

array

Arrays can be used to store multiple instances of the same data type. An Array of any
type can be declared with any specific size. Use square brackets to declare.

int[] arr[10];
arr[0] = 2;
arr[1] = 4;

3.3 Lexical Conventions

Keywords

The following keywords are reserved in the language. They are enumerated here by type
and are each discusses in later sections.

• Types

– int
– char
– stone
– void
– mint
– curve
– point

• Statements

– if

– else

– for

– return

• Functions

– printf

– scanf

– malloc

– free

– etc.

22

Comments

Single line comments are denoted by //. Any text on a line after a // will not be processed
as part of the program.
Multiline comments are opened with "/*" and closed with "*/".

3.4 Expressions

3.4.1 Primary Expressions

Primary expressions are in many cases the fundamental expression type that is operated
on. This section enumerates the class of primary expressions.

Identifiers

Identifiers are typed expressions that have been declared. For example in

int a = 5;
int *b = &a;

a and b are identifiers with types int and int pointer respectively. Additional identifiers
include functions. In this case, the expression’s type is that which the function returns.

Literals

Literals come in the form of numeric constants or string literals. If a constant fits into the
size of an int, it will be of type int. If not, it will automatically be of type stone, as will
be the case if a large prime is hard-coded (not recommended).
String literals will be expressed by any characters set between two double quotes. They
will be of type char*. They can be defined as in the example below.

char *x;
x = "Hello, World!"

All literals are strictly rvalues.

Infinity

∼ is how infinity will be expressed in the language. It being mathematically valid for a
point to have value of infinity per section 3.2.2, a point can be defined by point p = {c,
∼} where c is a Curve.

(expression)

A parenthesized expression. The expressions type and value is exactly that of the expression
bound by the parentheses.

lvalue Expressions

There are exactly 3 forms of lvalues in this language. They are

1. identifier (non function pointers)

2. (lvalue)

3. *expression

All other expressions in this language are rvalues.

23

primary − expression (comma separated expression arguments)

This primary expression takes the form of a function call, with the specified primary −
expression being a function as specified in 3.4.1. Functions can but do not need to accept a
sequence of expressions, where each expressions type matches that specified in the function
declaration. Each parameter/expression is to be separated from the previous by a ","
(comma).

Also, C% is a copy by value language, just like C. Of course, one can still pass in a pointer
to an object to simulate passing by reference.

Other Expression Types

Other expression types are built upon the Primary Expression types specified in the pre-
vious section. The remaining expression types are operations over the general expression
types and are specified in section 3.5.

3.4.2 Order of Evaluation

There is exactly one operator on primary expressions, (). This operator has the highest
priority in the language and groups left to right. For example, in

f(g(x, y))

function f receives the result of the evaluation of g(x, y) as its parameter.
The unary operators have the next highest precedence in the language and group right to
left. Following, binary operators have the next highest priority, grouping left to right. The
unary and binary operators have precedence following the order that they are presented in
section 3.5, with the first operator presented having the highest precedence. The assign-
ment operators have the next highest level of precedence, with equal precedence amongst
all operators.

3.5 Operators

3.5.1 Unary operators

These operators work exactly as they do in C.

* expression

The unary ∗ operator represents dereference: expression must be a pointer, and this
returns the object to which the expression points. Indeed, if the expression is a pointer to
a type T , the type of the result will be T .

& lvalue− expression

The result of the & operator is a pointer to the object referred to by the lvalue-expression.
If the type of lvalue− expression is T , the type of the result of this operation is pointer
to T .

- expression

The result of the unary − operator is the negative of the expression. If expression is an
integer type, this is the typical additive inverse. If expression is of type point, this returns
the inverse of the point on the curve (as defined in 9.3.1).

24

! expression

The unary ! operator is the logical negation, i.e. it takes an integer type (or a pointer type)
and returns (as an int) 0 if expression is non-zero and 1 otherwise.

3.5.2 Exponential operator

expressionˆexpression

Theˆoperator represents exponentiation and requires an int, stone or mint on the left as a
base and an int or stone as the exponent. Let the numerical value of the right expression
be n (if it is of type modint, it returns the value, not the modulus). If n is non-negative,
this finds the result of its value taken to the nth power (and takes the remainder if the left
expression is a modint). Also, in the case that the left expression is a modint, this uses
the squaring method for modular exponentiation to perform the operation efficiently.

If n is negative, this is only defined when the left expression is a modint with a multiplicative
inverse, in which case this finds the inverse of the integer and takes that to the nth power
(using the same algorithm as above).

3.5.3 Multiplicative operators

The multiplicative operators ∗, /, and % group left-to-right.

expression * expression

Depending on the type of the expressions, this operator has very different uses.

If the expressions are both of type modint, this returns the product of the two numbers
under that modulus. The behavior is defined only when the two modints have the same
modulus. If only one expression has type modint, it returns the product of two numbers
under that modulus. Otherwise, it returns the typical numerical product of the two.

Now, if one expression has type point, then the other must be an integer type. In this case,
if the integer type has value n, it returns the result of the point added to itself n times
(see §9 for further explanation). No other type combinations are allowed.

expression / expression

The / operator only works when the expressions are of type int or stone. It implements
integer division, returning the type of the first expression.

expression % expression

The % operator only works when the expressions are of type int or stone, and returns the
remainder of the first expression when divided by the second, returning the type of the
first expression.

3.5.4 Additive operators

The additive operators + and − group left-to-right.

25

expression + expression

The + operator returns the sum of the expressions. If the expressions are both integer or
modint types, conditions are analogous to those applying to ∗.

If the expressions are both of type point, this computes the elliptic-curve addition of the
two points (see §9), the behavior of which is only defined when the two points are relative
to the same elliptic curve. No other type combinations are allowed.

expression - expression

The binary − operator returns the difference of the expressions. It calculates exactly
expression + (−expression) and is valid for all types for which this expression is valid.

3.5.5 Relational operators

expression < expression

expression > expression

expression >= expression

expression <= expression

These expressions return 0 or 1 based on whether the specific relation is false or true,
respectively. The operators are only defined when the expressions are of integer type or
are a pointer, though both expressions need not be of the same type. In the case of a
pointer, it uses the memory location that it is pointing to (interpreted as a number) to
compare, and in the case of a modint it uses its numerical value (without the modulus).

Note that the statement a < b < c does not seem to mean what it does, even though the
operators do group left-to-right.

3.5.6 Equality operators

expression == expression

expression != expression

These are analogous to the relational operators, except they have lower precedence. Note
that this implies that they implement structural equality, not physical equality.

Note that if the two expressions are of type modint, it does not check that the moduli are
equal. To do so, call access() (see 2.2.5). Also, == is defined for points – it checks that
the curve they are defined over is the same and that its x and y coordinates are equal as
modints.

expression && expression

This is the logical AND operator. It returns 1 if both values are non zero and 0 otherwise.

expression || expression

This is the logical OR operator. It returns 0 if both arguments are 0, 1 otherwise.

26

3.5.7 Assignment operator

lvalue = expression

At the end of the evaluation, the value of the right operand is stored in the left operand.
The value of this operation is exactly the value of the left operand after the assignment has
been completed. The operand on the left of the assignment operator must be an lvalue.

lvalue =% expression

At the end of the assignment, lvalue will store the result of lvalue % expression.

3.6 Statements

Statements allow the user to control when expressions are executed in their programs.

3.6.1 Statement Terminator & Blocks

An expression is turned into an expression statement when it is terminated by a semicolon:

expression ;

Any expression becomes an expression statement when terminated by a semicolon, how-
ever expression statements are only useful for their side effects, such as a calling functions
or assigning a value to a variable.

Statements may be grouped together into a compound statement or block using braces
{ }. Blocks are used to group multiple statements together, and the resulting block is
syntactically equivalent to a single statement. Blocks are commonly seen in the definition
of a function body, or with many of the control flow statements defined in this section,
such as for, while, and if. Unlike normal statements, blocks do not need to be terminated
by a semicolon. Blocks may be defined within other blocks, and variables may be declared
within any block. When a variable is declared within a block, its scope is defined by that
block, meaning that the variable is local to the block in which it is defined.

3.6.2 Control flow

Control flow statements determine the order in which expressions are evaluated.

if, else

The keywords if and else are used to create conditional statements, which selectively
execute statements based on the truth of a given expression. The simplest constructions
are

if (expression) statement1

if (expression) statement1 else statement2

In each of these expressions, statement1 is executed if (and only if) expression eval-
uates to true (a non-zero value). If expression == 0, nothing happens as a result of the
if statement unless there is an else following statement1, in which case statement2 is
executed instead of statement1. For example,

27

if (n > 3)
x = 1;

else
x = 5;

If n > 3 evaluates to true, then the variable x is assigned the value 1, otherwise x is
assigned the value 5. Note that the expression n > 3 is not terminated by a semicolon, as
it is not a statement, while both x = 1 and x = 5 are semicolon terminated, in accordance
with the expected syntax of if statements listed above.

if statements can be nested and combined to test for multiple conditions:

if (n > 3)
x = 1;

else if (n == 3)
x = 3;

else
x = 5;

In nested statements such as these, each else matches the closest preceding else-less
if. This rule clarifies the ambiguity resulting from the fact that not every if must have
an else. For example, in

if (n > 3)
if (n < 10)

x = 1;
else

x = 5;

x will be assigned the value 5 if n is greater than 3 but not less than 10, i.e. the else
is matched with the most recent if which tests if n < 10. If you want to match the else
with the first if instead, you must use braces:

if (n > 3) {
if (n < 10)

x = 1;
}
else

x = 5;

Loops – while

The while statement is used to create a loop that runs so long as a given expression is
true. The formal syntax is:

while (expression)
statement

In a while statement, expression is evaluated first. If it evaluates to a non-zero value,
statement is executed and then expression is re-evaluated. This cycle continues until
expression evaluates to 0, or is false, at which point the while statement is over, and
statement will not be executed anymore. A while statement may also be exited using a
break statement, as discussed in 5.2.5.

The following example computes the sum of the first 9 integers:

28

int sum = 0;
int n = 1;
while(n < 10) {

sum = sum + n;
n = n + 1;

}

Loops – for

The for statement has the syntax

for (expr1 ; expr2 ; expr3)
statement

and is equivalent to a while statement of the form

expr1;
while (expr2) {

statement
expr3;

}

except only in relation to continue, discussed in 5.2.6.

The three elements of a for loop are any expressions, and any or all of these expres-
sions may be omitted. Specifically, expr1 is executed once at the beginning of the loop,
as an initialization step; expr2 is a test expression that is executed before each iteration
of the loop, such that if expr2 evaluates to false the loop exits; and expr3 is called after
each iteration of the loop body, as an incremental step. Omission of expr1 or expr3 simply
means that the loop runs without calling those expressions. In the event that expr2 is
omitted, the loop runs as if expr2 is true permanently, as in an ’infinite’ loop (while(1)).
This makes sense only if the loop is to be broken in some other way, such as with a break
or return statement. It is also important to note that, in accordance with the behavior
of the comma operator (see 5.9.1), the use of a comma separated expression for expr2
will have the effect of only using the rightmost expression as a check for termination of
the loop. In order to check multiple conditions, you must combine the expressions using &&.

For example, the following loop will terminate when x reaches 10, not when y reaches
5:

int sum = 0;
for(int y = 0, x = 0; y < 5, x < 10; y = y + 1, x = x + 1)

sum = sum + x + y;

To actually check both conditions, replace expr2 with y < 5 && x < 10.

The for loop makes more sense than the while loop in cases where there are present
and simple initialization and incremental steps, as when you want to count the number of
times the loop runs.

Our previous example is one of those cases:

29

int sum = 0;
for (int n = 1; n < 10; n = n + 1)

sum = sum + n;

Null

The null statement is a single semicolon.

;

A null statement does nothing, and has no impact on your program, but is useful in the
body of a loop statement. For example, the following snippet sets x to the largest integer
less than the square root of a:

int x;
for (x = 2; x*x < a; x = x + 1)

;

return

The return statement is used to end the execution of the surrounding function body and
return control back to the calling function. The statement has the form

return value ;

where value is optional, and only valid if the function has a return type other than
void. If the function has a return type other than void, the function return type and the
type of value must match. In this case, it is also valid to omit value so long as the calling
function does not require a return value. It is generally not a good idea to omit value
unless the function return type is void.

3.7 Program Structure

A Program is composed of variables and functions. Information can be shared between
functions by parameters, return values and global variables. The functions can occur in
any order in the source file, so long as a function’s prototype or definition is provided before
or at the time of its use.

Programs require a main() function, and all other functions used within main() must
be declared and defined before it to be used in the main function.

int otherFunction()
{

declarations and statements
}
int main()
{

declarations and statements
otherfunction()
return 0

}

How functions interact with the declarations and statements of other functions will be
discussed in the section 3.7.2.

30

3.7.1 Functions

Basic Functions

Functions have the following form:

return-type function-name (argument declarations)
{

declarations and statements
}

Functions need a return statement to return a value from the called function to its caller,
with the exception of functions that have void as the return-type (refer to section 2.1.3).
If a return type is not explicit, then it will be assumed to be an int [?].

Returning Expressions

Functions may return expressions as follows:

return expression ;

The expression will be converted to the function’s return type if they do not match.

Void Functions

Functions may return what appears to be the return-type void like in the following:

void function-name (argument declarations)
{

declarations and statements
}

In C%, a void function type indicates that the function does not return a value.

3.7.2 Scope

Lexical Scope

The lexical scope of names declared in external definitions (in a file, but not within a func-
tion or other specified scope) extends from their definitions to the end of their respective
file. Within functions, the lexical scope of names is the body of the function itself [?].

main() { int a; ...}
//a falls out of scope

int mainCantSeeThis = 0;

void mainCantSeeThisEither(int a) {...}

In the above example, main() cannot access the int declared after it, nor can it access the
void mainCantSeeThisEither. In the same example, void mainCantSeeThisEither can
access the declared int mainCantSeeThis. Furthermore, a is not accessible outside of the
scope of its definition.
It is illegal to redeclare a name within its context unless it is of the same type and class it
previously held [?].

31

3.8 File I/O

3.8.1 I/O Channels

C% supports three I/O channels: standard input (stdin), standard output (stdout), and
standard error (stderr). They are represented by the ints that describe their system file
descriptors in C%’s standard I/O functions. stdin is represented by 0, stdout is represented
by 1, and stderr is represented by 2.

3.8.2 printf()

printf directly outputs the string associated with a char pointer to stdout.

int printf(const char *format, ...);

It is also worth noting that our language has multiple special printing functions for dis-
playing the data in our custom types. This functions are mostly used for debugging and
have names following the format of print_stone.

3.8.3 scanf()

scanf directly reads from the stdin.

int scanf(const char *format, ...);

The scanf function allows us to read input from stdin and store it in a character pointer
The following code reads in a string from stdin and prints it to stdout. This use case
demonstrates the basic use of our File I/O.

int main() {
char *a;

a = malloc(10);
scanf(a);
printf("%s\n", a);

return 0;
}

32

Chapter 4

Project Plan

4.1 Planning Process

We tried to break up our project into discrete chunks as much as possible. In the beginning,
this was more difficult while we all worked on the same files from MicroC in order to
implement our own grammar. However, as the project went on we were each able to
find our niche where we could contribute the most efficiently. A lot of our deliverables
were self driven with everyone contributing where they felt that they would be the most
helpful. This worked out well, especially because our manager, Josh, and TA, Jacob, both
helped to make sure that we were always working toward productive goals. This freedom
in deliverables was made possible by weekly meetings in order to keep our entire project
on track.

We set up issues to be picked up on github in order to track who would tackle each
problem.

4.2 Specification Process

We had a very specific goal when we began the development of our project. We wanted
to make a language that would make cryptologist’s jobs as easy as possible. This lead us
to create an initial list of features that would make processes like encryption and secure
handshakes as intuitive as possible. We created an initial list of features that would all be
useful for cryptography and modified them as we developed and realized more use cases
and limitations.

4.3 Development Process

Our development was structured in order to meet goals given by our manager and TA and
to meet the deadlines of the course. After the initial stages of development that required
getting our scanner and parser working. After that our development became feature driven
with everyone splitting up to implement separate features into the language.

4.4 Testing Process

Our testing process is explained in depth in its own chapter of this report. We made sure
to include tests for each feature that we added to make sure that their functionality was
maintained with every update. We also added tests at the beginning of each branch to
make sure that the added functionality did indeed take something that did not previously
work and make it work. No PR was ever merged unless it completed our entire test suite.

33

4.5 Team Responsibilities

We did not strictly adhere to our initial roles. Here is a quick summary of individual
responsibilities.

• Margaret Mallernee - I worked mainly on aspects of codegen, unary operators, the
access functions, and documentation. I also got our logo and ordered shirts.

• Zachary Silber - Test Suite. Continuous Integration. Merge Quality Assurance. Link
to C functions. Documentation.

• Michael Tong - Semantic Checker. Point and stone arithmetic implementation. Vari-
able declaration flexibility. Preprocessor. String and char literals. Line comments.

• Richard Zhang - Helped out on testing throughout the project and wrote a majority
of the standard library.

• Joshua Zweig - I worked largely on the integration openssl/bn with codegen, includ-
ing problems of architecture, memory management and translation. I also worked
broadly on many other aspects of codegeneration. As manager, I also took on the re-
soponsibilities of setting meeting times, agendas and individual tasks for our weekly
sprints.

4.6 Github Stats

Our members contributed with the following usernames.

• Margaret Mallernee - mlm2299

• Zachary Silber - zsilber

• Michael Tong - mikecmtong

• Richard Zhang - richurdzhang

• Joshua Zweig - joshuazweig

We can see some of the contributions of each contributor by utilizing a small script.

cat ~/gitauth.sh
git log --author="$1" --shortstat $BRANCH | awk ’/^ [0-9]/ { f += $1; i += $4; d

+= $6 } END { printf("%d files changed, %d insertions(+), %d
deletions(-)\n", f, i, d) }’

$ sh ~/gitauth.sh Joshua Zweig
323 files changed, 77299 insertions(+), 717 deletions(-)
$ sh ~/gitauth.sh Zack Silber
848 files changed, 12295 insertions(+), 4606 deletions(-)
$ sh ~/gitauth.sh Michael Tong
191 files changed, 75866 insertions(+), 75265 deletions(-)
$ sh ~/gitauth.sh Maggie Mallernee
23 files changed, 844 insertions(+), 268 deletions(-)
$ sh ~/gitauth.sh Richard Zhang
73 files changed, 1060 insertions(+), 91 deletions(-)

34

Additionally, we can utilize charts given by github to see that our efforts were focused
around the afternoon and that (thankfully) no commits were ever pushed between 6am
and 9am.

4.7 Project Log

Here is a dump of all of the commits for our project. Squashing was utilized on a few big
PR’s. We ran the command ’git log –no-pager’ to get this log.

4.8 Development Environments

We tried to keep software consistent among our team as much as possible and necessary.

• Github - We used git for version control which made collaborating on the same files
and keeping track of changes much more convenient. We made sure to always have
a functioning master branch.

• OSX - We all ran OSX which helped keep everything consistent with the Unix de-
velopment environment.

• LLVM 3.8 - This seemed to be a widely supported version and was easy to install
and utilize.

• TravisCI - This third party software was used to host our continuous integration.

• Slack - We used this for official discussion of the project, while occasionally defaulting
to Facebook Messenger for more brief communication.

• Overleaf/Latex - We used Latex to produce all of our documentation and collaborated
on the same document via Overleaf.

• Vim/etc. - We mostly used vim since it is so well integrated with the OSX terminal,
however there were times when other editors were used and it was always left up to
the individual developer.

35

4.9 Style Guide

While, admittedly, there were no concrete rules put into place during development, we
tried to stick to a few consistent principles when writing OCaml and C% code.

• No lines should be longer than 80 characters

• Points, Curves should have capital variable names. If possible, the name of a Curve
should be taken from the beginning of the alphabet (e.g. E or C) while points should
be taken from the latter third (e.g. P, Q, R). In the case that one wants to make
the variable name more descriptive, descriptors should be added on with underscores
(e.g. E_public or P_alice)

• When a mint is to be a coefficient for the initialization of a Curve, it should likewise
have a capital variable name. In such a case, if possible, the first mint should be
called A and the second mint B (as above, one may add other descriptors using _,
e.g. A_public).

• Otherwise, variable names should be in camelCase.

• Tabs should be consistent and 4 spaces each

• Curly braces should start on the same line as the code before

commit 58ea88bc1a81da22bc0855d5aacc56a99c82bc84
Author: mlm2299 <mlm2299@columbia.edu>
Date: Tue May 9 22:45:37 2017 -0400

Mm access (#51)

Mainly: Adding access functionality for mints/curves/points, fixing some
unops, miscellaneous other

* filled in pattern matching at line 27 for ltype_of_type, will fill our
unique types with C structs linked in

* Added skeleton for all missing pattern match options in the expr builder
function

* Added skeleton for stmt builder, should complete all pattern match errors

* Starting codegen on dowhile

* Brought over changes from mm_codegen

* Added some of the type stuff and prepped for linking in access

* Added tested access.c and types.h

* Updated Makefile to include access, codegen ready to test access,
special_arith now links in types instead of declaring them separately

* Added type matching for unops, to return proper type

* Added test for unop NOT for int types

* ***previously added test was actually for NEG on int types

36

* Added test for unop NOT on int types -- currently fails

* finalized unop NOT test for ints -- revealed implementation is wrong

* Fixed NOT for int types, modifying from the microC version

* Left a note on what’s left to test

* Added function for point inversion

* Updated codegen for point inversion (Neg on Point types)

* Added instruction for AddrOf

* Small changes to access

* Added Makefile changes to include access / correct a typo

* Added access.c

* Added types.h

* Updated access to allow index access to mints

* Updated access for index access to curves

* Added index access to points, got rid of testing print statements

* Commented out untested unops, updated access to take an index in codegen

* Changed back to access - need to merge up

* Updated to conform w new styles from master / stone as void *

* Updated access mint

* Updated to be access1, updated and tested access1 with BN values

* Freed BNs in access.c

* Debug test for multi-parameter syntax in semant/codegen for access

* Access working for mints

* Updated to have separate access functions for mints, curves, points

* Updated to include access_curve, but takes curve ptr because curve
constructor returns this for some reason

* Added access_point, also takes a point_ptr even though those can’t be
declared

* Cleaned up codegen comments, updated compile/test scripts to link access.o

* Tests for access on mints, curves, points

* Updated compiler script to actually default to .ll file production

37

* Cleaning up comments in codegen, commenting access

* Commented out point_inverse_func - needs a fix

* Misc. cleaning

* Final cleanup

commit a6ebdc5b988191ae40e77625b88b667d4a38bba4
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Tue May 9 22:29:00 2017 -0400

Jz stone compar (#52)

* Comparators working

* add test

commit 1eed8b78112b051048784119dc80f2c54b75c2fd
Merge: e5f2ee3 c5abb98
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon May 8 20:34:02 2017 -0400

Merge pull request #49 from joshuazweig/rz_test_clean

Broke down large tests into separate tests

commit e5f2ee38b77d4f1da2802add72eb0bdedc522508
Merge: 9a3fdb4 6af8125
Author: mikecmtong <mct2159@columbia.edu>
Date: Mon May 8 20:24:28 2017 -0400

Merge pull request #50 from joshuazweig/cleanup

cleanup dir

commit c5abb9821a46d7c5f09a30e869f12b9b229fd0e6
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon May 8 14:25:24 2017 -0400

Fixing up some testing problems

commit 6af8125b287f03c024c30f344369264df57ae1b2
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon May 8 12:22:06 2017 -0400

cleanup dir

commit 9a3fdb461f897670e24d844548adf617bea16a71
Merge: fe0b7b8 26b9e79
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon May 8 11:49:01 2017 -0400

Merge pull request #48 from joshuazweig/mt_elgamal_ec

ElGamal normal

38

commit 26b9e7995eed6a1b64fa4ebb3d59e747998705b4
Author: Michael Tong <mct2159@columbia.edu>
Date: Mon May 8 11:34:39 2017 -0400

updated how to use, changed file extensions

commit 6b18e0f8fe8cc9cf32b2aef3c9298d0a794c0b06
Author: Richard Zhang <richard.zhang@columbia.edu>
Date: Mon May 8 00:30:48 2017 -0400

Seperated large tests into different tests

commit d81b8dfb05fd4f3c724e60b724c65b931197ecf0
Author: Michael Tong <mct2159@columbia.edu>
Date: Sun May 7 14:46:43 2017 -0400

added to instructions

commit 46333727f8d732aa97627ae0fba1c74f6a8255b6
Author: Michael Tong <mct2159@columbia.edu>
Date: Sun May 7 12:54:50 2017 -0400

named it for the right protocol this time

commit d5617320bceecb358f41165a4d83488110de9db9
Author: Michael Tong <mct2159@columbia.edu>
Date: Sun May 7 12:52:57 2017 -0400

added the files to a folder

commit fe0b7b803519cf5ee59074a2e89b3c46184c7125
Merge: 9644e9d b4d1721
Author: mikecmtong <mct2159@columbia.edu>
Date: Sun May 7 12:49:31 2017 -0400

Merge pull request #47 from joshuazweig/mt_diffie_ec

Mt diffie ec

commit d79c515625e62dba5f76c0f07d50b48eef1e482b
Author: Michael Tong <mct2159@columbia.edu>
Date: Sun May 7 12:45:34 2017 -0400

naive RSA thing working

commit 5fbc8c1a3c1e102bae2329c9ea95574c29b95f89
Author: Michael Tong <mct2159@columbia.edu>
Date: Sun May 7 12:42:31 2017 -0400

added atoi and changed some rsa files

commit 38be86789a2b9a96af5ff559d0640188a6c22c4e
Author: Michael Tong <mct2159@columbia.edu>
Date: Sun May 7 12:21:59 2017 -0400

rsa stuff

commit b4d1721f2bd8d08999801a308826d1fb37f8de3a

39

Author: Michael Tong <mct2159@columbia.edu>
Date: Sat May 6 23:05:33 2017 -0400

added new print functions for communication

commit 94c2cc648b89061bd866ecfd1eb78353bc64840f
Author: Michael Tong <mct2159@columbia.edu>
Date: Sat May 6 22:53:41 2017 -0400

arithmetic working, though can’t talk to each other because of how points
are printed

commit 9644e9de37229ec9d90a0877e4e15eaf9a570fbf
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Sat May 6 13:18:12 2017 -0400

This doesn’t need to be here

commit ecd3853e745fb8441761affa48c73f74194bc5d5
Merge: 5871e98 65fbc7f
Author: mlm2299 <mlm2299@columbia.edu>
Date: Sat May 6 13:18:06 2017 -0400

Merge pull request #46 from joshuazweig/mm_compiler_flags

Mm compiler flags

commit 65fbc7f1d05a96946cc19da89bef081b4f6dac8a
Author: Maggie <mlm2299@columbia.edu>
Date: Sat May 6 13:10:36 2017 -0400

bin directory

commit 420cf11d2536f55159218ada1aa0d308f17120fa
Author: Maggie <mlm2299@columbia.edu>
Date: Sat May 6 12:57:48 2017 -0400

Cut bin directory

commit 487e360c2f9ea56f27d61d501b5b4205396571a7
Author: Maggie <mlm2299@columbia.edu>
Date: Sat May 6 12:51:59 2017 -0400

Cut tabbing in help message

commit 34fad6cbc230fd211dff32308ae4b5bfc6b78654
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Sat May 6 12:43:11 2017 -0400

Force remove bin dir

commit 258b70c6530e79666d7e13aae2483fa9d79ee0f2
Merge: 223c303 f6590e8
Author: Maggie <mlm2299@columbia.edu>
Date: Sat May 6 12:38:46 2017 -0400

Merged conflict

40

commit 223c303370be74f5e1c9c80210a0c709ed444ffe
Author: Maggie <mlm2299@columbia.edu>
Date: Sat May 6 12:33:08 2017 -0400

Makefile fixes, to create bin

commit f6590e89d736323f9c958dea524db6dc8c6d2e0e
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Sat May 6 12:32:28 2017 -0400

Update makefile so compiler palce in bin dir

commit ccf1369de19071cc37b27ff7208cb4a91b7555dc
Author: Maggie <mlm2299@columbia.edu>
Date: Sat May 6 11:47:15 2017 -0400

Modified .sh added

commit a457fa4f2a766533bd7845dc8e280b07e11fb9c9
Author: Maggie <mlm2299@columbia.edu>
Date: Sat May 6 11:46:27 2017 -0400

Modified to handle permissions properly

commit dd49da96f6a8b18b333fc6e5650840a3b453d7e8
Author: Maggie <mlm2299@columbia.edu>
Date: Sat May 6 11:38:26 2017 -0400

New cmc.sh script

commit 85134a54c1d34baa004f39c620c69a7f9b4f5d8e
Author: Maggie <mlm2299@columbia.edu>
Date: Sat May 6 11:37:48 2017 -0400

Updated cmc to be a shell script, added target in Makefile that handles
permissions

commit 2e4bc9ce3c23fbd227cdf7a34baccd22cbb0af23
Author: Maggie <mlm2299@columbia.edu>
Date: Fri May 5 18:15:34 2017 -0400

Removed extra comments

commit 612ef48ec0caa0decd58444d83494f64c4d64956
Author: Maggie <mlm2299@columbia.edu>
Date: Fri May 5 18:13:49 2017 -0400

Added -c as default option

commit 8886dd9523913afc529c2bc6712905536d1b4fab
Author: Maggie <mlm2299@columbia.edu>
Date: Fri May 5 18:02:04 2017 -0400

Updated help description

commit a07b5e70bc17f91527ebc3d9f13b454ff502a0e0
Author: Maggie <mlm2299@columbia.edu>
Date: Fri May 5 17:55:51 2017 -0400

41

Added token flag, updated ast flag to use menhir

commit 5871e987f0077840776748eab5f2d2cf8cee0604
Merge: 728bfa6 65fe75b
Author: mikecmtong <mct2159@columbia.edu>
Date: Fri May 5 13:55:52 2017 -0400

Merge pull request #45 from joshuazweig/mt_point_hacky

Point multiplication working

commit 245289aecbb3ab77a6267a06310b44c6d98e2e88
Author: Maggie <mlm2299@columbia.edu>
Date: Fri May 5 12:44:13 2017 -0400

Small changes to help listing

commit bd6da7b662c94f9d2f914d84b574bfdfd7f06ae4
Author: Maggie <mlm2299@columbia.edu>
Date: Fri May 5 02:50:04 2017 -0400

Added more complete help message

commit 2b3922e5ec5c0833dce0cadcae031e7f467f05f1
Author: Maggie <mlm2299@columbia.edu>
Date: Fri May 5 02:24:53 2017 -0400

Added cmc to compile with options

commit 11f2cbca47cef26e355e5a5e5aae9b70954f1927
Author: Maggie <mlm2299@columbia.edu>
Date: Thu May 4 22:14:52 2017 -0400

Test change (added whitespace)

commit 65fe75b0eb83615270d15925108b5a802588cbc4
Author: Michael Tong <mct2159@columbia.edu>
Date: Thu May 4 19:21:44 2017 -0400

fixed syntax error

commit 76c331ccfb48be7ff44a5ba9193d5bb55c2ea4c5
Merge: 61d3146 728bfa6
Author: mikecmtong <mct2159@columbia.edu>
Date: Thu May 4 19:14:47 2017 -0400

Merge branch ’master’ into mt_point_hacky

commit 61d3146afcaff663e1da5791cf61208c833d31d8
Author: Michael Tong <mct2159@columbia.edu>
Date: Thu May 4 19:06:31 2017 -0400

freed a helper string

commit 6177dfb89c0650db7b919fcba48460a5dcc2ff8d
Author: Michael Tong <mct2159@columbia.edu>
Date: Thu May 4 19:03:01 2017 -0400

42

version

commit c61db32b8c47df54348aacd68d0d239e7cd67bb5
Merge: 7579250 648b37b
Author: Michael Tong <mct2159@columbia.edu>
Date: Thu May 4 19:01:42 2017 -0400

fix merge conflicts

commit 75792505b483eb256bff17043aed67fe9834f421
Author: Michael Tong <mct2159@columbia.edu>
Date: Thu May 4 19:00:45 2017 -0400

Stone * Point multiplication working.

commit 728bfa6073aa7a6afdb7f2612d53cb66d470deec
Merge: ec915d5 e2773ca
Author: zsilber <zs2266@columbia.edu>
Date: Wed May 3 22:36:00 2017 -0400

Merge pull request #43 from joshuazweig/rz_src

Added crypto_lib directory

commit e2773ca914b6ac67b6c95d1f138117821753c3cd
Author: Richard Zhang <richard.zhang@columbia.edu>
Date: Wed May 3 22:23:15 2017 -0400

Deleted old folder and keyex from home dir

commit 77a533f68731725fa3fed0f9c24435757129cfe3
Author: Richard Zhang <richard.zhang@columbia.edu>
Date: Wed May 3 22:21:21 2017 -0400

Created new folder for crypto_lib

commit ed067abe938bd2ded13030a8b7bd0483368cf05e
Author: Richard Zhang <richard.zhang@columbia.edu>
Date: Wed May 3 22:11:42 2017 -0400

Added crypto_lib directory

commit ec915d56f3882b82a8716c46bfe49670a77a7373
Merge: 12ada73 9c23bfb
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Tue May 2 02:19:20 2017 -0400

Merge pull request #42 from joshuazweig/jz-free

Jz free

commit 9c23bfbd11484ca19f8cfa1823b4fcd84b994fd1
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Tue May 2 02:19:02 2017 -0400

remove freetst

43

commit 648b37b359858628a03f0d47fdbaa99d8605ece3
Author: Zack Silber <zs2266@columbia.edu>
Date: Tue May 2 01:59:25 2017 -0400

Fix one test and refix 3.7 nonsense

commit d19c8324bf0d192d843a664aec1a0f4ded33536e
Merge: eab3716 be7c954
Author: Michael Tong <mct2159@columbia.edu>
Date: Tue May 2 01:55:43 2017 -0400

Merge branch ’mt_point_hacky’ of https://github.com/joshuazweig/C- into
mt_point_hacky

commit eab371672560369022ec2a82735b68aa1de6955a
Author: Michael Tong <mct2159@columbia.edu>
Date: Tue May 2 01:55:37 2017 -0400

update fail message

commit be7c954802576b29d4a3f17a9e8e6c15b73282e8
Author: Zack Silber <zs2266@columbia.edu>
Date: Tue May 2 01:53:50 2017 -0400

Mint print test fixes

commit 7b68c88d1831893567f16f16ab3f6ef27612ac3b
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Tue May 2 01:47:50 2017 -0400

Remove test prints

commit e41cb38a14ed76bb99b42d7c474d0d6851f3855f
Merge: d435ac3 12ada73
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Tue May 2 01:41:48 2017 -0400

Merge branch ’master’ into jz-free

commit d435ac30635f757afaf489bd92edcc7a98326b02
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Tue May 2 01:41:23 2017 -0400

finish stone memory management

commit dcd8ad9f860f91a32e9e5afc04a2fe1236c43aab
Author: Michael Tong <mct2159@columbia.edu>
Date: Tue May 2 01:36:13 2017 -0400

fixed syntax error

commit 6c411654225fab42418e857a59290e8d016a8650
Author: Michael Tong <mct2159@columbia.edu>
Date: Tue May 2 01:29:55 2017 -0400

Fixed some stuff in semant/codegen (Point to Pointer(Point))

The case of adding additive inverses is slightly buggy with point. Can’t

44

figure it out but I say fuck it, let’s just try and get diffie hellman
with ECC working and call it a day.

commit b7d83cabfa7e0c0193cae010b48fb0d09114b992
Author: Michael Tong <mct2159@columbia.edu>
Date: Tue May 2 01:09:11 2017 -0400

added a test

commit 1ae046bbb897c82040b90cf4832e37a8fb3eea19
Author: Michael Tong <mct2159@columbia.edu>
Date: Tue May 2 01:01:35 2017 -0400

Points working

commit 7dc976c56a8e22856cf8889e5585d0e18344dc33
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon May 1 21:43:10 2017 -0400

modulation not working

commit 13b137f983c10ed96c79c444bf10c015b6daa0fc
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon May 1 21:38:01 2017 -0400

Freeing on stone add

commit b0fca5b2cbdd5976e2b31111247cc52236fc858b
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon May 1 21:31:19 2017 -0400

Mem management is a go :)

commit 0492ddbf01f29f08bea74b7dae5610da8e0e458c
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon May 1 17:51:40 2017 -0400

Success :)

commit ec7211a671cfc155c9498d62e118dc28a1607e1f
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon May 1 13:10:04 2017 -0400

commit for michael

commit 12ada7347f48a7ac4147842176289c1b60bd2bf4
Merge: 3d7e887 2d82ab4
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon May 1 00:24:56 2017 -0400

Merge pull request #41 from joshuazweig/printf_param

Printf param

commit 2d82ab4e02c7fa70eaef87fe91b32260605406b9
Author: Michael Tong <mct2159@columbia.edu>
Date: Sun Apr 30 23:36:19 2017 -0400

45

added a test

commit 9f66c4bc25bbb7363f50b008f7316ea01c299ddf
Author: Michael Tong <mct2159@columbia.edu>
Date: Sun Apr 30 23:33:59 2017 -0400

semant now checks arguments of printf (just that they are valid expressions,
not that the types match up)

commit 3d7e88755b85b5df52d6ac1fa4cb3bc5fd3dbcca
Merge: f14bb19 979fc4e
Author: zsilber <zs2266@columbia.edu>
Date: Sun Apr 30 17:38:52 2017 -0400

Merge pull request #40 from joshuazweig/mt_nested_scope

Can now declare variables of the same name within nested scopes

commit 979fc4ebea44a81bb8bc41d22c9533c64071a495
Author: Michael Tong <mct2159@columbia.edu>
Date: Sun Apr 30 16:29:54 2017 -0400

tests

commit e26efeaa87e707ac2c87b9ccf302f0d65cbf2a73
Author: Michael Tong <mct2159@columbia.edu>
Date: Sun Apr 30 16:26:42 2017 -0400

added VER variable

commit 060f897424e25de9fb5674707097618c06b8fec6
Author: Michael Tong <mct2159@columbia.edu>
Date: Sun Apr 30 16:19:45 2017 -0400

Can now declare variables of the same name within nested scopes

commit f14bb19e70b9f3de5ce58409cd1e2f709b258f0f
Merge: 95428d4 7b292e4
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Apr 28 18:14:42 2017 -0400

Merge pull request #39 from joshuazweig/tmp_remove

Dis why the tmp files were there

commit 7b292e40b4ab533dca21b603a14398a8eb46524a
Author: Zack Silber <zs2266@columbia.edu>
Date: Fri Apr 28 17:20:39 2017 -0400

Dis why the tmp files were there

commit 95428d4599bf49a6b3228bd5925d659e4d9434a7
Merge: d906d06 f8d3eef
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Apr 28 17:03:12 2017 -0400

Merge pull request #38 from joshuazweig/tmp_remove

46

How did these tmp files end up here? This is almost certainly my fault

commit fdd6eeeeaf11813449b135dba524c16e038e7efb
Author: Michael Tong <mct2159@columbia.edu>
Date: Fri Apr 28 16:49:09 2017 -0400

added test

commit 7b24ee69156b96d0765bdd591f94700952a72d9c
Author: Michael Tong <mct2159@columbia.edu>
Date: Fri Apr 28 16:47:15 2017 -0400

added curve_print function, still have the same problem with segfaults

commit 2445ad5d890f70b6d7edf9b62a7ae0d74402c0f7
Author: Michael Tong <mct2159@columbia.edu>
Date: Fri Apr 28 16:39:42 2017 -0400

First attempt at point arithmetic. Not working.

Segfaults due to some memory issue surrounding curves it seems. Also
when declaring a point, the print function prints the wrong numbers

commit f8d3eeffd1974253fa3303952a2fe298815af50e
Author: Zack Silber <zs2266@columbia.edu>
Date: Fri Apr 28 16:18:20 2017 -0400

How did these tmp files end up here? This is almost certainly my fault

commit 7a00365f8326e56d883a1360e1648218172891b7
Author: Michael Tong <mct2159@columbia.edu>
Date: Fri Apr 28 15:23:04 2017 -0400

Some fixes to arithmetic logic (mint_to_stone, stone_create)

Mod exponentiation now works properly for negative powers.
Stones get reduced to their positive modulus, even if they begin
negative.
Added "VER" variable to scripts.

commit d906d06607cb2f1b353d452da568dbf806d4ec6d
Merge: 75f7b49 c5c7c0b
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Apr 28 11:46:17 2017 -0400

Merge pull request #37 from joshuazweig/jz-free

Jz free

commit c5c7c0bc3468d4bcb15faa738e18dc52877a4ea9
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Apr 28 11:38:03 2017 -0400

Update func type name

commit 50b9c4f8f8003ed5b7b37662b0363ac981db8ab0
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Thu Apr 27 23:03:54 2017 -0400

47

Fix mint bug

commit 93f84970d91913a8cd0d79b5f555f8b68bbd1541
Merge: cb8f77b 75f7b49
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Thu Apr 27 22:55:22 2017 -0400

merge commit

commit cb8f77bb93c67ecdb1e2092217c2fa4a58ae0bc4
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Thu Apr 27 22:52:59 2017 -0400

Add free function

commit 75f7b4954c343e63cebe12719057e5c27206d2fe
Merge: 125974d 2618861
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Thu Apr 27 22:48:44 2017 -0400

Merge pull request #36 from joshuazweig/mint_testing

Adding mint tests. Plus a tiny bit of random cleaning.

commit 26188612d8131fd439171ee83d904ec5381daa50
Author: Zack Silber <zs2266@columbia.edu>
Date: Thu Apr 27 21:32:35 2017 -0400

Adding mint tests. Plus a tiny bit of random cleaning.

Squashed commit of the following:

commit 6996c06de9c62a774bccbe8f2f04efc93256ddb5
Author: Zack Silber <zs2266@columbia.edu>
Date: Thu Apr 27 21:31:28 2017 -0400

Make sure original mint custom test is fully modulated (and more ofc)

commit 0c6cd7430f88f581ab35cb80895232fcec1c07bb
Author: Zack Silber <zs2266@columbia.edu>
Date: Thu Apr 27 21:25:30 2017 -0400

More mint tests

commit 15c4ca5ae1d34b2d069b82850c57308195539852
Author: Zack Silber <zs2266@columbia.edu>
Date: Thu Apr 27 21:12:51 2017 -0400

Getting some initial testing up

commit 6dfefc4edf8606b869879cfc897371836f8eb2ec
Author: Zack Silber <zs2266@columbia.edu>
Date: Thu Apr 27 17:20:33 2017 -0400

Setting up mint testing

commit 09e049cdd1482981fd2a695185def7f6b2fd757d

48

Author: Zack Silber <zs2266@columbia.edu>
Date: Thu Apr 27 17:53:41 2017 -0400

Syntax is a go

commit 125974d74069eadf28ec260779c2ba70deee29b0
Merge: 02b4947 9afd2ef
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Thu Apr 27 15:15:29 2017 -0400

Merge pull request #34 from joshuazweig/mt_preprocess

Python preprocessor working.

commit 02b4947876cc57ea37b2d7fc80a2d89efe70e168
Merge: 6e76c52 928fef3
Author: mikecmtong <mct2159@columbia.edu>
Date: Thu Apr 27 15:14:44 2017 -0400

Merge pull request #35 from joshuazweig/jz-bring-bn

Change so stone printing is dec and update tests

commit 9afd2efbb25c1c0f6a95eb68228785da7a98e679
Author: Zack Silber <zs2266@columbia.edu>
Date: Thu Apr 27 15:05:32 2017 -0400

Switched to LLVM 3.8 for master.

Also moved stuff out of master into custom_tests for now. Have to cd into
custom_tests directory and ../.. back to the preprocessor right now to
make it work because of the way it searches for files. But this will
have to be addressed anyway when we have a library directory.

commit 928fef3a28968f4ed8ad6f840f41855996feb132
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Thu Apr 27 13:44:33 2017 -0400

Change so stone printing is dec and update tests

commit 76f00e7100d912c1148f01073c0892069ba51518
Author: Michael Tong <mct2159@columbia.edu>
Date: Wed Apr 26 18:13:38 2017 -0400

Python preprocessor working.

Use # followed by...

include "filename": runs the preprocessor on the file specified by
filename, replacing #include statement with the result

define SYMBOL: adds SYMBOL to preprocessor’s table (cf. ifdef, ifndef).
Note: not useful for textual substitutions (e.g. #ifdef CONSTANT 42)

ifdef SYMBOL: if SYMBOL is in preprocessor’s table, continue. else, skip
lines until #endif is found

ifndef SYMBOL: opposite of ifdef

49

endif: only relevant in the ifdef/ifndef cases above

commit 6e76c5298d05ecc6847ae2b206771899da0f55e2
Merge: 6c1efdb 4faf5fa
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Wed Apr 26 14:45:20 2017 -0400

Merge pull request #33 from joshuazweig/mt_cleanup

Removed all warnings from codegen

commit 4faf5fa37fc26b1ea324ea339760e5d48a9c769a
Author: Zack Silber <zs2266@columbia.edu>
Date: Wed Apr 26 13:10:15 2017 -0400

Bonus cleaning

commit 28447805a6081d7688738cf76805e6954b8e290b
Author: Michael Tong <mct2159@columbia.edu>
Date: Wed Apr 26 12:40:36 2017 -0400

Removed all warnings from codegen

commit c2401b83234cb9a27e94d4beeca9653c0276d25e
Author: Michael Tong <mct2159@columbia.edu>
Date: Wed Apr 26 11:52:18 2017 -0400

Fixed syntax error

commit 08012ef92192eaf6d207909e06af00dbc1da5520
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Wed Apr 26 02:13:30 2017 -0400

Think this should work but syntax

commit e82095e053ef0ad3acea4a5e734753264d449bdc
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Wed Apr 26 01:07:28 2017 -0400

trying mint pointer direct

commit 517be66dd50477da3171d60be8c2c2f419e21ea1
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Tue Apr 25 17:10:19 2017 -0400

adding test

commit 4141219970617638135909b43de75e870f229bd2
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Tue Apr 25 17:09:42 2017 -0400

First attempt, success doubtful

commit 6c1efdb6cd35c674275da25dfdf911a323df3f5d
Merge: 19e7325 e234a88
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Tue Apr 25 16:37:51 2017 -0400

50

Merge pull request #32 from joshuazweig/travis_patch

Travis patch

commit e234a8894bdda3ffee86861554aaede51fbdd2e6
Author: Zack Silber <zs2266@columbia.edu>
Date: Tue Apr 25 01:32:20 2017 -0400

Hella stone tests and also switched pow to right associative

commit 4a59e79111911373fe924e0c188256868d08d184
Author: Zack Silber <zs2266@columbia.edu>
Date: Tue Apr 25 00:23:59 2017 -0400

Fully integrate all valid custom tests

commit 01ee3bb21c167bfbc90b974c91501e358f78e814
Author: Zack Silber <zs2266@columbia.edu>
Date: Tue Apr 25 00:17:40 2017 -0400

Custom test cleaning

commit f2547c8ae0471320a5df2085eae82b5b297b111d
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 24 19:41:19 2017 -0400

Checking stability of new travis dist

commit 19e732585ee46ff22c35d5c3be261c4faf2ad240
Merge: 98e125e 6366de0
Author: mikecmtong <mct2159@columbia.edu>
Date: Sun Apr 23 11:22:18 2017 -0400

Merge pull request #31 from joshuazweig/mt_grammar

Declarations are now flexible. Integrated with both codegen and semant.

commit 6366de0471b823c02281fd89a20ac65c69de2bff
Author: Zack Silber <zs2266@columbia.edu>
Date: Sat Apr 22 22:12:00 2017 -0400

Whoops accidentally tracked a temporary file

commit 1d15c40e58ef067f15c5e93b7bc72b1eef32613c
Author: Zack Silber <zs2266@columbia.edu>
Date: Sat Apr 22 22:01:02 2017 -0400

Update grammar tests, make sure we use llc 3.8 in master

commit 0b04c5ba3c28cc849b0029d7ebb99d7fa451aa8f
Merge: 8c6a064 4fbd4bc
Author: Michael Tong <mct2159@columbia.edu>
Date: Sat Apr 22 21:52:23 2017 -0400

Pulled tests

commit 8c6a06406d48d21c203b50a6ce52b3d5f5c57d5d

51

Author: Michael Tong <mct2159@columbia.edu>
Date: Sat Apr 22 21:49:59 2017 -0400

Checks for Stone = StringLiteral declaration correctly

commit 4fbd4bc234a39a8bbc8549217d373f20843af2b2
Author: Zack Silber <zs2266@columbia.edu>
Date: Sat Apr 22 19:28:00 2017 -0400

Fix tests and move into automated folder

commit 41d81ff82e02cd5c3093d4c2505fc0abb6341ba4
Author: Zack Silber <zs2266@columbia.edu>
Date: Sat Apr 22 19:04:32 2017 -0400

Fix one error test with new message, remove unneccessary files, move new
tests temporarily to protect from make clean

commit f4f55385117cd5cdf67443a598f5dc95f3a36636
Author: Michael Tong <mct2159@columbia.edu>
Date: Fri Apr 21 15:55:46 2017 -0400

Declarations are now flexible. Integrated with both codegen and semant.

commit 98e125e638d10a6a7966c5a81d1fdc0939457d1f
Merge: 2ef7eb6 960dc56
Author: mikecmtong <mct2159@columbia.edu>
Date: Fri Apr 21 15:06:01 2017 -0400

Merge pull request #30 from joshuazweig/mt_crypto_arith

Mt crypto arith

commit 960dc565d9f118e1eaf20e4180e1ff103725babf
Author: Zack Silber <zs2266@columbia.edu>
Date: Fri Apr 21 14:57:30 2017 -0400

Print stone test fixes

commit 21f4c29f6d33a25e9aa059fbed2bb8c7c5e7e821
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Apr 21 14:34:15 2017 -0400

Update custom tests and fix syntax error

commit 793444e18ae87d9acebf339e9a17933deb4e3b48
Merge: cae0784 2ef7eb6
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Apr 21 14:30:01 2017 -0400

merge commit

commit cae07842164419ed280318748556378ad8736380
Author: Michael Tong <mct2159@columbia.edu>
Date: Thu Apr 20 14:54:40 2017 -0400

Changed pow from ** to ^ (caused grammar problems).

52

commit 2ef7eb60cb0965a21924a81f75d420706290d622
Merge: e97f256 0716396
Author: zsilber <zs2266@columbia.edu>
Date: Thu Apr 20 11:55:15 2017 -0400

Merge pull request #29 from joshuazweig/jz-scanf

Fixes #22

commit 0716396d2d42fd46437ed01b0de5bc0284e7e4a6
Author: Zack Silber <zs2266@columbia.edu>
Date: Thu Apr 20 04:23:49 2017 -0400

Add functions to semant, clean up some testing, need to generalize malloc
return though

commit c09401116f3f68493cbcff203e01d8cd138a0ae3
Merge: acdce14 51a3515
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Wed Apr 19 13:45:33 2017 -0400

Merge branch ’jz-scanf’ of https://github.com/joshuazweig/C- into jz-scanf

commit acdce144575ec16f4fae0301819649a09ff8bac8
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Wed Apr 19 13:45:26 2017 -0400

Add scan test

commit 0944d315d2ce12e7d961cea480639755dba09251
Author: Michael Tong <mct2159@columbia.edu>
Date: Wed Apr 19 13:44:30 2017 -0400

Declared point functions, changed Stone declaration string to be more
intuitive

commit 647d4e3fb85a7f5958f29c4c2f1b0ca91c597041
Author: Michael Tong <mct2159@columbia.edu>
Date: Wed Apr 19 12:55:12 2017 -0400

Finished mint/stone operators. On declarations, value of Mints are
reduced by their modulus (e.g. <23, 5> becomes <3, 5> internally)
WARNING: Grmamar now has reduce/reduce error, since POW was implemented
incorrectly before.

commit 51a351502d444123823e1302532985dc58466b44
Author: Zack Silber <zs2266@columbia.edu>
Date: Wed Apr 19 02:30:02 2017 -0400

Re-enable semant and prevent functions from being named scanf or malloc

commit 8c1d549c21ae1dfab5c5899d6dfe6463fe6289fd
Author: Michael Tong <mct2159@columbia.edu>
Date: Mon Apr 17 19:26:20 2017 -0400

Mint binops pretty much finished!

commit bb76bdf449c419355f2bd268ec806b24225c69ed

53

Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Apr 17 19:10:02 2017 -0400

scanf works

commit 2030e4b28b395707177f80b23825f34717cf256a
Author: Michael Tong <mct2159@columbia.edu>
Date: Mon Apr 17 18:50:15 2017 -0400

Added print_mint function for now

commit bae7ce1ac4c6a11e2ec1f93dfc8373e8f27c1d7e
Author: Michael Tong <mct2159@columbia.edu>
Date: Mon Apr 17 18:33:50 2017 -0400

Got rid of int in mint definition to fix bug in special_arith

commit 3b65d088bcf71d963020e5f09ddc6b8faff21e9d
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Apr 17 14:28:25 2017 -0400

Typo

commit e97f25661856c5622b847e3b62715454db89604d
Merge: 90bf0fb 396a0a8
Author: zsilber <zs2266@columbia.edu>
Date: Mon Apr 17 11:13:41 2017 -0400

Merge pull request #20 from joshuazweig/jz-types

Updated testing to work through cmod.sh.

commit 396a0a8cc383b46eabb05dece31a9c0a3e0ed90b
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 17 05:07:12 2017 -0400

Updated testing to work through cmod.sh.
Added -v flag to support travis integration.
Link properly to newly necessary dependencies.
Add tests for stone printing.

Squashed commit of the following:
commit 90c03457d009a32c2a95058602154712bfe4ec43
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 17 04:59:02 2017 -0400

Flag position fixing

commit bee6e98e327dae04d008ea34fc5cb78cfc686758
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 17 04:47:54 2017 -0400

add support for v flag that uses travis variables

commit a7f481a9500fd87a1f70a14662d0656d06327659
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 17 04:14:38 2017 -0400

54

omg this will work

commit d35d7debb51adee4b825851a467b77775b92b27c
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 17 04:08:19 2017 -0400

fixing

commit d00d4ef57b62595cd6019831daf6e2bcd34e2c42
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 17 03:58:17 2017 -0400

Finally runs, output differs tho

commit bed6509878ac0a47dabcf71e7e4594702966adb7
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 17 03:49:44 2017 -0400

found libcrypto link

commit 0ce989d198eee18ba48d4111b8d5eb8ef89c254d
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 17 03:39:06 2017 -0400

new print strat

commit 7ba4215b952b6ff70239c8fd85d369f686ca9f0a
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 17 03:28:25 2017 -0400

idk man

commit d465e2b0169039f7475dd719ecbc162a1e4548e2
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 17 02:39:38 2017 -0400

Trying another thing

commit 6ba0a4a66624b90842c1d04e02a05b6f41ba29cb
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 17 02:37:10 2017 -0400

Attempt 2

commit 0da2bf7ca514c5e6e0e7e5de63e5ee3595ddd97d
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 17 02:33:43 2017 -0400

installing needed dependencies on travis

commit aa48eb470941ea9cdccfc3cf08f5c6c717416978
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 17 02:26:21 2017 -0400

I hope I have libcrypto in travis

commit 5180c529e5c93a933726758ebcf3e61eb60f05dc
Author: Zack Silber <zs2266@columbia.edu>

55

Date: Mon Apr 17 02:05:53 2017 -0400

Omg I have not been doing make all

commit 4842fe10ce697b42e3c39d776ef41b52fb943b25
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 17 01:59:42 2017 -0400

I am hot on the travis trail

commit f8c0e728895d8318eba22a33f03ed5c2de792d86
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 17 01:52:02 2017 -0400

Travis makes me commit so many times

commit 1026c48f3d842d3c48d18accbf5b3bffaca356ad
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 17 01:36:28 2017 -0400

Playing with travis LLI path in shell script

commit 6691ac74563a7f2a35c95e9eb01c7b6b4c0864df
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Apr 16 19:13:18 2017 -0400

Fix attempt, I hate travis

commit 910498d0f0001a4e9af09fdd05f2ea2642afc5ae
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Apr 16 18:52:12 2017 -0400

Fixing travis LLI path

commit ee0a86b6818b2947d30128b8775087aa10f87240
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Apr 16 18:41:48 2017 -0400

Phone is not Phony

commit 30e86b3abbedfa609df19e8c8c5480a6d8249109
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Apr 16 18:40:20 2017 -0400

Fixing testing to use cmod.sh, added tests for stone printing

commit 73b538e120a48a59e7c6c8eb459198d35e1afab6
Author: Michael Tong <mct2159@columbia.edu>
Date: Sun Apr 16 18:47:57 2017 -0400

for stones, BN_new() in the C file instead of codegen. also mints segfaulting

commit 90bf0fbd549ade6a04dd51ca972a010581a6fc2f
Merge: 88001d7 01b3d57
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Sun Apr 16 16:24:03 2017 -0400

Merge pull request #17 from joshuazweig/jz-types

56

Jz types

commit 01b3d57935f489ea9cd33cfa2726b577061a1d3e
Merge: 143a8d5 c37c26f
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Sun Apr 16 16:19:09 2017 -0400

Add print_stone

commit 143a8d50d33dfbae5704f3bfac319eef7088aab8
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Sun Apr 16 16:12:59 2017 -0400

pulling

commit c37c26f8276dd8903ad660fa454b12cefcd48c52
Author: Michael Tong <mct2159@columbia.edu>
Date: Sun Apr 16 16:10:50 2017 -0400

Added more built in declarations

commit a2faa12bbab0a89aba9763308e4102aae7034c37
Author: Michael Tong <mct2159@columbia.edu>
Date: Sun Apr 16 15:49:35 2017 -0400

added case for assigning string literals to stones

commit a51ac5807a9ffaf570ff5a9eeba7f00e652d8a7f
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Sun Apr 16 00:28:11 2017 -0400

stone stuff is great

commit 5ca4fb0b04a5f8173ec511dcc910eeac9d021659
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Sat Apr 15 20:49:56 2017 -0400

Add primary stone functions

commit b297e02bd90e885e7a92ea917a48c4c032bda68e
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Sat Apr 15 03:43:03 2017 -0400

Stones are in buisness

commit e778f21c4afeefa6dcd19b822c8aca7c8bcb526d
Merge: a306b9a 88001d7
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Sat Apr 15 01:54:18 2017 -0400

Merge branch ’master’ into jz-types

commit a306b9a1180292684b312d701e77f7091b9f79e3
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Sat Apr 15 01:43:55 2017 -0400

Resolve stack overflow in ast, codegen

57

commit 88001d774b4c96987f097a8927f3a8d87eb64011
Merge: cd7a2ce c0cf48b
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Tue Apr 11 22:06:23 2017 -0400

Merge pull request #14 from joshuazweig/jz-codegen

Resolve semant issue

commit c0cf48bc5ac0f485df48bedfcfa91ce4870813e5
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Tue Apr 11 22:05:32 2017 -0400

Resolve semant issue

commit cd7a2cef768061cc624b73585339c9a7c1ab1a2b
Merge: 7f673b1 d0160a0
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Tue Apr 11 20:49:41 2017 -0400

Merge pull request #13 from joshuazweig/jz-construct2

Jz construct2

commit d0160a062b07a4d854141711085d408bd21f0421
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Tue Apr 11 19:38:06 2017 -0400

Update makefile and temporarily remove construct3

commit d2a529809455729bac32467cda193d998fec85bf
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Tue Apr 11 19:33:36 2017 -0400

Add test

commit ef0ddf956d46ae138dbbe215ac09bd03f876f4a1
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Tue Apr 11 19:32:06 2017 -0400

Appears to be bug in semant

commit db68eed5c3ce8e3cbd4f7b59dbe8305459ee6721
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Tue Apr 11 19:11:37 2017 -0400

construct2 set up, waiting on better stones to test

commit e57625a73b5aa7bfd9171fa72a565c310ed3d93a
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Tue Apr 11 18:40:37 2017 -0400

Trying to resolve struct issues

commit a05728b3bf9d7777d0b41a93a985b0526bf26648
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Apr 10 21:01:19 2017 -0400

58

C arith function defs

commit 555f8d218ac16501f7e204fcc22ec86deedad2fe
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Apr 10 20:54:50 2017 -0400

First run

commit 21291e6b0d65f2345c82a1af79b2b0dceb0d6d1e
Merge: b6591c4 7f673b1
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Apr 10 20:54:19 2017 -0400

Merge branch ’master’ of https://github.com/joshuazweig/C-

commit 7f673b1020ff711e4a1e20b9f57747c44795f39a
Merge: 43f8a53 16c0e38
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Apr 10 18:54:31 2017 -0400

Merge pull request #10 from joshuazweig/codegen

Codegen

commit 16c0e38a595f2e372824ee3f920cd8c72ea0323b
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Apr 10 18:45:15 2017 -0400

Update Makefile

commit b6591c412bf412f1309c69e826539a17e6ae38d0
Merge: 0764842 43f8a53
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Apr 10 18:37:30 2017 -0400

Merge branch ’master’ of https://github.com/joshuazweig/C-

commit 1ae8b7f60ddb84d123c112310ef53c2a63b6a995
Merge: 8258029 43f8a53
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Apr 10 18:36:07 2017 -0400

Merge branch ’master’ into codegen

commit 82580298936ea969b1ab9f45e5c8cb286dada322
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Apr 10 16:57:54 2017 -0400

Begin work on stone contrution

commit 61403980984176cad7641db4585a65103892ba7d
Merge: e4ef7e6 5c29a98
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Apr 10 16:04:45 2017 -0400

merge commit links

59

commit 5c29a98496a3cbfae0aaae9790dbc3db8ecf971f
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Apr 10 16:01:14 2017 -0400

Got linking working woohoo

commit 43f8a53d1ed1e96dc85e93040383c96f46f0529a
Merge: 646b8e8 2d81f3c
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Sun Apr 9 23:31:40 2017 -0400

Merge pull request #9 from joshuazweig/zack_testing_branch

Travis Integration

commit 1eb8b2677ef78dab1faa65aadd47b345c88ded30
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Apr 7 13:59:43 2017 -0400

changing to pointer passing

commit e4ef7e67e565efb93cf7a2b427c77149cf900460
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Apr 7 13:45:00 2017 -0400

reverting...

commit 83732d67eb195ac58900baf1c7b384e22350d7c1
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Thu Apr 6 12:44:36 2017 -0400

this is a mess

commit ce935133c1c36677320b052c166dc716a5b35914
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Thu Apr 6 02:04:59 2017 -0400

We’re close

commit c7b8d66f31f52a839781aff41771cc8b7c9fe1a8
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Wed Apr 5 23:42:05 2017 -0400

about to redo functino

commit de09acb70c0686829a973bf17b306455d9fb2c28
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Wed Apr 5 22:28:49 2017 -0400

its building

commit 6a3e99da4231aad4e9699f188b03cef0fa99e613
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Wed Apr 5 21:10:35 2017 -0400

Think i have a working structure

commit 2d81f3ccf00cfedb2c0e745971df143deabb2e09

60

Author: Michael Tong <mct2159@columbia.edu>
Date: Wed Apr 5 20:57:10 2017 -0400

Added char lits

commit 9a5e92173b00b4fd0da9e99e8afa8c05c9fe3ce6
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 3 14:37:44 2017 -0400

Squashed commit of the following:

Finished grammar testing suite. Sanitized all relevant MicroC tests. Set up
Travis continuous integration. Overhauled the organization of testing
suite to be more intuitive and work with the automated testing workflow.

commit 71264a61b54bea3504a32796c303c0dca87fa368
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 3 14:15:30 2017 -0400

Add seperate flag for running test script in travis, restored all
packages, turns out they were necessary, shocking

commit bf2395064964935c0a35ffdb398e18260689a72c
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 3 13:39:21 2017 -0400

Okay, sorry, re-adding

commit 8f05565cbee2066e874162870acd4abb10010a8c
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 3 13:38:02 2017 -0400

build did not start last commit

commit 65afd10e871d898d174f57190286e7ad479f8f62
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 3 13:35:16 2017 -0400

Works, seeing if I can remove some extra steps to speed up build

commit e659a48c59be85b51b2d6a2e7e0dc54e790dbc9a
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 3 12:16:12 2017 -0400

Okay but lowkey this one is gonna work

commit 533fed79ab180e27d7283ac181be2fbb51b8ffaf
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 3 11:51:33 2017 -0400

Debugging lli path

commit 59969068c14e49a95e01982434679a96d3e23c8c
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 3 11:27:04 2017 -0400

Change testall LLI path

commit 6b602d74cd6fc98206ad1f7467d88be4c732e34f

61

Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 3 05:12:04 2017 -0400

What did I just break?

commit 304c36ff78400be7b5b4c419b16c080add553700
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Apr 3 04:33:57 2017 -0400

change llvm path

commit 17de3b65aede88c42372162c9a44c13b044f7462
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Apr 2 23:40:15 2017 -0400

Compiler testing attempt 2

commit ad68af65dab27425b3349a04d8256e12d57bac5b
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Apr 2 23:29:01 2017 -0400

Add back failing grammar tests, attempt compiler testing as well

commit b3873a3467000987993897e2da5cebe89610c343
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Apr 2 23:22:03 2017 -0400

temporarily remove failing grammar test

commit aae429732bbdd40178811362ddc67892791a4542
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Apr 2 23:11:18 2017 -0400

Trying to install llvm ont ravis

commit 98c32526c9104b2f78446829ed84fffb9bbaee5a
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Apr 2 22:50:34 2017 -0400

Makefile changing for travis

commit 3edc245f9de334d9443959a3e748462559ed14ed
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Apr 2 22:38:11 2017 -0400

travising

commit 8a7a6f1ba6cb90d6b988983859cd8f3f480ff4f0
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Apr 2 22:14:13 2017 -0400

Make in travis testing

commit acb4c4113f8cf94eccb5a91dc885e8e8eae1eb47
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Apr 2 22:06:36 2017 -0400

add ocaml env

62

commit 51ff054be984af943f3fdf807a245dc18890e4bd
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Apr 2 15:51:01 2017 -0400

travis attempt 2

commit c629af71a864d1d392b1eda1df7361438b281938
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Apr 2 15:46:00 2017 -0400

Travis dependency attempt

commit 292109d9b87ef7152c71b5bc6ad0ac464f431850
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Apr 2 15:36:03 2017 -0400

grammar tests now ran from home directory, added travis support for
grammar testing

commit 3c9d5d9695dbcfc1f4bcbd5dee8685bcbfcd3dad
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Apr 2 15:05:00 2017 -0400

Add exit code to grammar testing script

commit c2b4e902eb18b37d1d177035bcd5eccf8f32d080
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Apr 2 14:40:59 2017 -0400

Deleting old testing structure, hopefully

commit a0eb05716d8109c545f3569f0711d083507c43d0
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Apr 2 14:39:58 2017 -0400

New testing file structure

commit 37920502da087573fb3319938fe976d7cdce4d31
Author: Zack Silber <zs2266@columbia.edu>
Date: Sat Apr 1 01:56:09 2017 -0400

Quote changing

commit f11bf4d5fe2766f1ab3eddeae498eb414b6d3dcf
Author: Zack Silber <zs2266@columbia.edu>
Date: Sat Apr 1 01:49:23 2017 -0400

All tests fixed (a few irrelevant ones removed)

commit 3948e58c02fcfdff46352d519e73c1840a33551a
Author: Zack Silber <zs2266@columbia.edu>
Date: Sat Apr 1 01:27:09 2017 -0400

More test fixing

commit ccfe5144f0feec4644fd9d3a37ef3232cf38753e
Author: Zack Silber <zs2266@columbia.edu>

63

Date: Sat Apr 1 00:34:30 2017 -0400

Putting bracket array notation on indefinite hold

commit 7a5ddff4b4e4581721b96178da9181f7e4029431
Author: Zack Silber <zs2266@columbia.edu>
Date: Fri Mar 31 23:10:55 2017 -0400

Fix print statements

commit 2e7d98f6c78db77c34285cd04c36c65a60e8e26b
Author: Zack Silber <zs2266@columbia.edu>
Date: Fri Mar 31 05:10:13 2017 -0400

test file extensions changed, fail tests sanitized, prettyprinter
updated, string literal and array grammar tests added

commit 7aad6dd0c415700f27e3b5b557fd21a113582861
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Sat Apr 1 19:10:59 2017 -0400

Add type annotations

commit 8770fa0e3d95972153c6f802b6d064d07ba20d6f
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Mar 31 18:03:02 2017 -0400

update codegen

commit 56426d0df774ae09d0fe52eec8e58141ad6852ae
Merge: 8f4dd6e 3d0c8e6
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Wed Mar 29 17:02:48 2017 -0400

Rework type pointer structure

commit 3d0c8e6b3294741292406066787d7c91e1a57aa1
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Wed Mar 29 17:01:10 2017 -0400

turns out pointers arent really typed in LLVM, and void pointers not
allowed. Revamping pointers to 32 bit int type

commit 0764842dcc1fc5d7195a30469f4270238a02db01
Merge: a3f42be 646b8e8
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Wed Mar 29 16:37:44 2017 -0400

merge commit

commit 646b8e83d0f1b995af3a2b09790f571ec13cdf60
Merge: dfdf627 a031006
Author: mlm2299 <mlm2299@columbia.edu>
Date: Wed Mar 29 14:47:29 2017 -0400

Merge pull request #7 from joshuazweig/hello_world

Hello world branch !!!!

64

commit a031006526c607f1acbef8aabff7c8d2ac2dabed
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Tue Mar 28 10:31:57 2017 -0400

Remove dblquote token from parser, went unused -- to be added later

commit c910daaf5cbbcfd734262c2e58cbcff892196c0b
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Tue Mar 28 10:29:06 2017 -0400

Clean scanneprint.ml in Makefile

commit 90e17a1d60fb7b90b5cc585680996692a0cf6ca0
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Tue Mar 28 10:27:05 2017 -0400

Remove old pretty print features from cmod.ml

commit 6ceb7c411aa8eab8d7c13a867ce2d1756766ba0e
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Mar 27 19:20:12 2017 -0400

Add .cm file

commit 745909a4efae8d69fa170b5e226e594a6604de8a
Merge: 47a41a3 dfdf627
Author: mikecmtong <mct2159@columbia.edu>
Date: Mon Mar 27 19:16:03 2017 -0400

Merge branch ’master’ into hello_world

commit dfdf627fff2073f08aca2b7b9902a0c7d938d5ad
Merge: a62a991 d57a162
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Mar 27 19:11:43 2017 -0400

Merge pull request #6 from joshuazweig/rz_testing_suite

Added ocamllex scannerprint.mll to Makefile

commit d57a1621ec80030ab4a9c7cfab92fda66ff23293
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Mar 27 19:10:52 2017 -0400

Update Makefile

commit 8f4dd6ea5c975c47f82ae4e1874382500b3df805
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Mar 27 19:08:43 2017 -0400

update make

commit b7317c939c5b4241e20a4b2a5a2fac5c4b898265
Author: Richard Zhang <rzh4ng@dyn-129-236-234-170.dyn.columbia.edu>
Date: Mon Mar 27 18:56:06 2017 -0400

Added ocamllex scannerprint.mll to Makefile

65

commit 47a41a3d4717b54a9a4ce1f8c4a7fe0d661926e4
Author: Michael Tong <mct2159@columbia.edu>
Date: Mon Mar 27 18:35:55 2017 -0400

Changed access return type

commit 6d35ea25c444ea506172c0fcc48dbd5924c0c202
Author: mikecmtong <mct2159@columbia.edu>
Date: Mon Mar 27 18:18:12 2017 -0400

Change char from i1_t to i8_t

commit 6f80dfe4cd6c646f0c854c3a44b571bdce32508f
Author: Michael Tong <mct2159@columbia.edu>
Date: Mon Mar 27 15:12:06 2017 -0400

added single-line comment capabilities

commit 0673eb6f9854729475e07e3f663d9d94e95b95c5
Author: Michael Tong <mct2159@columbia.edu>
Date: Mon Mar 27 14:55:10 2017 -0400

Pattern matching in expr function in semant.ml is now non-trivially
exhaustive

commit c41903d15344a4b327002f1410ab51d8197a6777
Author: Michael Tong <mct2159@columbia.edu>
Date: Mon Mar 27 14:19:48 2017 -0400

Added more functionality to semant type checking (e.g. dealing with
pointers, special crypto types, etc.)

commit a3f42be41fd33f3d6fbab0f668cb2c70a77374b8
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Mar 27 13:47:05 2017 -0400

branch change

commit a62a9913cfa935efb3e50dc32fa509f52d45c495
Merge: f343f66 eebd289
Author: zsilber <zs2266@columbia.edu>
Date: Mon Mar 27 13:45:00 2017 -0400

Merge pull request #5 from joshuazweig/zack_testing_infrastructure

Zack testing infrastructure

commit eebd289146f12c600b3c61ebe1c60acc08721265
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Mar 27 13:42:08 2017 -0400

Comments for scanner and scannerprint

commit 50bfd1a9246cd46f493bb2179fe55c97fb513176
Author: Michael Tong <mct2159@columbia.edu>
Date: Mon Mar 27 13:31:21 2017 -0400

66

Fixed small bug, changed main-not-defined error message

commit 19acec321d7341f3972f8455f90b03aefb93ddc9
Merge: 98e20a1 7e8a6c3
Author: mlm2299 <mlm2299@columbia.edu>
Date: Mon Mar 27 12:40:14 2017 -0400

Merge pull request #4 from joshuazweig/jz-types

Add support for all types

commit 2722121e42fc0945ba1c9ecbe2cfc8511bf21f4e
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Mar 27 00:08:55 2017 -0400

Change file extensions.

commit 5a368c1ac7ae4c839d1822917b77a44f7c1b7cd1
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Mar 26 23:43:13 2017 -0400

Added type tests

commit 17aa22d5e1c39e6b41e5fcab976e117ec4a86cf0
Author: Michael Tong <mct2159@columbia.edu>
Date: Sun Mar 26 23:40:36 2017 -0400

Semant compiling, catching stuff it should

commit 7e8a6c3132b6b4b84de677e48f4687220f09e0e1
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Sun Mar 26 16:29:30 2017 -0400

Add support for all types

commit 7cd52f7fff8348ad9cc176c9fbbd55b13a3f68e7
Author: Zack Silber <zs2266@columbia.edu>
Date: Thu Mar 23 16:52:33 2017 -0400

added pretty testing script, a few new tests, manual out for each test

commit 4bdf31ea38f056b43b2eef4383d6494a58758f52
Author: Zack Silber <zs2266@columbia.edu>
Date: Thu Mar 23 01:08:53 2017 -0400

Stop tracking build files

commit 6dd57053a052481da576b708de6f6e34585b6dea
Author: Zack Silber <zs2266@columbia.edu>
Date: Thu Mar 23 01:07:13 2017 -0400

More tests

commit 46d0326e4d7c350fefa08729ae668a745c259577
Author: Zack Silber <zs2266@columbia.edu>
Date: Wed Mar 22 22:15:08 2017 -0400

More testing

67

commit 525e85a0be58d302e34f1ac90b77b4e76b48c16a
Author: Zack Silber <zs2266@columbia.edu>
Date: Wed Mar 22 21:10:12 2017 -0400

Killing old print method

commit 2884583d5f19b76b2100e997be0921a08e8052c3
Author: Zack Silber <zs2266@columbia.edu>
Date: Wed Mar 22 21:08:07 2017 -0400

Adding new pretty printing method, new test case, setting up global git
ignore for dsstore

commit a4a400692abb7414d370dbf3b78aa7ef00282cbe
Author: Zack Silber <zs2266@columbia.edu>
Date: Tue Mar 21 18:11:31 2017 -0400

Binop Tests

commit 1a198094b489d73ebf1029b6d2cc2a441d8d01ef
Author: Michael Tong <mct2159@columbia.edu>
Date: Mon Mar 20 18:40:37 2017 -0400

Fixed extra new lines in strings

commit ae798eba892fc8aafc93e434d3cc90c6ef730c78
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Mar 20 18:14:24 2017 -0400

More spacing fixes, literal handling

commit 98e20a1928318a38028a1014a22ddf3197b8c9da
Merge: 81af521 816ed16
Author: Michael Tong <mct2159@columbia.edu>
Date: Mon Mar 20 17:58:56 2017 -0400

Merged mt_printf and codegen

commit 816ed16ca546dd2226c1d40eebee1f8ae1de1c6f
Author: Michael Tong <mct2159@columbia.edu>
Date: Mon Mar 20 15:50:30 2017 -0400

Big string test works

commit 31c65acbb709d94d70cd37e2d055f0334e7bb6fe
Author: Michael Tong <mct2159@columbia.edu>
Date: Mon Mar 20 15:47:46 2017 -0400

String with escape characters working.
Supported: \n \r \t \’ \" \\

commit 81af521738e2601f0e260d0d8cf9d80521956302
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Mar 20 14:10:40 2017 -0400

Add shortcut to run program

68

commit f9400d7bddfcf33939bc1d6ced5d9d72d776b794
Author: Michael Tong <mct2159@columbia.edu>
Date: Sun Mar 19 19:29:32 2017 -0400

Hello world working

commit 5acfe422b88f07f2aa49e48d7278d05e70296e36
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Sun Mar 19 19:25:10 2017 -0400

remove dsstore

commit 7e8490eea2dcde24b09459aaf2a8bc9e5b7c1a17
Merge: b441059 e2a5a32
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Sun Mar 19 19:24:06 2017 -0400

Hello world

commit e2a5a32fc7462ed1882a25431a18db97db601614
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Sun Mar 19 19:13:16 2017 -0400

Remove build files

commit ac86f72daa5818151cf03a530b55eca10d657466
Author: Michael Tong <mct2159@columbia.edu>
Date: Sun Mar 19 19:11:17 2017 -0400

strings properly implemented in parser and scanner, -t flag added

commit b441059bb93562119b57a309f814ac505448105c
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Sun Mar 19 19:11:00 2017 -0400

working

commit 18f53558b6878a19e8d86bcdfdeebdb6d80a06ce
Author: Michael Tong <mct2159@columbia.edu>
Date: Sun Mar 19 18:45:05 2017 -0400

Fixed string tokens, added printf call to codegen

commit 2cd00e3364206b42a682a2325b49502cf6346365
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Mar 19 18:38:08 2017 -0400

Unused variable cleanup

commit 003287c5615102b6a0d697bbbafae03d133f9fe4
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Mar 19 18:35:28 2017 -0400

Quick fixes

commit 6886a72b6926e1ace4b2caa9d9050412067619fa
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Sun Mar 19 17:13:18 2017 -0400

69

printf working

commit c9ea8ae940560d534faa16e24f27311928dbb773
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Mar 19 16:53:11 2017 -0400

Too many empty lines

commit 612ebfe81a7aab093d519651cbfced5dfd49eb1a
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Mar 19 16:50:11 2017 -0400

Fixed pattern matching

commit 4d60d4093c80eebaac2ba223f27cc238453a27a6
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Mar 19 16:34:53 2017 -0400

Cleaned up unused variables

commit 794da2a690faae4594d106309bfd822f6a1d7327
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Mar 19 16:26:30 2017 -0400

Ironed out some spacing issues with tokens

commit 1a33dda3888f277fe1261fdddf25aeaa1c3b92af
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Mar 19 16:09:38 2017 -0400

Token print mainly finished, a few TODO comments are left for things that
might become problems as we test out the printer

commit 8f3e33f5408b4ce6b7a1a3e72c498bbb74420ab0
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Mar 19 15:56:17 2017 -0400

Token printing functions now all call each other

commit d92accfd0adb8eccbee4c37a069282f8f5be7bbf
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Mar 19 15:51:55 2017 -0400

Added token printing strings for types and operators, not sure how to handle
pointers right now

commit 52f32c0445e42cec3091d0febbeb55547ec84308
Author: Zack Silber <zs2266@columbia.edu>
Date: Sun Mar 19 15:45:39 2017 -0400

Added t flag for tokenized string, started building token print function

commit f343f66d591a6dcc574f8971d42651a53270bf87
Merge: 28ffb18 727ade3
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Sun Mar 19 00:19:52 2017 -0400

70

Merge pull request #2 from joshuazweig/rz_scanner

Current grammar, pre pretty print testing

commit 727ade3f640246e842c1b2e12f7041a40176662d
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Wed Mar 8 21:15:37 2017 -0500

Resolve all unused in parser

commit 71ce44b72a4cdf042d2c48326a65e004694f3c58
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Wed Mar 8 21:08:40 2017 -0500

Looks good but a few unused tokens

commit d465596c8a2263178bdddc72e4308f206edc0795
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Wed Mar 8 21:01:13 2017 -0500

remove unused nonassoc

commit a4f4aa45d9b387e295631f5c976cee70a39fb290
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Wed Mar 8 20:36:43 2017 -0500

Fix typo

commit 39891a5bb6063f63ecf5e3622f2d9f0eb0e722aa
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Wed Mar 8 20:26:18 2017 -0500

Change built in type construction in grammar

commit a26ebcdb33be22d187cbfaba4e76402ea93f6894
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Wed Mar 8 13:26:05 2017 -0500

\Remove lval comments

commit 3ed4382a665ffea3af423d6c9064c2dd990f068f
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Mar 6 21:17:56 2017 -0500

Revise stmtlist production

commit 46c34ee0913f79491ee89d5207a3bee6a7f1ff4a
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Mar 6 20:53:17 2017 -0500

updated scanner typo

commit 63862365797467230c27e6af68c4b4be20277f48
Author: Michael Tong <mct2159@columbia.edu>
Date: Mon Mar 6 19:57:43 2017 -0500

added all phony to makefile

71

commit 83408e48dcfb1b6d752300d5027883fe6e1ba8a7
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Mar 6 19:44:17 2017 -0500

Revise AST

commit b59aab3345d2497ae58eff163a3ef51c526b94b7
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Mar 6 19:41:46 2017 -0500

Finished revising grammar

commit 3c5cf5a1b255895c46eaf52f2bd175fabba8bc05
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Mar 6 19:32:06 2017 -0500

Revise scanner and change tokens STAR DEREF, etc

commit 6b987e172740f6d90eee0c73596688ede0c311c1
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Mar 6 19:07:56 2017 -0500

Remove open AST and ignore unused var warnings

commit ed620974e385cd4e6f83db7b615273772a8e8ea7
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Mar 6 18:55:13 2017 -0500

Remove pointer warning

commit 1cd60ffd6d24e36262a868909508a5a2484a120e
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Mar 3 23:24:52 2017 -0500

Update scanner

commit aff9e46c4f3d0ad38a6e39f72a76f6719511460a
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Mar 3 23:18:10 2017 -0500

Adding Makefile, cmod.ml and sentamt.ml to allow for testing

commit bde59c48eb245db655a29e4afefa520f2d1886c5
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Mar 3 23:12:18 2017 -0500

Changed parser def of assign,modassign

commit 1d112d473432bc96677807511aa87e39750d430a
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Mar 3 23:10:26 2017 -0500

Removed lvals

commit 335911f5f7f57531b0256cb2ce43ab9457bfb6a5
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Mar 3 23:08:51 2017 -0500

72

Changed char to be interpeted to ocaml stirng

commit 9a594edfdd304e9fccd5eb651e16b5c1901db9e1
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Mar 3 23:07:20 2017 -0500

changing char to string, but might be a better way to go anyway

commit 829e7147d8c917d6bd623def3f2b80b255f92705
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Mar 3 23:02:25 2017 -0500

Banging out inconsistency

commit 7a055eba1ac34c047fe7085c1313b791c7a178c0
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Mar 3 22:58:30 2017 -0500

Update exp op -> pow

commit e5dcfb7a9728d8f6c064f3a208c1b6aefff4d318
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Mar 3 22:55:58 2017 -0500

Add pointer to AST

commit aa12f3ef7735abb76bd42b08fef8317b7795f378
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Mar 3 22:39:40 2017 -0500

removing bool, false,true from scanner

commit 96a9abe92131b7b7f52ea0c82b368881cab0d4d2
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Mar 3 22:39:33 2017 -0500

removing bool, false,true from scanner

commit caf8d9513c4270aa63826035ab33aa0eada67ae6
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Mar 3 22:38:16 2017 -0500

revise inf in ast

commit b92a823416e239f0b8fdbfc9866d3beee388685b
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Mar 3 22:37:47 2017 -0500

revise inf in ast

commit f67fe5a0bde0af0e4b38b99811d4014f1e255493
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Mar 3 22:28:49 2017 -0500

Added DEREF in addition to star, but not sure if need prec in 123

commit 78d0d089eda47e45b508bbfc525b11efb522ee32
Author: Joshua Zweig <jmz2135@columbia.edu>

73

Date: Fri Mar 3 22:24:55 2017 -0500

Changing modassign back

commit d21448765e269fe7f13a4a12032d794c696a4a1e
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Mar 3 22:21:25 2017 -0500

Rename dash -> minus in scanenr

commit a252b1b23c6905e158cd87a18572850f83b18e5f
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Mar 3 22:20:32 2017 -0500

Remove mod assign and adjust corresponding production

commit 906baa55d28462daf1db787ecd2e1f6d2f031485
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Fri Mar 3 22:18:31 2017 -0500

Add inf to ast.ml

commit ccc2c5c8655bb299c71dda5dfa9b8fc408c215cf
Author: Richard Zhang <rzh4ng@dyn-129-236-234-140.dyn.columbia.edu>
Date: Fri Mar 3 19:55:41 2017 -0500

Preliminary changes to parser.mly, changes to ast.ml are
nothing (says there are changes, but are none).

commit eb474980532f76884a6078ff37e3908b58ac6e18
Author: Richard Zhang <rzh4ng@dyn-129-236-234-140.dyn.columbia.edu>
Date: Fri Mar 3 19:52:53 2017 -0500

Created scanner.mll, preliminary changes to parser.mly to account
for scanner changes.

commit 28ffb182d79ef940d7a2cdb1071fe19e17e435e9
Merge: 41c5779 f88551d
Author: mlm2299 <mlm2299@columbia.edu>
Date: Fri Mar 3 19:34:41 2017 -0500

Merge pull request #1 from joshuazweig/mm-ast

AST updated and now compiles

commit f88551dc597f24846003f27488159add5fca9f39
Author: Maggie <mlm2299@columbia.edu>
Date: Fri Mar 3 19:29:13 2017 -0500

AST updated and now compiles

commit 41c57790e4aca6e9ff9ca7f19ca195329e6e7b53
Author: Maggie <mlm2299@columbia.edu>
Date: Fri Mar 3 19:13:54 2017 -0500

Updated ast to match grammar, first full try

commit bead446aabb9f16c522e535a4fe5b3cf9df92407

74

Author: Maggie <mlm2299@columbia.edu>
Date: Fri Mar 3 18:35:47 2017 -0500

Updated ast for expr

commit 7123deb0b7a7054b523eaf44c5b7826f5042d08a
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Feb 27 18:51:31 2017 -0500

Remove most lval productions in favor of handling during semantic checking

commit fc184be9db2d76cf59559a42e50486d2d1a58472
Author: Zack Silber <zs2266@columbia.edu>
Date: Mon Feb 27 18:45:04 2017 -0500

Statement lists can not be empty anymore, must write null statement
(semicolon) instead

commit 045fca6f34b3991eed6663183753afc47b7944f7
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Feb 27 18:17:11 2017 -0500

Remove duplicate pow production

commit 981e5e04b3ff0dc71fb654e5159be6934f751055
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Feb 27 13:59:40 2017 -0500

It compiles, ofc w conflicts

commit e150c4273c61f8d6c64566d1a06b57e6481c6908
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Mon Feb 27 13:56:59 2017 -0500

update pointer typ mapping

commit 0415f7dfd172e30613c47dc199653c7c658dc23c
Author: Zack Silber <zs2266@columbia.edu>
Date: Sat Feb 25 17:57:43 2017 -0500

Adding AST

commit 8e88ba11e7d6b75a837448c7f7bb09c118c2b998
Author: Maggie <mlm2299@columbia.edu>
Date: Sat Feb 25 17:42:22 2017 -0500

First go at the ocamlyacc CFG

commit a251ed1a581a53b65410882ace03c9aaf35cfbb8
Author: Joshua Zweig <jmz2135@columbia.edu>
Date: Sat Feb 25 15:32:00 2017 -0500

First commit

75

76

Chapter 5

System Architecture and Design

5.1 The Compiler

5.1.1 Scanner

The scanner reads in a stream of characters and turns them into tokens. Our scanner
supports both C-style block comments with /* */ and line comments with . Our scanner
furthermore allows for declarations of string literals with "" as well as char literals with ”,
with both constructs supporting various escape characters, namely

\\, \", \’, \n, \r, \t, \0

5.1.2 Parser

The parser takes the stream of tokens returned by the scanner and translates it into a tree.
On the top level, the parser sees functions and global variables. Within each function, the
parser sees a list of variable declarations and a list of statements, where a statement may
be a block in its own right. Indeed, our parser is a little quirky: instead of having a single
stream of statements, we have two streams which separate out the variable declarations
from other types of statements. The same logic applies when one is in a block nested inside

77

of a function. This is simply an artifact from the MicroC architecture which only allowed
the user to declare a list of variable declarations followed by a list of typical statements.
The resulting effects of this implementation are non-trivial: the parser cannot differentiate
the relative order between variable declaration statements and other statements. As a
concrete example, the parser cannot differentiate between the intuitively reasonable code

int main() {
int x;
int y;
x = y = 3;
return 0;

}

and the traditionally absurd

int main() {
x = y = 3;
int x;
int y;
return 0;

}

Of course, there is nothing inherently contradictory about the second block of code
– it just defies the expectation that code is read in order, top to bottom. Indeed, as
will be discussed in the Code Generator section, the statements are indeed read top to
bottom, with the caveat that all variables in that block are declared before anything else.
This distinction ends up not being very harmful, since only in the most pathological cases
would one want to specifically delay the declaration of a variable if it is eventually going
to be declared in that scope anyway.

5.1.3 Semantic Checker

The semantic checker walks through the OCaml AST returned by the parser, checking that
the expressions and statements present make sense. Indeed, it walks through the AST in
a depth-first fashion which passes a symbol table which gets updated as local variables fall
in and out of scope.

The high level structure of the checker is as follows: it adds the global variables to the
symbol table and then checks each function present individually. In each check, it walks
through each statement one at a time to verify that they make sense. This can mean
anything from checking that types match up (e.g., an integer is being added to an integer
and not to, say, a function name) to checking that the variables being used actually exist
in that scope. If something goes wrong, it prints a helpful error message that is specific to
the context that the error is found. For example, one of our tests called fail-func8.cm:

void foo(int a, int b)
{
}

void bar()
{
}

int main()
{

foo(42, 1);
foo(42, bar()); /* int and void, not int and int */

}

78

gives the error

Fatal error: exception Failure("illegal actual argument found void
expected int in foo(42, bar())")

5.1.4 Preprocessor

The preprocessor is very basic and is only meant to support file inclusion, including build
guards. It is written in python. The script just checks for a # at the beginning of each
line, rigidly expecting to match one of the following patterns

#include "file_name"
#define VAR_NAME
#ifndef VAR_NAME
#ifdef VAR_NAME
#endif

With the effects being just like that in C. In particular, the file given by file_namemust
be present in the same directory of execution (our compiler has no -I flag to check other
directories). Also, notice that the #define keyword is not used for textual substitution of
constants (e.g. #define BLOCK_SIZE 4096 is not supported), but only so that the build
guards can function. As an example, a typical header file myadd.h could be something like

#ifndef __MYADD_H__
#define __MYADD_H__

int myadd(int a, int b) {
return a + b;

}

#endif

and thus a main file defined as so

#include "myadd.h"

int main() {
int x;
x = myadd(5, 7);
printf("%d\n", x);
return 0;

}

will worked as expected when interpreted as a C% program.

5.1.5 Code Generator

The code generator takes in the OCaml AST and translates it to an LLVM AST. This is
accomplished by mapping between expressions, control flow blocks and other aspects of
the C% AST to an LLVM AST using the LLVM OCaml module. The mappings are the
subject of each subsection to follow.

Definitions and Declarations

Our language supports both global and local variables. However, function prototypes such
as

int do_something_later(char *x, void *y, int z);

79

is not valid. Thus, the only way to declare a function is to also implement it.

Expressions

The expressions component of C% is at the heart of what makes the language unique
and valuable. The generation of expressions is what allows the language user to write x
+ y over two int types or s + t for two arguments of type stone and have the correct
operation performed. OCaml’s match statements were leveraged heavily to translate the
expressions to match on types to make decisions on which function to call for a given
expression.

Furthermore, the values of many expressions were not computable by the functions
in the standard LLVM OCaml module. For this reason, we wrapped many C functions
that were called to compute the values of expressions for operations on types stone, mint,
curve, point, which will be the subject of Section 5.2.2. Most of these features were
implemented by Josh, with curve and point functionality implemented by Michael.

Scoping

The scoping in our language is static. In particular, our language supports a subset of
scoping that is allowed in C: it supports local variables in any block scope as well as global
variables. However, it does not support static or extern variables in the sense of C. Also,
due to the quirk of our parser (cf. the example code given in that section), a variable can
only exist for the entire duration of a block, since all variables in a block are declared at
once. As a concrete example, we have:

int main() {
//x, y visible
int x;
for (x = 0; x < 5; x = x + 1) {

//x, y, z visiible
int z;

}
//x, y visible
int y;

}

Control Flow

The control flow in our language is exactly how one would expect from C. The main thing
our language is missing is break and continue.

5.2 Supplementary Code

5.2.1 Cryptography Library

Our languages main function in cryptography so we included programs writting in C% for
our users. We include examples that allow the user to securely exchange keys, translate
strings via a simple cipher, and generate primes. These programs serve to demonstrate the
capabilities of our language, and give our users base programs to modify for their needs.

These functions can all be compiled as any other C% program or included in programs
that our users write themselves. Our python preprocessor can then integrate any code that
they want to use from our cryptography library.

80

5.2.2 Big-Num Integration and Memory Management

These components were primarily implemented by Josh with support from Michael.

Big-Num Integration

Underlaying all of the types and operations in C% that depend on arbitrary size arithmetic
(a key feature needed for any serious cryptographic application) is the openSSL bn (for big
number) library. The openssl suite and especially its API is quite uniformly regarded as
terrible [?], and the bn library is certainly no exception. However, it is used quite commonly
as it is better than most of the alternatives out there. Thus, allowing programmers to write
C-like code while being able to apply traditional operators to arbitrarily large numbers is
a major contribution of C%.

Below is an excerpt from bn.h

int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);

Any useful operation in this library requires the programmer to pass in a pointer to
store the result of the operation in, as the operation is not performed in place. To leverage
the bn library required to further layers of indirection. First, the library function were
wrapped in a C function. For example, we include here the C wrapper for adding two
values of type stone:

void* stone_add_func(void *a, void *b)
{
BIGNUM *r = BN_new();

BN_add(r, a, b);
return r;

}

All of these such functions appear in special_arith.c. Notice here we much create on
the heap a place for the result to be stored and returned. We must do this since we allow
the user to simply add two stones with the addition operator, and thus they have no ability
to pass in a location to store the result. Taking care of the allocation for the result is easy,
but we must also automatically free these results as well when they are intermediate results
and the user does not have a pointer to them, which is harder and will be the subject of
the discussion in Section 5.2.2.

We then define our functions in special_arith.c functions in our code generator so
that it can call them as needed. Carrying on with the example the definition in codegen.ml
for the function to add arguments of type stone is included here:

let stone_add_func_t = L.function_type obj_pointer [| obj_pointer ; obj_pointer
|] in

let stone_add_func = L.declare_function "stone_add_func" stone_add_func_t
the_module in

Through nested type matching on the types of the arguments then on the operator
being applied we determine which of the many of such functions to call. Further, for this
all to come together, we must link the .s file generated with the special_arith.o as well
as libcrypto, which is where the arbitrary size arithmetic functions live.

To date, we have implemented the following support for operations on data of type
stone, mint, point and curve. Implementing more is trivial, and we intend to, but these
are what time would allow.

(* Add two mints *)

81

let mint_add_func = L.declare_function "mint_add_func" mint_add_func_t
the_module

(* Subtract two mints *)
let mint_sub_func = L.declare_function "mint_sub_func" mint_sub_func_t

the_module

(* Multiply two mints *)
let mint_mult_func = L.declare_function "mint_mult_func" mint_mult_func_t

the_module

(* Raise a mint to a mint *)
let mint_pow_func = L.declare_function "mint_pow_func" mint_pow_func_t

the_module

(* Raise a mint to a stone *)
let mint_to_stone_func = L.declare_function "mint_to_stone_func"

mint_to_stone_func_t the_module

(* Add two stones *)
let stone_add_func = L.declare_function "stone_add_func" stone_add_func_t

the_module

(* Subtract two stones *)
let stone_sub_func = L.declare_function "stone_sub_func" stone_sub_func_t

the_module

(* Multiply two stones *)
let stone_mult_func = L.declare_function "stone_mult_func" stone_mult_func_t

the_module

(* Divide two stones *)
let stone_div_func = L.declare_function "stone_div_func" stone_div_func_t

the_module

(* Raise a stone to a stone *)
let stone_pow_func = L.declare_function "stone_pow_func" stone_pow_func_t

the_module

(* Compute stone mod a stone *)
let stone_mod_func = L.declare_function "stone_mod_func" stone_mod_func_t

the_module

(* Add two points *)
let point_add_func = L.declare_function "point_add_func" point_add_func_t

the_module

(* Subtract two points *)
let point_sub_func = L.declare_function "point_sub_func" point_sub_func_t

the_module

(* Multiply two points *)
let point_mult_func = L.declare_function "point_mult_func" point_mult_func_t

the_module

(* Create a stone *)
let stone_create_func = L.declare_function "stone_create_func"

stone_create_func_t the_module

82

(* Free a stone *)
let stone_free_func = L.declare_function "stone_free_func" stone_free_t

the_module

Big-Num Memory Management

As mentioned in the previous section, allocating memory for the user on the heap is easy.
Knowing when to free it is much harder. For example, consider the program below.

stone x;
stone y;
stone z;

x = "10";
y = "15";
z = "20";

z = x + y + z;

The computation of z here happens in the following order.

1. Compute x + y. Store result in temp1. (Note the user has no way to reach temp1).

2. Compute temp1 + z. Store result in temp2. (Note the user will have access to temp2
because it should become the new value of z).

The fact that there must be a heap allocation for each of these intermediate results
in this library is one of its major hindrances. Indeed, the library "fixes" this issue by
making the user always pass in the pointer to the result as an argument, and then the
function stores its result in this allocated memory. However, we want the user to be able
to say something intuitive like x+y+z, not BN_add(z, y, z); BN_add(z, x, z);, and so
we had to be clever to make sure our programs didn’t leak large amounts of memory due
to intermediate computations.

Our memory management strategy here leverages the computation tree conception of
an arithmetic expression. In the tree, we know that the user must have a way to identify
each leaf (explicit operand), but will have no way to access the internal nodes of the tree,
with the exception of the root. To implement this strategy, we relay on the same method
we do for type annotating the AST. Specifically, each expression is represented internally
as a tuple of (expression value, (type, isID)). Thus, the first element stores the value of
the expression and the second is a tuple of information, such as whether or not we have a
handle to that expression (which in the case of an intermediate result we do not).

Every time an operation is done, we check if the program has a symbol for the expression
in this way. When it does not, we conduct the necessary operation using the intermediate
result and free it immediately after. This paradigm allows us to free the result openSSL
forces us to store as soon as its value is no longer needed.

5.2.3 Built-in Functions

In the same way that Big-Num functions were linked to implicitly for the user, C% also
provides several built in functions for users to leverage in writing programs. The imple-
mentation follows very much the same structure as described in the previous section, the
only difference being that some of the functions are not wrapped in C functions and are
instead linked directly to (i.e. those that are built into the OS). The built in functions fall
into two categories, access, memory management and I/O.

83

The access functions, allowing the user access to the stones underlying mints, curves,
and points, were written in C and linked in similarly to the operator functions described
above. Though originally intended to be in the language as a unary operator, we ultimately
decided to create a separate sequence of functions to provide index by index access.

For memory management, we provide the user with malloc and free to manage the
lifetime of stack variables. These functions are provided so the user can explicitly call
malloc() and free() in their program. These will never have to be used for our special
built in types as per the previous section, as we manage the memory automatically.

We additionally provide a robustly featured printf and scanf. In addition to their
traditional uses, they can be levered in C%, as they are in our Diffie Helman Key Exchange
for networked programs to pass communications in a cryptographic handshake between one
and other. We additionally provide the function print_stone() for this application.

84

Chapter 6

Test Plan

6.1 Testing Phases

6.1.1 Grammar Testing

In the beginning stages of the project we needed to make sure that our grammar was func-
tioning as intended. We wrote a program called scannerprint.mll that takes in source code
written in our language and outputs the list of tokens that corresponds to the source code.
This lexical analysis also removes comments, tabs, and whitespace and is demonstrated
below.

// multPrec.cm
int main() {

int x;

x = 1 * 2 + 3 * 4;
}

INT ID LPAREN RPAREN LBRACE INT ID SEMI ID ASSIGN LITERAL STAR LITERAL PLUS
LITERAL STAR LITERAL SEMI RBRACE EOF

Once we had a list of tokens we were able to pipe that into menhir with options set
to show us the entire CST based off of our parser.mly. Menhir would produce a CST
formatted as below. Once we had this CST we ran a diff between Menhir’s CST and the
CST that we expected and went over by hand. If there were any differences then the test
would fail and we knew that something was wrong with our grammar.

ACCEPT
[program:
[decls:
[decls:]
[fdecl:
[typ: INT]
ID
LPAREN
[formals_opt:]
RPAREN
LBRACE
[combined_list:
[combined_list: [combined_list:] [vdecl: [typ: INT] ID SEMI]]
[stmt:
[expr:
ID

85

ASSIGN
[expr:
[expr: [expr: LITERAL] STAR [expr: LITERAL]]
PLUS
[expr: [expr: LITERAL] STAR [expr: LITERAL]]

]
]
SEMI

]
]
RBRACE

]
]
EOF

]

All of our grammar tests are located in one folder along with their expected out-
puts. There is a make command, test_grammar that will execute a python script, testAll-
Pretty.py, written to generate the CST for every test and compare them to their corre-
sponding .out files. If there are any differences then the python script will print them all
out and return a fail value which was essential for our continuous integration that will be
explained later.

After the grammar was ironed out this type of testing became less important. However,
there were multiple times during the development of our project that changes would affect
the grammar and the continuous execution of these tests prevented us from pushing changes
that would have made our grammar function differently than intended. These tests also
allowed us to preserve the stability of our grammar when adding new tokens.

Integration Testing

The rest of our tests would all be considered integration tests. Unit tests were not used
because we were focused on adding new features and unit tests would not be reliable to
see if the entire feature was functioning as expected. We would often look through certain
layers of our compiler like making sure that semant would catch the right errors during
development, but every test in our test suite checked the ultimate functionality of each
feature.

We extended the testing workflow from MicroC. There were two types of tests, passing
and failing tests. Passing tests were written in C% and had a corresponding expected
output file. Failing tests, similarly, had to have source code along with a corresponding
expected error file. These types of tests allowed us to not only make sure that our features
exhibited expected behavior, but also to make sure that the right errors were being thrown
when they were not used as intended.

We execute the source code of all of our tests and compare their outputs (via printf)
or errors to the expected ones that we also have in the same testing folder. The expected
workflow when building new features is to write some programs that would work (or fail
properly) if the features were implemented correctly. Initially, these tests would not pass.
However, once the feature is completely ironed out, all of the tests should pass and the
feature can be considered working. Having all of these tests then becomes important
moving forward because if any future updates break the feature then the tests will start
failing again. Every pull request to master was expected to have passing tests for everything
that was implemented.

Testing cases were chosen to fully flesh out every new feature that we added. Every
use case that we could think of was added and every function had to have tests for it.
Additionally, because our language was built on top of MicroC we started off our test suite

86

by slightly modifying all of their tests to work in our language.

Test suite

We put a lot of commands in our Makefile to allow for easy testing. Once you run ’make
all’ you could then run ’make test_grammar’ or ’make test_compiler_travis’. To run the
integration tests you simply had to input ’./testall.sh’ , but when TravisCI ran the script
there were additional flags that had to be set which made it more convenient to build a
specific Makefile command.

We had two main testing scripts, a python script that ran all of the grammar testing
(testAllPretty.py) and a shell script (testall.sh) that was modified from the original MicroC
file that ran all of our compiler integration tests. testall.sh was ran as described above and
output a list of every test along with whether they passed or failed.

-n test-add1...
OK
-n test-arith1...
OK
-n test-arith2...
OK
-n test-arith3...
OK
-n test-fib...
OK
-n test-for1...
OK
-n test-for2...
OK
//Continues for every test in testing folder

The shell script returns a passing value only if every single test passes. It is important
to note that there is a small handful of tests that this script does not run. There are some
tests (tests/custom_tests) that are dependent on manual input (File I/O) and some that
have more specific instructions to run (Preprocessing, import statements). These tests
could be integrated into the main testing suite, but would require further modification of
the shell script which time did not allow. For now these tests are periodically run by hand
in order to ensure their correct functionality.

Automation/Continuous Integration

We used TravisCI for automated testing integration. Every time we either push to any of
our branches or submit a pull request travis will run our entire testing suite and make sure
that everything passes. We made our github repository public and gave TravisCI access to
it. We also included a .travis.yml file in our source code in order to make sure that Travis
knows how to run our tests.

Every time we push or PR Travis spins up a virtual machine running Ubuntu and
checks our .travis.yml file for instructions. The virtual machine proceeds to download all
of the required dependencies for our program (opam, llvm, etc.). Then it uses our source
code and runs makefile commands to check our entire testing suite. We can go to their
website at any time to check the status of every build we have ever ran and see exactly
which parts of our testing suite passed or failed.

87

.

Another very important aspect of Travis is that it reports whether our testing passed
or failed directly on our github repository. Every commit has a symbol on it that indicates
whether it passed our testing.

.

Lastly, it became very important in our development process that no broken branches
were ever merged with master. Travis would not allow us to pull request any branches
that would have made our test cases fail which allowed us to maintain a very stable master
branch.

.

6.1.2 TravisCI Performance

Our builds run in on average 3-5 minutes. This varies drastically with the regular 9-5 hours
of the workday because of our dependance on Travis’ servers. There are opportunities to
speed this up, we could have utilized Travis to cache some of our dependencies. However,
this build time worked well enough for us.

It is hard to get exact data on how often faulty pull requests were fixed because of
catches made by Travis. However, after going through the pull request build log it seems
that roughly one third of PR’s fail at least one test when they are initially uploaded.
Furthermore, many errors are caught when viewing the Travis build status of git pushes
which leads them to be fixed before the PR is submitted.

88

.

6.2 C% to LLVM IR

6.2.1 Example 1

C%

int main() {
printf("%s", "Hello World!\n");
return 0;

}

89

LLVM

; ModuleID = ’Cmod’

@fmt2 = private unnamed_addr constant [3 x i8] c"%s\00"
@fmts = private unnamed_addr constant [14 x i8] c"Hello World!\0A\00"
@fmts.1 = private unnamed_addr constant [3 x i8] c"%s\00"

declare i32 @printf(i8*, ...)

declare i32 @scanf(i8*, i8*)

declare i8* @malloc(i32)

declare void @free(i8*)

declare { i8*, i8* } @mint_add_func({ i8*, i8* }*, { i8*, i8* }*)

declare { i8*, i8* } @mint_sub_func({ i8*, i8* }*, { i8*, i8* }*)

declare { i8*, i8* } @mint_mult_func({ i8*, i8* }*, { i8*, i8* }*)

declare { i8*, i8* } @mint_pow_func({ i8*, i8* }*, { i8*, i8* }*)

declare { i8*, i8* } @mint_to_stone_func({ i8*, i8* }*, i8*)

declare i8* @stone_add_func(i8*, i8*)

declare i8* @stone_sub_func(i8*, i8*)

declare i8* @stone_mult_func(i8*, i8*)

declare i8* @stone_div_func(i8*, i8*)

declare i8* @stone_pow_func(i8*, i8*)

declare i8* @stone_mod_func(i8*, i8*)

declare i32 @stone_print_func(i8*)

declare i32 @mint_print_func({ i8*, i8* })

declare i8* @point_add_func(i8*, i8*)

declare i8* @point_sub_func(i8*, i8*)

declare i8* @point_mult_func(i8*, i8*)

declare i8* @stone_create_func(i8*)

declare i32 @stone_free_func(i8*)

define i32 @main() {
entry:
%0 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([3 x i8], [3 x

i8]* @fmts.1, i32 0, i32 0), i8* getelementptr inbounds ([14 x i8], [14 x
i8]* @fmts, i32 0, i32 0))

ret i32 0

90

}

6.2.2 Example 2

C%

int main()
{
stone x;
stone p;

mint m;

x = "15352395";
p = "65537";

m = <x + x, p>;

print_mint(m);

return 0;
}

LLVM

; ModuleID = ’Cmod’

@fmt2 = private unnamed_addr constant [3 x i8] c"%s\00"
@fmts = private unnamed_addr constant [9 x i8] c"15352395\00"
@fmts.1 = private unnamed_addr constant [6 x i8] c"65537\00"

// built in function declarations...

define i32 @main() {
entry:
%x = alloca i8*
%p = alloca i8*
%m = alloca { i8*, i8* }
%stone_create_func = call i8* @stone_create_func(i8* getelementptr inbounds

([9 x i8], [9 x i8]* @fmts, i32 0, i32 0))
store i8* %stone_create_func, i8** %x
%stone_create_func1 = call i8* @stone_create_func(i8* getelementptr inbounds

([6 x i8], [6 x i8]* @fmts.1, i32 0, i32 0))
store i8* %stone_create_func1, i8** %p
%x2 = load i8*, i8** %x
%x3 = load i8*, i8** %x
%stone_add_res = call i8* @stone_add_func(i8* %x2, i8* %x3)
%p4 = load i8*, i8** %p
%stone_mod_res = call i8* @stone_mod_func(i8* %stone_add_res, i8* %p4)
%sm = insertvalue { i8*, i8* } undef, i8* %stone_mod_res, 0
%sm2 = insertvalue { i8*, i8* } %sm, i8* %p4, 1
store { i8*, i8* } %sm2, { i8*, i8* }* %m
%m5 = load { i8*, i8* }, { i8*, i8* }* %m
%mint_print_func = call i32 @mint_print_func({ i8*, i8* } %m5)
ret i32 0

}

91

6.2.3 Example 3

C%

int add(int a, int b)
{
return a + b;

}

int main()
{
int a;
a = add(39, 3);
printf("%d", a);
return 0;

}

LLVM

; ModuleID = ’Cmod’

@fmt2 = private unnamed_addr constant [3 x i8] c"%s\00"
@fmts = private unnamed_addr constant [3 x i8] c"%d\00"
@fmt2.1 = private unnamed_addr constant [3 x i8] c"%s\00"

//built in function declarations...

define i32 @main() {
entry:
%a = alloca i32
%add_result = call i32 @add(i32 39, i32 3)
store i32 %add_result, i32* %a
%a1 = load i32, i32* %a
%0 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([3 x i8], [3 x

i8]* @fmts, i32 0, i32 0), i32 %a1)
ret i32 0

}

define i32 @add(i32 %a, i32 %b) {
entry:
%a1 = alloca i32
store i32 %a, i32* %a1
%b2 = alloca i32
store i32 %b, i32* %b2
%a3 = load i32, i32* %a1
%b4 = load i32, i32* %b2
%tmp = add i32 %a3, %b4
ret i32 %tmp

}

92

Chapter 7

Lessons Learned

7.0.1 Zack

Since my main job was testing and general QA, I learned a lot about how to maintain a
large project and keep it stable under the revisions of multiple contributors. The value
of continuous integration was really proven to me. However, I definitely wish that I had
made sure that my team was more on the same page in regards to the structure of our
files and how to run and write tests. When I looked at the development work-flow of my
teammates I realized that they weren’t taken advantage of a lot of the testing features I
had implemented, especially in the beginning. The responsibility to on-board them and
teach them how to use everything definitely should have fallen on me. I learned that I
should have been in closer collaboration with everyone’s work-flow and made sure that
they were taking advantage of everything instead of assuming that they would figure it out
themselves. This also would have gone a long way in increasing my own efficiency because
I would often tidy up PR’s in order to maintain order.

More generally, I really learned about the value of overestimating how long certain
tasks will take and starting everything early. It was really amazing how much work our
team could produce while functioning as a unit, but the project itself is huge and definitely
expects that level of output.

7.0.2 Michael

I think one of the biggest lessons I learned from a software engineering perspective was the
importance of truly understanding legacy code before going ahead and trying to make any
changes. Indeed, since our language was C-like we based a lot of our initial changes off
of the MicroC architecture provided by Professor Edwards, which meant that there were
several hundred lines of OCaml code that we needed to understand before even beginning
to add elements of our language. This was no easy task, and even the most trivial of
changes early on (e.g. incorporating the built-in function "printf" for the Hello World
demo) seemed difficult since we just didn’t know what one had to do to get it working.
That said, by the end of the project, after having implemented many new features into the
semantic checker and code generator, whenever we needed to do something new, we were
so in tune with the overall structure of our compiler that it wasn’t a problem. In fact, this
led to many great conversations about what the best way to implement certain features of
our language were, which was definitely some of the most rewarding parts of this project
for me.

I also learned the importance of testing (thanks Zack!) – I remember having made a
large change to the structure of our language and thinking "how can I know this works?"
The presence of Travis, as well as a local script which checked it for you, was immensely
helpful for my sanity in these cases.

93

Though I wasn’t the manager, I also learned some lessons in team management. When
we started getting into the meat of the project, we assigned roles rather arbitrarily on a
sort of "whatever you want" basis. While this worked out for some – Zack turned out to
be a great tester and got the Travis integration working very quickly – others ended up
struggling with their roles. It would have been much better for us to have reassigned roles
once our strengths and weaknesses were clear so that everyone was being as efficient as
possible. Indeed, by the end of the project, whenever something needed to be done, there
was a clear point person who would get it done three times faster than anyone else would,
and if we had done this throughout the course of the project we could have cut down on a
lot of unproductive hours. In a similar vein, it would have been better to have recognized
earlier when certain members of the team were falling behind and getting them up to speed
so that we had more hands available and ready to work on the main parts of the compiler.

7.0.3 Josh

Over the course of the semester, I learned a lot technical things, a lot about project
management and a lot about the intersection of the two.

From the technical side, I became much better at being able to dive into some API or
chunk of code and really understand what it does, how it works and what its flaws are.
A lot of the code we relayed on (e.g. LLVM OCaml module, openssl/bn) are not nearly
as well documented as some of the APIs, modules, etc that I have used in the past. It
felt it infinitely more satisfying to dive into and solve errors and bugs on my own than it
does to seek answers on StackOverflow at every turn. The grit and skill I learned at this
is something I will certainly carry with me into the future, and I think it will serve my
wonderfully.

I also gained a thorough appreciation for the importance of testing and emphasizing
it early and often. Zack did an awesome job setting up continuous integration, and it
saved us on more than one occasion. It is quite humbling to see two random tests fail
when you push changes that you thought you had nothing to do with. Our robust and
automated testing suite allowed us to be confident whenever we merged a new PR. When
I find myself in similar situations in the future, I will be sure to be even more aggressive
about writing good tests early then we were in this project. They are, and proved to be,
a really invaluable resource.

From the team management perspective, I learned a lot about some of the classic
leadership challenges in software development. One thing we did a great job at was setting
reasonably sized goals and tasks for each team member each week. Being disciplined
about meeting these goals was at the foundation of our team’s success. Not once did we
pull an all nighter or find ourselves totally scrambling to meet a deadline, and of that I
am extremely proud. We only really hit our stride with respect to productivity in the last
month of the project and there were certainly some growing pains getting there. Looking
back, there are a few things that stand out between how our team operates not, at high
efficiency, and how it did before we goth here. One key thing is setting deliverables. At
the beginning, we did not set clear deliverables for the next week, which resulted in team
members coming to the meeting with something ’almost finished,’ but was not quite so.
After all, in software development there is the first 90% and the second 90%. To counter
this, we started requiring PRs to be up before our weekly Monday meetings. Even so,
some members of the team were not keeping pace, which was a big challenge. This was
difficult to manage, but setting well defined and narrower aspects of the project for the
week seemed to have some positive impact. Allocating human capital is hard. It will
certainly remain hard, but my amazing experience completing an awesome project with
this team has taught me an incredible amount.

94

7.0.4 Maggie

This project taught me an incredible amount about software engineering from a team
perspective. It was the first sizable group programming project I’ve worked on, and it
was initially quite tough for me to wrap my head around working with version control
for multiple contributors. By now, I feel incredibly more comfortable understanding how
to follow the growth of a project and keep track of who’s changing what, etc., and I’m
sure this will prove immensely useful to me going forward. The most important thing I
learned there was probably to be more proactive in considering what everyone else was
working on at any given time, as there were definitely times when I would implement some
functionality only to realize that it had already been done or that my work depended on
an outdated version of another piece of the project.

More than just the multiple contributors, this project had a lot of moving parts, and
it was at times difficult to understand what needed to get done and when in order to stay
on track. In the end, it was incredibly gratifying to gain understanding of how all the
pieces fit together, and to be able to easily navigate the multiple files fitting together to
isolate where an error was coming from. I think this slowed our group down a bit in the
beginning, but as we worked on more pieces of the project we really hit our stride. We
became a lot more productive once we began to set more concrete to-dos and began to
see our project taking shape. We also, initially, had a lot of really big PRs, and I think
we were much more productive once we began to push smaller and more specific changes,
solving problems piece by piece instead of waiting for an entire section to be finished. Even
so, I learned a lot about managing tasks between multiple people. There were times when
I’d get stuck on something, and I’d let myself just stay stuck there, when I could’ve sought
more help from teammates who were likely facing the same difficulties. Moreover, I think
I realized late in the game how much control we had in the decisions we made (what to
implement, what not to, etc.), and getting stuck on one thing should not have prevented
me from working on other aspects of the project, even if it wasn’t a pre-existing priority or
if other members of my group were already working on them. I think Michael, for example,
did a great job of identifying parts of the project that were missing and stepping up to
implement them, as he did with scoping issues and declaration flexibility.

Finally, I learned a lot about the importance of testing. Integrated testing was a new
concept for me entirely, and seeing it in action was very cool. It was hard enough to
understand how all the parts of the project worked together, much less understanding how
some small change would impact every other aspect of it. Putting up a PR and seeing the
Travis build fail after a small, seemingly unrelated change was not only fascinating but
also made clear how important integrated testing is to a large software project, allowing
you to clearly isolate which changes introduce issues. Altogether, I had a fantastic group
and learned an immense amount.

7.0.5 Richard

In this project, I learned the most about working on a software project in a group envi-
ronment. Prior to this project, I hadn’t worked with Github, and I was sometimes lost
about how to parallelize my work alongside others. Funny enough, for the first few things I
wrote, I would email them to Zack or Josh and that’s how I worked for the first few weeks,
which wasn’t optimal whatsoever. I also was afraid to speak up sometimes and ask for
help. There was a time this semester when I was stuck on integrating break and continue
into our codegen for a few weeks, and every week I would claim that I was getting closer,
but that I didn’t need help. Because of this, there was a lot of wasted time and effort
over implementing a fairly trivial portion of our code, which never got implemented in the
end. It was humbling and it showed me that communication was necessary to working

95

effectively in a group. Over the course of this semester, I’ve learned to use group version
control and to be a more communicative member of the team. I think I also learned a ton
about the role of testing during this project. I think testing and QA are usually viewed as
a role that’s less desirable compared to roles that work on the projects directly. However,
this project has shown me that testing is incredibly important, and is almost the backbone
that the project relies on to make sure nothing breaks. Throughout the project, Zack
emphasized for us to write our own tests as we developed code, and it made integration so
much easier in the long run. Working with Travis was so helpful and it made everyone’s
lives so much easier.

96

Chapter 8

Appendix on Elliptic Curve
Cryptography

8.1 Background and definitions

A typical elliptic curve is an equation

y2 = x3 + ax+ b

where the variables in this equation take values in the real numbers R. So one can
visualize this as a set of points (x, y) in the plane for which this equation is true. Here is
an example:

The curve y2 = x3 − x+ 1

The elliptic curve has the following remarkable property: if a line passes through two
points on the curve, then it passes through three points. Well, not exactly. The points of
intersection are counted with multiplicity, which practically means that if a line is tangent
to a curve at a point, then this intersection counts as two. Also, one might notice that in
the picture, a vertical line only intersects the curve in two points. Vertical lines are said to
intersect the curve at infinity – this sounds like cheating, but there is a (rather technical)
way to have this make perfect sense (and our implementation deals with this behind the
scenes). Furthermore, notice that if a point P = (x, y) is on an elliptic curve then (x,−y)
is also on it, and we call this point −P .

Using these two facts, we have the following binary operation, called addition and
denoted +: it takes two points P and Q as input. It finds the unique line passing through
both points (if the points are the same, it takes the tangent line) and finds the third point
on the line R. The operation then returns −R. In short, P +Q = −R.

It takes some work to check, but it turns out that this addition + satisfies the properties
stated above in §9.2 so that the points on an elliptic curve form a group.

97

8.2 Addition formula

The following formula describes the addition law mentioned above. Let E be an elliptic
curve given by y2 = x3 + ax+ b. Let P1 = (x1, y1) and P2 = (x2, y2) be points on E. The
point P1 + P2 = P3 = (x3, y3) is defined as follows:

x3 = m2 − x1 − x2
y3 = m(x1 − x3)− y1

where

m =

{
(y2 − y1)/(x2 − x1) if P1 6= P2

(3x21 + a)/(2y1) if P1 = P2.

and if the denominator of the relevant m is zero, then the sum is the point infinity and
we write P3 =∞.

8.3 Translation to cryptography

Now, in the above exposition we took elliptic curves defined over the real numbers, but it
turns out that this can be defined over any algebraic object known as a field (simplified,
this is a set with two binary operations + and × where both operations enjoy the nice
properties of a group and both operations distribute over each other, as they do in R).

Furthermore, the set of integers when taken with a prime modulus p, equipped with
the typical modular operations + and ×, is a field and is typically denoted Fp. Typically,
elliptic curves in cryptography are defined over this object Fp instead of R, so that a point
a curve E is really an equation

y2 ≡ x3 + ax+ b (mod p)

and the points on it are pairs of (modular) integers (x, y) for which this equation holds.
Indeed, even the addition law is the same, except the formula for m "changes" (we put
"changes" in quotation marks since this is really just a generalization of the above) to

m =

{
(y2 − y1)(x2 − x1)−1 if P1 6= P2

(3x21 + a)(2y1)
−1 if P1 = P2.

where x−1 denotes the multiplicative inverse of x in whatever field it is defined in. For
example, the multiplicative inverse of 5 with respect to the modulus 7 is 3, since 5 · 3 ≡ 1
(mod 7), so we write 5−1 ≡ 3. As above, the sum of two points is∞ if the "denominator",
i.e. the term being inverted, of the relevant m is equal to zero.

8.4 Comparison with modular arithmetic

The discussion in §9.2 motivates the analogy between the two cryptosystems. Indeed, while
in modular arithmetic we use integers mod p as building blocks and modular multiplication
as an operation relating these elements, in elliptic curve cryptography we use the points on
an elliptic curve as the elements and use the aforementioned addition law to relate these
elements together. With this analogy, one can translate many cryptographic protocols over
the modular integers into an exact protocol over an elliptic curve.

Indeed, recall the discrete log problem from §9.1. The elliptic curve analogy is this:
given a curve E and two points on it P and Q, can you find an integer k for which kP = Q?
(Here kP denotes P added to itself k times). The analogy should be becoming clear.

98

Chapter 9

Code Listing

9.1 Compiler Source

9.1.1 Primary

Listing 9.1: Makefile
CC = gcc

.PHONY: cmod.native
cmod.native:

ocamlbuild -use-ocamlfind -pkgs llvm,llvm.analysis -cflags -w,+a-4 \
cmod.native

.PHONY: test_grammar
test_grammar:

ocamllex scannerprint.mll
python tests/grammar_tests/testAllPretty.py

.PHONY: test_compiler_travis
test_compiler_travis:

export LLI="/usr/lib/llvm-3.8/bin/lli"
./testall.sh -v

special_arith.o: special_arith.c
clang -I/usr/local/opt/openssl/include -c special_arith.c

access.o: access.c
clang -I/usr/local/opt/openssl/include -c access.c

access: access.o
clang access.o -lcrypto -o access

cmc:
mkdir bin
cp cmc.sh ./bin/cmc
chmod +x ./bin/cmc

.PHONY: clean
clean :

ocamlbuild -clean
rm -rf testall.log *.diff cmod scanner.ml parser.ml parser.mli
rm -rf *.cmx *.cmi *.cmo *.cmx *.o
rm -rf *.err *.ll *.diff *.out

99

-rm -f scannerprint.ml *.tmp
rm -f *.exe *.s
rm -rf bin

.PHONY : all
all : clean cmod.native special_arith.o access.o cmc

Listing 9.2: cmod.ml
(* Top-level of the MicroC compiler: scan & parse the input,

check the resulting AST, generate LLVM IR, and dump the module *)

type action = Ast | LLVM_IR | Compile

let _ =
let action = if Array.length Sys.argv > 1 then
List.assoc Sys.argv.(1) [("-a", Ast); (* Print the AST only *)

("-l", LLVM_IR); (* Generate LLVM, don’t check *)
("-c", Compile)] (* Generate, check LLVM IR *)

else Compile in
let lexbuf = Lexing.from_channel stdin in
let ast = Parser.program Scanner.token lexbuf in
Semant.check ast;
match action with
Ast -> print_string (Ast.string_of_program ast)

| LLVM_IR -> print_string (Llvm.string_of_llmodule (Codegen.translate ast))
| Compile -> let m = Codegen.translate ast in
Llvm_analysis.assert_valid_module m;
print_string (Llvm.string_of_llmodule m)

Listing 9.3: scanner.mll

(* Ocamllex scanner for MicroC *)
{ open Parser

module B = Buffer }

(* why are some string and some chars LT, GT eg *)

rule token = parse
[’ ’ ’\t’ ’\r’ ’\n’] { token lexbuf } (* Whitespace *)

| "/*" { comment lexbuf } (* Comments *)
| "//" { comment2 lexbuf }
| ’(’ { LPAREN }
| ’)’ { RPAREN }
| ’{’ { LBRACE }
| ’}’ { RBRACE }
| ’[’ { LSQUARE }
| ’]’ { RSQUARE }
| ’;’ { SEMI }
| ’,’ { COMMA }
| ’+’ { PLUS }
| ’-’ { MINUS }
| ’*’ { STAR }
| ’^’ { POW }
| ’/’ { DIVIDE }
| ’%’ { MOD }
| ’&’ { ADDRESSOF }

100

| ’=’ { ASSIGN }
| ’^’ { POW }
| "%=" { MODASSIGN }
| "==" { EQ }
| "!=" { NEQ }
| ’<’ { LT }
| "<=" { LEQ }
| ’>’ { GT }
| ">=" { GEQ }
| "&&" { AND }
| "||" { OR }
| ’!’ { NOT }
| "if" { IF }
| "else" { ELSE }
| "for" { FOR }
| "while" { WHILE }
| "do" { DO }
| "break" { BREAK }
| "continue" { CONTINUE }
| "return" { RETURN }
| "int" { INT }
| "void" { VOID }
| "char" { CHAR }
| "NULL" { NULL }
| "stone" { STONE }
| "mint" { MINT }
| "point" { POINT }
| "curve" { CURVE }
| ’~’ { INF }
| "access" { ACCESS }
| "’" { CHARLIT (read_char lexbuf) }
| ’"’ { STRING (build_str (B.create 100) lexbuf) }
| [’0’-’9’]+ as lxm { LITERAL(int_of_string lxm) }
| [’a’-’z’ ’A’-’Z’][’a’-’z’ ’A’-’Z’ ’0’-’9’ ’_’]* as lxm { ID(lxm) }
| eof { EOF }
| _ as char { raise (Failure("illegal character " ^ Char.escaped char)) }

and comment = parse
"*/" { token lexbuf }

| _ { comment lexbuf }

and comment2 = parse
’\n’ { token lexbuf }

| _ { comment2 lexbuf }

and build_str sb = parse
| ’"’ { B.contents sb }
| ’\\’’\\’ { B.add_char sb ’\\’; build_str sb lexbuf }
| ’\\’’"’ { B.add_char sb ’"’; build_str sb lexbuf }
| ’\\’’\’’ { B.add_char sb ’\’’; build_str sb lexbuf }
| ’\\’’n’ { B.add_char sb ’\n’; build_str sb lexbuf }
| ’\\’’r’ { B.add_char sb ’\r’; build_str sb lexbuf }
| ’\\’’t’ { B.add_char sb ’\t’; build_str sb lexbuf }
| _ as t { B.add_char sb t; build_str sb lexbuf }

and read_char = parse
| ’\\’’\\’ { check_length ’\’’ lexbuf }
| ’\\’’"’ { check_length ’"’ lexbuf }

101

| ’\\’’\’’ { check_length ’\’’ lexbuf }
| ’\\’’n’ { check_length ’\n’ lexbuf }
| ’\\’’r’ { check_length ’\r’ lexbuf }
| ’\\’’t’ { check_length ’\t’ lexbuf }
| ’\\’’0’ { check_length (char_of_int 0) lexbuf } (* ’\0’ char in C *)
(* this should only match characters of length 1, as expected *)
| (_ as t) { check_length t lexbuf }

and check_length buf = parse
| ’\’’ { buf }
| _ as t { raise(Failure ("illegal char literal " ^ Char.escaped t)) }

Listing 9.4: parser.mly

/* Ocamlyacc parser for C%, after that for MicroC */

%{
open Ast
%}

%token SEMI COMMA LPAREN RPAREN LBRACE RBRACE LSQUARE RSQUARE
%token PLUS MINUS STAR DIVIDE MOD ASSIGN NOT POW ADDRESSOF /*NEG*/ /* minus is

neg, star is times */
%token MODASSIGN /* star is deref*/
%token EQ NEQ LT LEQ GT GEQ AND OR
%token RETURN IF ELSE FOR WHILE DO BREAK CONTINUE
%token INT CHAR VOID NULL
%token STONE MINT CURVE POINT INF ACCESS
%token <int> LITERAL //need string literals
%token <string> ID
%token <string> STRING
%token <char> CHARLIT
%token EOF

//COMMA?
%nonassoc NOELSE
%nonassoc ELSE
%right MODASSIGN ASSIGN
%left OR
%left AND
%left EQ NEQ
%left LT GT LEQ GEQ
%left PLUS MINUS
%right ACCESS
%left STAR DIVIDE MOD //star is times
%right POW
%right NOT NEG ADDRESSOF DEREF /* minus is neg, mod is addof, star is deref */

%start program
%type <Ast.program> program

%%

program:
decls EOF { $1 }

decls:

102

/* nothing */ { [], [] }
| decls vdecl { ($2 :: fst $1), snd $1 }
| decls fdecl { fst $1, ($2 :: snd $1) }

fdecl:
typ ID LPAREN formals_opt RPAREN LBRACE combined_list RBRACE
{ { typ = $1;
fname = $2;
formals = $4;
locals = List.rev (fst $7);
body = List.rev (snd $7) } }

formals_opt:
/* nothing */ { [] }

| formal_list { List.rev $1 }

formal_list:
typ ID { [($1,$2)] }

| formal_list COMMA typ ID { ($3,$4) :: $1 }

typ:
INT { Int }

| CHAR { Char }
| VOID { Void }
| STONE { Stone }
| MINT { Mint }
| CURVE { Curve }
| POINT { Point }
| typ STAR { Pointer($1) } // unclear if this is a proper declaration

combined_list:
/* nothing */ { [], [] }

| combined_list vdecl { ($2 :: fst $1), snd $1 }
| combined_list stmt { fst $1, ($2 :: snd $1) }

vdecl:
typ ID SEMI { ($1, $2) }

stmt:
expr SEMI { Expr $1 } /*expr_opt here instead of nullstmt maybe*/

| RETURN SEMI { Return Noexpr }
| RETURN expr SEMI { Return $2 }
| LBRACE combined_list RBRACE { Block(List.rev (fst $2), List.rev (snd $2)) }
| IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([], [])) }
| IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }
| FOR LPAREN expr_opt SEMI expr_opt SEMI expr_opt RPAREN stmt /* made expr2

optional */
{ For($3, $5, $7, $9) }

| WHILE LPAREN expr RPAREN stmt { While($3, $5) }
| DO stmt WHILE LPAREN expr RPAREN { DoWhile($2, $5) } /* ADDED */
| BREAK SEMI { Break } /* ADDED */
| CONTINUE SEMI { Continue } /* added */
| SEMI { NullStmt } /* ADDED - unclear if could be Noexpr */

expr_opt:
/* nothing */ { Noexpr }

| expr { $1 }

103

expr:
LITERAL { Literal($1) }

| ID { Id($1) }
| INF { Inf }
| expr PLUS expr { Binop($1, Add, $3) }
| expr MINUS expr { Binop($1, Sub, $3) }
| expr STAR expr { Binop($1, Mult, $3) } //star is times
| expr DIVIDE expr { Binop($1, Div, $3) }
| expr POW expr { Binop($1, Pow, $3) }
| expr EQ expr { Binop($1, Equal, $3) }
| expr NEQ expr { Binop($1, Neq, $3) }
| expr LT expr { Binop($1, Less, $3) }
| expr LEQ expr { Binop($1, Leq, $3) }
| expr GT expr { Binop($1, Greater, $3) }
| expr GEQ expr { Binop($1, Geq, $3) }
| expr AND expr { Binop($1, And, $3) }
| expr OR expr { Binop($1, Or, $3) }
| MINUS expr %prec NEG { Unop(Neg, $2) } /* second minus is neg */
| NOT expr { Unop(Not, $2) }
| ID ASSIGN expr { Assign($1, $3) } //changed ID to lval
| ID LPAREN actuals_opt RPAREN { Call($1, $3) }
| LPAREN expr RPAREN { $2 }
| NULL { Null } /* Added all after this line in expr */
| STAR expr %prec DEREF { Unop(Deref, $2) } // star is deref
| ADDRESSOF expr { Unop(AddrOf, $2) } /* must be an lvalue, changed back to

unop */
| expr MOD expr { Binop($1, Mod, $3) }
| ID MODASSIGN expr { ModAssign($1, $3) }
| STRING { String($1) } /* string literal */
| CHARLIT { Ch($1) } /* char literal */
| LT expr COMMA expr GT { Construct2($2, $4) }
| LT expr COMMA expr COMMA expr GT { Construct3($2, $4, $6) }
| ID LSQUARE expr RSQUARE { Subscript($1, $3) }
| ACCESS expr { Unop(Access, $2) }

actuals_opt:
/* nothing */ { [] }

| actuals_list { List.rev $1 }

actuals_list:
expr { [$1] }

| actuals_list COMMA expr { $3 :: $1 }

Listing 9.5: ast.ml

(* Abstract Syntax Tree and functions for printing it *)

type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq | Greater | Geq |
And | Or | Pow | Mod

type uop = Neg | Not | Deref | AddrOf | Access

type typ = Int | Char | Stone | Mint | Curve | Point | Void | Pointer of typ

type bind = typ * string

type expr =
Literal of int

104

| Id of string
| Binop of expr * op * expr
| Unop of uop * expr
| Construct2 of expr * expr
| Construct3 of expr * expr * expr
| Assign of string * expr
| Call of string * expr list
| Noexpr (* not Null? *)
| Null
| ModAssign of string * expr
| String of string
| Ch of char (* Maybe change back to char *)
| Subscript of string * expr
| Inf

type stmt =
Block of (bind list * stmt list)

| Expr of expr
| Return of expr
| If of expr * stmt * stmt
| For of expr * expr * expr * stmt (* need to account for optional exprs? *)
| While of expr * stmt
| DoWhile of stmt * expr
| Break
| Continue
| NullStmt

type func_decl = {
typ : typ;
fname : string;
formals : bind list;
locals : bind list;
body : stmt list;

}

type program = bind list * func_decl list

(* Pretty-printing functions *)

let string_of_op = function
Add -> "+"

| Sub -> "-"
| Mult -> "*"
| Div -> "/"
| Mod -> "%"
| Pow -> "**"
| Equal -> "=="
| Neq -> "!="
| Less -> "<"
| Leq -> "<="
| Greater -> ">"
| Geq -> ">="
| And -> "&&"
| Or -> "||"

let string_of_uop = function
Neg -> "-"

| Not -> "!"

105

| Deref -> "*"
| AddrOf -> "&"
| Access -> "access"

let rec string_of_expr = function
Literal(l) -> string_of_int l

| Id(s) -> s
| Binop(e1, o, e2) ->

string_of_expr e1 ^ " " ^ string_of_op o ^ " " ^ string_of_expr e2
| Unop(o, e) -> string_of_uop o ^ string_of_expr e
| Assign(v, e) -> v ^ " = " ^ string_of_expr e
| Call(f, el) ->

f ^ "(" ^ String.concat ", " (List.map string_of_expr el) ^ ")"
| Noexpr -> ""
| Null -> "NULL" (* pointer to zero *)
| Inf -> "Inf"
| ModAssign(v, e) -> v ^ " %= " ^ string_of_expr e
| String(s) -> s
| Ch (c) -> String.make 1 c
| Subscript(s, e) -> s ^ "[" ^ string_of_expr e ^ "]"
| Construct2(e1, e2) -> "{" ^ string_of_expr e1 ^ ", " ^ string_of_expr e2 ^

"}"
| Construct3(e1, e2, e3) ->

"{" ^ string_of_expr e1 ^ ", " ^ string_of_expr e2 ^ ", " ^ string_of_expr
e3 ^ "}"

let rec string_of_stmt = function
Block(_, stmts) ->
"{\n" ^ String.concat "" (List.map string_of_stmt stmts) ^ "}\n"

| Expr(expr) -> string_of_expr expr ^ ";\n";
| Return(expr) -> "return " ^ string_of_expr expr ^ ";\n";
| If(e, s, Block([], [])) -> "if (" ^ string_of_expr e ^ ")\n" ^

string_of_stmt s
| If(e, s1, s2) -> "if (" ^ string_of_expr e ^ ")\n" ^

string_of_stmt s1 ^ "else\n" ^ string_of_stmt s2
| For(e1, e2, e3, s) ->

"for (" ^ string_of_expr e1 ^ " ; " ^ string_of_expr e2 ^ " ; " ^
string_of_expr e3 ^ ") " ^ string_of_stmt s

| While(e, s) -> "while (" ^ string_of_expr e ^ ") " ^ string_of_stmt s
| DoWhile(s, e) -> "do { \n" ^ string_of_stmt s ^ "\n} while (" ^

string_of_expr e ^ ")\n"
| Break -> "break;\n"
| Continue -> "continue;\n"
| NullStmt -> ";\n"

let rec string_of_typ = function
Int -> "int"

| Char -> "char"
| Stone -> "stone"
| Mint -> "mint"
| Curve -> "curve"
| Point -> "point"
| Void -> "void"
| Pointer (_ as t) -> "pointer " ^ string_of_typ(t)

let string_of_vdecl (t, id) = string_of_typ t ^ " " ^ id ^ ";\n"

let string_of_fdecl fdecl =

106

string_of_typ fdecl.typ ^ " " ^
fdecl.fname ^ "(" ^ String.concat ", " (List.map snd fdecl.formals) ^
")\n{\n" ^
String.concat "" (List.map string_of_vdecl fdecl.locals) ^
String.concat "" (List.map string_of_stmt fdecl.body) ^
"}\n"

let string_of_program (vars, funcs) =
String.concat "" (List.map string_of_vdecl vars) ^ "\n" ^
String.concat "\n" (List.map string_of_fdecl funcs)

Listing 9.6: semant.ml

(* Semantic checking for the MicroC compiler *)

open Ast

module StringMap = Map.Make(String)

(* Semantic checking of a program. Returns void if successful,
throws an exception if something is wrong.

Check each global variable, then check each function *)

let check (globals, functions) =

(* Raise an exception if the given list has a duplicate *)
let report_duplicate exceptf list =
let rec helper = function
n1 :: n2 :: _ when n1 = n2 -> raise (Failure (exceptf n1))

| _ :: t -> helper t
| [] -> ()

in helper (List.sort compare list)
in

(* Raise an exception if a given binding is to a void type *)
let check_not_void exceptf = function

(Void, n) -> raise (Failure (exceptf n))
| _ -> ()

in

(* Raise an exception of the given rvalue type cannot be assigned to
the given lvalue type *)

let check_assign lvaluet rvaluet err =
if lvaluet = rvaluet then lvaluet else raise err

in

(**** Checking Global Variables ****)

List.iter (check_not_void (fun n -> "illegal void global " ^ n)) globals;

report_duplicate (fun n -> "duplicate global " ^ n) (List.map snd globals);

(**** Checking Functions ****)

if List.mem "printf" (List.map (fun fd -> fd.fname) functions)
then raise (Failure ("function printf may not be defined")) else ();

107

if List.mem "access_mint" (List.map (fun fd -> fd.fname) functions)
then raise (Failure ("function access_mint may not be defined")) else ();

if List.mem "access_curve" (List.map (fun fd -> fd.fname) functions)
then raise (Failure ("function access_curve may not be defined")) else ();

if List.mem "access_point" (List.map (fun fd -> fd.fname) functions)
then raise (Failure ("function access_point may not be defined")) else ();

if List.mem "scanf" (List.map (fun fd -> fd.fname) functions)
then raise (Failure ("function scanf may not be defined")) else ();

if List.mem "malloc" (List.map (fun fd -> fd.fname) functions)
then raise (Failure ("function malloc may not be defined")) else ();

if List.mem "free" (List.map (fun fd -> fd.fname) functions)
then raise (Failure ("function free may not be defined")) else ();

report_duplicate (fun n -> "duplicate function " ^ n)
(List.map (fun fd -> fd.fname) functions);

(* Function declaration for a named function *)
let built_in_decls = List.fold_left (fun map (name, attr) -> StringMap.add
name attr map) StringMap.empty [

("printf", { typ = Void; fname = "printf"; formals = [];
(* change formals to be variadic? Right now, this is fixed by just not
comparing formals and actuals list if the name of the function is printf *)
locals = []; body = [] });
("atoi", { typ = Int; fname = "atoi"; formals = [(Pointer(Char),
"x")]; locals = []; body = [] });
("print_stone", { typ = Int; fname = "print_stone"; formals = [(Stone,
"x")]; locals = []; body = [] });

("access_mint", {typ = Stone; fname = "access_mint"; formals = [(Mint,
"m"); (Int, "i")];

locals = []; body = []});
("access_curve", {typ = Stone; fname = "access_curve"; formals =

[(Pointer(Curve), "c"); (Int, "i")];
locals = []; body = []});
("access_point", {typ = Stone; fname = "access_point"; formals =

[(Pointer(Point), "p"); (Int, "i")];
locals = []; body = []});

("print_mint", { typ = Int; fname = "print_mint"; formals = [(Mint,
"x")]; locals = []; body = [] });
("print_div", { typ = Int; fname = "print_div"; formals = [(Mint,
"x")]; locals = []; body = [] });
("print_point", { typ = Int; fname = "print_point"; formals =

[(Pointer(Point), "P")]; locals = []; body = [] });
("print_point_sep", { typ = Int; fname = "print_point_sep"; formals =

[(Pointer(Point), "P")]; locals = []; body = [] });
("print_curve", { typ = Int; fname = "print_curve"; formals =

[(Pointer(Curve),
"E")]; locals = []; body = [] });
("scanf", { typ = Void; fname = "scanf"; formals = [(Pointer(Char), "x")];
locals = []; body = [] });
("malloc", { typ = Pointer(Char); fname = "malloc"; formals = [(Int, "x")];

108

locals = []; body = [] });
("free", { typ = Void; fname = "free"; formals = [(Pointer(Char), "x")];
locals = []; body = [] })
]
(* Can only malloc char pointers, best way to generalize? *)

in

let function_decls = List.fold_left (fun m fd -> StringMap.add fd.fname fd m)
built_in_decls functions

in

let function_decl s = try StringMap.find s function_decls
with Not_found -> if s = "main" then raise (Failure ("main function must

be defined"))
else raise (Failure ("unrecognized function " ^ s))

in

let _ = function_decl "main" in (* Ensure "main" is defined *)
(* Note: This prints a weird error message in the case main isn’t defined.
* Maybe change it? (This is edwards’ code) *)

let check_function func =

List.iter (check_not_void (fun n -> "illegal void formal " ^ n ^
" in " ^ func.fname)) func.formals;

report_duplicate (fun n -> "duplicate formal " ^ n ^ " in " ^ func.fname)
(List.map snd func.formals);

List.iter (check_not_void (fun n -> "illegal void local " ^ n ^
" in " ^ func.fname)) func.locals;

report_duplicate (fun n -> "duplicate local " ^ n ^ " in " ^ func.fname)
(List.map snd func.locals);

let type_of_identifier s lookup_table =
try StringMap.find s lookup_table
with Not_found -> raise (Failure ("undeclared identifier " ^ s))

in

let type_of_pointer t ex = match t with
Pointer(_ as x) -> x;

| _ -> raise (Failure ("non-pointer expression " ^ string_of_expr ex ^
" is being used as a pointer"))

in

(* Return the type of an expression or throw an exception *)
let rec expr table = function

Inf -> Point
| Null -> Pointer(Void)
| Literal _ -> Int
| Id s -> type_of_identifier s table
| Ch _ -> Char
| String _ -> Pointer(Char)
| Subscript(a, i) as e -> if (expr table i) = Int then (type_of_pointer
(type_of_identifier a table) e) else raise (Failure ("use of non-integer

109

type as index in " ^
string_of_expr e))

| Binop(e1, op, e2) as e -> let t1 = expr table e1 and t2 = expr table e2
in

(match op with
Add | Sub when t1 = Pointer(Point) && t2 = Pointer(Point) ->

Pointer(Point)
| Mult when t1 = Stone && t2 = Pointer(Point) -> Pointer(Point)
| Add | Sub | Mult | Div | Pow when t1 = Int && t2 = Int -> Int
| Add | Sub | Mult | Div | Pow when t1 = Stone && t2 = Stone -> Stone
| Add | Sub | Mult | Pow when t1 = Mint && t2 = Mint -> Mint
| Pow when t1 = Mint && t2 = Stone -> Mint

| Equal | Neq when t1 = t2 -> Int (* might want to extend this to allow
e.g., t1 and t2 both integer types so one can do stone=int *)

| Less | Leq | Greater | Geq when t1 = Int && t2 = Int -> Int
| Equal | Neq | Less | Leq | Greater | Geq when t1 = Stone && t2 = Stone -> Int

| _ -> raise (Failure ("illegal binary operator " ^
string_of_typ t1 ^ " " ^ string_of_op op ^ " " ^
string_of_typ t2 ^ " in " ^ string_of_expr e))

)
| Unop(op, e) as ex -> let t = expr table e in

(match op with
Neg when t = Int -> Int

| Neg when t = Stone -> Stone
| Neg when t = Mint -> Mint
| Neg when t = Pointer(Point) -> Pointer(Point)
| Neg when t = Char -> Char
| Not when t = Int -> Int
| Deref -> type_of_pointer t e
| AddrOf -> Pointer(t)
| Access when t = Mint || t = Point || t = Curve -> Stone
| _ -> raise (Failure ("illegal unary operator " ^ string_of_uop op ^

string_of_typ t ^ " in " ^ string_of_expr ex)))
| Construct2(e1, e2) -> let t1 = expr table e1 and t2 = expr table e2 in
(match (t1, t2) with
(Stone, Stone) -> Mint

| (Mint, Mint) -> Pointer(Curve)
| _ -> raise (Failure ("illegal constructor type pair (" ^ string_of_typ

t1
^ "," ^ string_of_typ t2 ^ ")")))

| Construct3(e1, e2, e3) -> let t1 = expr table e1 and t2 = expr table e2
and t3 = expr table e3 in

(match (t1, t2, t3) with
| (Pointer(Curve), Stone, Stone) -> Pointer(Point)
| _ -> raise (Failure ("illegal constructor type pair (" ^ string_of_typ

t1
^ "," ^ string_of_typ t2 ^ "," ^ string_of_typ t3 ^ ")")))

| Noexpr -> Void

(* Definitely need to change this to support things which return lvalues,
* e.g. dereferencing *)
| Assign(var, e) as ex -> let lt = type_of_identifier var table

and rt = expr table e in
if (lt, rt) = (Stone, Pointer(Char)) then Stone else
check_assign lt rt (Failure ("illegal assignment " ^ string_of_typ lt ^

" = " ^ string_of_typ rt ^ " in " ^
string_of_expr ex))

| ModAssign(var, e) as ex -> let lt = type_of_identifier var table

110

and rt = expr table e in
(match (lt, rt) with
((Int|Stone) as t, (Int|Stone)) -> t

| _ -> raise (Failure ("illegal use of %= with types " ^ string_of_typ
lt ^ " and " ^ string_of_typ rt ^ " in " ^ string_of_expr ex)))

| Call(fname, actuals) as call -> let fd = function_decl fname in
if fname = "printf"
then

let _ = List.iter (fun e -> ignore(expr table e)) actuals in Void
else
if List.length actuals != List.length fd.formals
then
raise (Failure ("expecting " ^ string_of_int
(List.length fd.formals) ^ " arguments in " ^ string_of_expr call))

else
let _ = List.iter2 (fun (ft, _) e -> let et = expr table e in
ignore (check_assign ft et
(Failure ("illegal actual argument found " ^ string_of_typ et ^
" expected " ^ string_of_typ ft ^ " in " ^ string_of_expr call))))

fd.formals actuals
in

fd.typ
in

let check_int_expr table e = if expr table e != Int
then raise (Failure ("expected integer expression in " ^ string_of_expr e))
else () in

(* Verify a statement or throw an exception *)
let rec stmt table in_loop = function

Block (vl, sl) -> let rec check_block block_table = function
[Return _ as s] -> stmt block_table in_loop s

| Return _ :: _ -> raise (Failure "nothing may follow a return")
| (Block (_, _) as b) :: ss -> stmt block_table in_loop b; check_block
block_table ss
| s :: ss -> stmt block_table in_loop s ; check_block block_table ss
| [] -> ()
in
List.iter (check_not_void (fun n -> "illegal void local " ^ n ^
" in " ^ func.fname)) vl;
(* check for void type *)

report_duplicate (fun n -> "duplicate local " ^ n ^ " in " ^ func.fname)
((List.map snd vl));
(* check for duplicate names in that scope *)

let new_table = List.fold_left (fun m (t, n) -> StringMap.add n t
m) table vl in

check_block new_table sl
(* check the block with new lookup table *)

| Expr e -> ignore (expr table e)
| Return e -> let t = expr table e in if t = func.typ then () else

raise (Failure ("return gives " ^ string_of_typ t ^ " expected " ^
string_of_typ func.typ ^ " in " ^ string_of_expr e))

| If(p, b1, b2) -> check_int_expr table p; stmt table false b1; stmt table

111

false b2
| For(e1, e2, e3, st) -> ignore (expr table e1); check_int_expr table e2;

ignore (expr table e3); stmt table true st
| While(p, s) -> check_int_expr table p; stmt table true s
| DoWhile(s, p) -> stmt table true s; check_int_expr table p
| Break -> if in_loop then () else

raise (Failure ("break statement found outside of a loop context"))
| Continue -> if in_loop then () else

raise (Failure ("continue statement found outside of a loop context"))
| NullStmt -> ()

in

(* Type of each variable (global, formal, or local *)
let table = List.fold_left (fun m (t, n) -> StringMap.add n t m)
StringMap.empty (globals @ func.formals @ func.locals) in

stmt table false (Block ([], func.body))

in
List.iter check_function functions

Listing 9.7: codegen.ml

(* Code generation: translate takes a semantically checked AST and
produces LLVM IR

LLVM tutorial: Make sure to read the OCaml version of the tutorial

http://llvm.org/docs/tutorial/index.html

Detailed documentation on the OCaml LLVM library:

http://llvm.moe/
http://llvm.moe/ocaml/

*)

module L = Llvm
module A = Ast

module StringMap = Map.Make(String)

let translate (globals, functions) =
let context = L.global_context () in
let the_module = L.create_module context "Cmod"
(*and i64_t = L.i64_type context *)
and i32_t = L.i32_type context
and i8_t = L.i8_type context
and void_t = L.void_type context in
let obj_pointer = L.pointer_type (L.i8_type context) in (* void pointer, 8

bytes *)
let mint_type = L.struct_type context [| obj_pointer ; obj_pointer |] in (*

struct of two void pointers *)
let curve_type = L.struct_type context [| mint_type ; mint_type |] in (* cruve

defined by two modints *)
let point_type = L.struct_type context [| curve_type ; obj_pointer ;
obj_pointer; i8_t |] in(* curve + two stones *)
let point_ptr = L.pointer_type point_type in

112

let curve_ptr = L.pointer_type curve_type in
let mint_pointer = L.pointer_type mint_type in
(* Must consider best way to implement points wrt Inf *)
(* maybe define diff points for inf and normal to enforce that
it has to be one or two, not arb length array *)

let rec ltype_of_typ = function
A.Int -> i32_t

| A.Char -> i8_t (* chars are 1 byte ints *)
| A.Void -> void_t
| A.Stone -> obj_pointer (* Pointer to arb prec list for C lib *)
| A.Mint -> mint_type
| A.Curve -> curve_type
| A.Point -> point_type
| A.Pointer x -> L.pointer_type (ltype_of_typ x) in
(* Cant define pointer w normal form bc need type at time *)

(* Declare each global variable; remember its value in a map *)
let global_vars =
let global_var m (t, n) =
let init = L.const_int (ltype_of_typ t) 0
in StringMap.add n ((L.define_global n init the_module), (t, 0)) m in

List.fold_left global_var StringMap.empty globals in

(* Declare printf(), which the print built-in function will call *)
let printf_t = L.var_arg_function_type i32_t [| L.pointer_type i8_t |] in
let printf_func = L.declare_function "printf" printf_t the_module in

let read_t = L.function_type i32_t [| L.pointer_type i8_t ; L.pointer_type
i8_t |] in

let read_func = L.declare_function "scanf" read_t the_module in

let malloc_t = L.function_type (L.pointer_type i8_t) [| i32_t |] in
let malloc_func = L.declare_function "malloc" malloc_t the_module in

let free_t = L.function_type void_t [| L.pointer_type i8_t |] in
let free_func = L.declare_function "free" free_t the_module in

(* Declare other linked to / "built in" functions *)
(* Function returns an 8 byte pointer, taking in two 8 byte pointers as

arguments *)
let mint_add_func_t = L.function_type mint_type [| mint_pointer ; mint_pointer

|] in
let mint_add_func = L.declare_function "mint_add_func" mint_add_func_t

the_module in

let mint_sub_func_t = L.function_type mint_type [| mint_pointer ; mint_pointer
|] in

let mint_sub_func = L.declare_function "mint_sub_func" mint_sub_func_t
the_module in

let mint_mult_func_t = L.function_type mint_type [| mint_pointer ;
mint_pointer |] in

let mint_mult_func = L.declare_function "mint_mult_func" mint_mult_func_t
the_module in

113

let mint_pow_func_t = L.function_type mint_type [| mint_pointer ; mint_pointer
|] in

let mint_pow_func = L.declare_function "mint_pow_func" mint_pow_func_t
the_module in

let mint_to_stone_func_t = L.function_type mint_type [| mint_pointer ;
obj_pointer |] in

let mint_to_stone_func = L.declare_function "mint_to_stone_func"
mint_to_stone_func_t the_module in

let stone_add_func_t = L.function_type obj_pointer [| obj_pointer ;
obj_pointer |] in

let stone_add_func = L.declare_function "stone_add_func" stone_add_func_t
the_module in

let stone_sub_func_t = L.function_type obj_pointer [| obj_pointer ;
obj_pointer |] in

let stone_sub_func = L.declare_function "stone_sub_func" stone_sub_func_t
the_module in

let stone_mult_func_t = L.function_type obj_pointer [| obj_pointer ;
obj_pointer |] in

let stone_mult_func = L.declare_function "stone_mult_func" stone_mult_func_t
the_module in

let stone_div_func_t = L.function_type obj_pointer [| obj_pointer ;
obj_pointer |] in

let stone_div_func = L.declare_function "stone_div_func" stone_div_func_t
the_module in

let stone_pow_func_t = L.function_type obj_pointer [| obj_pointer ;
obj_pointer |] in

let stone_pow_func = L.declare_function "stone_pow_func" stone_pow_func_t
the_module in

let stone_mod_func_t = L.function_type obj_pointer [| obj_pointer ;
obj_pointer |] in

let stone_mod_func = L.declare_function "stone_mod_func" stone_mod_func_t
the_module in

let stone_eq_func_t = L.function_type i32_t [| obj_pointer ; obj_pointer |] in
let stone_eq_func = L.declare_function "stone_eq_func" stone_eq_func_t

the_module in

let stone_neq_func_t = L.function_type i32_t [| obj_pointer ; obj_pointer |] in
let stone_neq_func = L.declare_function "stone_neq_func" stone_neq_func_t

the_module in

let stone_leq_func_t = L.function_type i32_t [| obj_pointer ; obj_pointer |] in
let stone_leq_func = L.declare_function "stone_leq_func" stone_leq_func_t

the_module in

let stone_geq_func_t = L.function_type i32_t [| obj_pointer ; obj_pointer |] in
let stone_geq_func = L.declare_function "stone_geq_func" stone_geq_func_t

the_module in

let stone_less_func_t = L.function_type i32_t [| obj_pointer ; obj_pointer |]
in

114

let stone_less_func = L.declare_function "stone_less_func" stone_less_func_t
the_module in

let stone_greater_func_t = L.function_type i32_t [| obj_pointer ; obj_pointer
|] in

let stone_greater_func = L.declare_function "stone_greater_func"
stone_greater_func_t the_module in

let stone_print_func_t = L.function_type i32_t [| obj_pointer |] in
let stone_print_func = L.declare_function "stone_print_func"

stone_print_func_t the_module in

let mint_print_func_t = L.function_type i32_t [| mint_type |] in
let mint_print_func = L.declare_function "mint_print_func" mint_print_func_t

the_module in

let div_print_func_t = L.function_type i32_t [| mint_type |] in
let div_print_func = L.declare_function "div_print_func" div_print_func_t

the_module in

let point_print_func_t = L.function_type i32_t [| point_ptr |] in
let point_print_func = L.declare_function "point_print_func"

point_print_func_t the_module in

let point_print_sep_func_t = L.function_type i32_t [| point_ptr |] in
let point_print_sep_func = L.declare_function "point_print_sep_func"
point_print_sep_func_t the_module in

let curve_print_func_t = L.function_type i32_t [| curve_ptr |] in
let curve_print_func = L.declare_function "curve_print_func"

curve_print_func_t the_module in

let point_add_func_t = L.function_type point_ptr [| point_ptr ; point_ptr |] in
let point_add_func = L.declare_function "point_add_func" point_add_func_t

the_module in

let point_sub_func_t = L.function_type point_ptr [| point_ptr ; point_ptr |] in
let point_sub_func = L.declare_function "point_sub_func" point_sub_func_t

the_module in

let atoi_func_t = L.function_type i32_t [| L.pointer_type i8_t |] in
let atoi_func = L.declare_function "atoi" atoi_func_t the_module in

(* stone * point, i.e. add point to itself stone many times *)
let point_mult_func_t = L.function_type point_ptr [| obj_pointer ; point_ptr

|] in
let point_mult_func = L.declare_function "point_mult_func" point_mult_func_t

the_module in

let stone_create_func_t = L.function_type obj_pointer [| L.pointer_type i8_t
|] in

let stone_create_func = L.declare_function "stone_create_func"
stone_create_func_t the_module in

let curve_create_func_t = L.function_type curve_ptr [| mint_type ; mint_type
|] in

let curve_create_func = L.declare_function "curve_create_func"
curve_create_func_t the_module in

115

let point_create_func_t = L.function_type point_ptr
[| curve_ptr ; obj_pointer ; obj_pointer |] in

let point_create_func = L.declare_function "point_create_func"
point_create_func_t the_module in

let stone_free_t = L.function_type i32_t [| L.pointer_type i8_t |] in (* bn
free func *)

let stone_free_func = L.declare_function "stone_free_func" stone_free_t
the_module in

(* let mint_free_t = L.function_type i32_t [| mint_pointer |] in
let mint_free_func = L.declare_function "mint_free_func" mint_free_t

the_module in *)

let access_mint_t = L.function_type obj_pointer [| mint_type ; i32_t |] in
let access_mint = L.declare_function "access_mint" access_mint_t the_module

in

let access_curve_t = L.function_type obj_pointer [| curve_ptr ; i32_t |] in
let access_curve = L.declare_function "access_curve" access_curve_t

the_module in

let access_point_t = L.function_type obj_pointer [| point_ptr ; i32_t |] in
let access_point = L.declare_function "access_point" access_point_t

the_module in

(* let invert_point_func_t = L.function_type point_type [| point_type |] in
let invert_point_func = L.declare_function "invert_point_func"

invert_point_func_t the_module in *)

(* Define each function (arguments and return type) so we can call it *)
let function_decls =
let function_decl m fdecl =
let name = fdecl.A.fname
and formal_types =

Array.of_list (List.map (fun (t,_) -> ltype_of_typ t) fdecl.A.formals)
in let ftype = L.function_type (ltype_of_typ fdecl.A.typ) formal_types in
StringMap.add name (L.define_function name ftype the_module, fdecl) m in

List.fold_left function_decl StringMap.empty functions in

(* Fill in the body of the given function *)
let build_function_body fdecl =
let (the_function, _) = StringMap.find fdecl.A.fname function_decls in
let builder = L.builder_at_end context (L.entry_block the_function) in

let char_format_str = L.build_global_stringptr "%s" "fmt2" builder in

(* Construct the function’s "locals": formal arguments and locally
declared variables. Allocate each on the stack, initialize their
value, if appropriate, and remember their values in the "locals" map *)

(* Return the value for a variable or formal argument *)
let lookup n table = try StringMap.find n table

with Not_found -> StringMap.find n global_vars
in

116

let manage l1 l2 ex ex2 =
let _ = if (l1 = 0) then

ignore(L.build_call stone_free_func [| ex |] "res" builder)
else () in
if (l2 = 0) then

ignore(L.build_call stone_free_func [| ex2 |] "res" builder)
else ()

in

(*let manage_mint l1 l2 ex ex2 =
let _ = if (l1 = 0) then

ignore(L.build_call mint_free_func [| ex |] "res" builder)
else () in
if (l2 = 0) then

ignore(L.build_call mint_free_func [| ex2 |] "res" builder)
else ()

in *)

(* Construct code for an expression; return its value *)
let rec expr table builder = function

A.Literal i -> (L.const_int i32_t i, (A.Int, 0))
(*we dont want too big of int in here, maybe declare stone literals as

strings*)
| A.String s -> (L.build_global_stringptr s "fmts" builder,

(A.Pointer(A.Char), 0))
| A.Noexpr -> (L.const_int i32_t 0, (A.Void, 0))
| A.Id s ->
let binding = lookup s table in
(L.build_load (fst binding) s builder, (fst (snd binding), 1))

| A.Construct2 (e1, e2) ->
let (e1’, (t1, _)) = expr table builder e1
and (e2’, (t2, _)) = expr table builder e2 in
(match (t1, t2) with
(A.Stone, A.Stone) ->
let struct_m = L.undef mint_type in
let reduced_val = L.build_call stone_mod_func [| e1’ ; e2’ |]

"stone_mod_res" builder in
let struct_m2 = L.build_insertvalue struct_m (reduced_val) 0 "sm"

builder in
(L.build_insertvalue struct_m2 e2’ 1 "sm2" builder, (A.Mint, 1)) (*1

right?*)
| (A.Mint, A.Mint) ->
(L.build_call curve_create_func [| e1’ ; e2’ |] "curve_create_res"
builder, (A.Pointer(A.Curve), 1))

| _ -> raise(Failure("wrong types in construct2")))
(* impossible; semant will check this *)

| A.Construct3 (e1, e2, e3) ->
let (e1’, (t1, _)) = expr table builder e1
and (e2’, (t2, _)) = expr table builder e2
and (e3’, (t3, _)) = expr table builder e3 in
(match (t1, t2, t3) with
(A.Pointer(A.Curve), A.Stone, A.Stone) -> (*only construct 3?*)

(L.build_call point_create_func [| e1’ ; e2’ ; e3’ |]
"point_create_res" builder, (A.Pointer(A.Point), 1))

| _ -> raise(Failure("wrong types in construct3")))
(* this last match is impossible; semant will check this
* correct solution is to make a "polymorphic variant"; no one has

117

* time for that *)
| A.Binop (e1, op, e2) ->
let (e1’, (t1, leaf1)) = expr table builder e1
and (e2’, (t2, leaf2)) = expr table builder e2 in
(match (t1, t2) with

(A.Int, A.Int) ->
((match op with
A.Add -> L.build_add

| A.Sub -> L.build_sub
| A.Mult -> L.build_mul
| A.Div -> L.build_sdiv
| A.And -> L.build_and
| A.Or -> L.build_or
| A.Equal -> L.build_icmp L.Icmp.Eq
| A.Neq -> L.build_icmp L.Icmp.Ne
| A.Less -> L.build_icmp L.Icmp.Slt
| A.Leq -> L.build_icmp L.Icmp.Sle
| A.Greater -> L.build_icmp L.Icmp.Sgt
| A.Geq -> L.build_icmp L.Icmp.Sge
| _ as o -> raise(Failure("Illegal operator " ^ A.string_of_op o
^ " in int * int binop"))
) e1’ e2’ "tmp" builder, (A.Int, 0))

| (A.Mint, A.Mint) ->
let ptr1 = L.build_alloca mint_type "e1" builder and
ptr2 = L.build_alloca mint_type "e2" builder in
let _ = L.build_store e1’ ptr1 builder and
_ = L.build_store e2’ ptr2 builder in
((match op with

A.Add ->
L.build_call mint_add_func [| ptr1 ; ptr2 |] "mint_add_res"

builder (*?? can i just this?*)
| A.Sub ->

L.build_call mint_sub_func [| ptr1 ; ptr2 |] "mint_sub_res"
builder

| A.Mult ->
L.build_call mint_mult_func [| ptr1 ; ptr2 |] "mint_mult_res"

builder
| A.Pow ->

L.build_call mint_pow_func [| ptr1 ; ptr2 |] "mint_pow_res"
builder

| _ as o -> raise(Failure("Illegal operator " ^ A.string_of_op o
^ " in mint * mint binop"))

), (A.Mint, 0))

(*Raise mint to stone*)
| (A.Mint, A.Stone) ->

((match op with
(* In semant, check that this is only op possible *)

A.Pow ->
let ptr = L.build_alloca mint_type "e1" builder in
let _ = L.build_store e1’ ptr builder in

L.build_call mint_to_stone_func [| ptr ; e2’ |]
"mint_to_stone_res" builder

| _ as o -> raise(Failure("Illegal operator " ^ A.string_of_op o
^ " in mint * stone binop"))

), (A.Mint, 0))

118

| (A.Stone, A.Stone) ->
((match op with
A.Add ->
let call = L.build_call stone_add_func [| e1’ ; e2’ |]

"stone_add_res" builder in
let _ = manage leaf1 leaf2 e1’ e2’ in
call
(*L.build_call stone_add_func [| e1’ ; e2’ |] "stone_add_res"

builder*)
| A.Sub ->
let call = L.build_call stone_sub_func [| e1’ ; e2’ |]

"stone_sub_res" builder in
let _ = manage leaf1 leaf2 e1’ e2’ in

call
| A.Mult ->
let call = L.build_call stone_mult_func [| e1’ ; e2’ |]

"stone_mult_res" builder in
let _ = manage leaf1 leaf2 e1’ e2’ in

call
| A.Div ->
let call = L.build_call stone_div_func [| e1’ ; e2’ |]

"stone_div_res" builder in
let _ = manage leaf1 leaf2 e1’ e2’ in

call
| A.Pow ->
let call = L.build_call stone_pow_func [| e1’ ; e2’ |]

"stone_pow_res" builder in
let _ = manage leaf1 leaf2 e1’ e2’ in

call
| A.Mod ->
let call = L.build_call stone_mod_func [| e1’ ; e2’ |]

"stone_mod_res" builder in
let _ = manage leaf1 leaf2 e1’ e2’ in

call
| A.Equal ->
let call = L.build_call stone_eq_func [| e1’ ; e2’ |]

"stone_eq_res" builder in
let _ = manage leaf1 leaf2 e1’ e2’ in

call
| A.Neq ->
let call = L.build_call stone_neq_func [| e1’ ; e2’ |]

"stone_neq_res" builder in
let _ = manage leaf1 leaf2 e1’ e2’ in

call
| A.Less ->
let call = L.build_call stone_less_func [| e1’ ; e2’ |]

"stone_less_res" builder in
let _ = manage leaf1 leaf2 e1’ e2’ in

call
| A.Leq ->
let call = L.build_call stone_leq_func [| e1’ ; e2’ |]

"stone_leq_res" builder in
let _ = manage leaf1 leaf2 e1’ e2’ in

call
| A.Greater ->
let call = L.build_call stone_greater_func [| e1’ ; e2’ |]

"stone_greater_res" builder in

119

let _ = manage leaf1 leaf2 e1’ e2’ in
call

| A.Geq ->
let call = L.build_call stone_geq_func [| e1’ ; e2’ |]

"stone_geq_res" builder in
let _ = manage leaf1 leaf2 e1’ e2’ in

call
| _ as o -> raise(Failure("Illegal operator " ^ A.string_of_op o
^ " in stone * stone binop"))
), (A.Stone, 0))

| (A.Pointer(A.Point), A.Pointer(A.Point)) ->
((match op with
A.Add ->
L.build_call point_add_func [| e1’ ; e2’ |] "point_add_res"

builder
| A.Sub ->

L.build_call point_sub_func [| e1’ ; e2’ |] "point_sub_res"
builder

| _ as o -> raise(Failure("Illegal operator " ^ A.string_of_op o
^ " in point* * point* binop"))
), (A.Pointer(A.Point), 0))

| (A.Stone, A.Pointer(A.Point)) ->
((match op with
A.Mult ->

L.build_call point_mult_func [| e1’ ; e2’ |] "point_mult_res"
builder

| _ as o -> raise(Failure("Illegal operator " ^ A.string_of_op o
^ " in stone * point binop"))
), (A.Pointer(A.Point), 0))

| _ ->
raise(Failure("illegal binop type " ^ A.string_of_typ t1 ^
A.string_of_op op ^ A.string_of_typ t2))

)

| A.Unop(op, e) ->
let e’, (t, _) = expr table builder e in
((match op with
A.Neg -> (match t with

A.Int -> L.build_neg e’ "tmp" builder
(* | A.Point -> L.build_call invert_point_func [| e’ |]

"invert_point_func" builder *)) (* Point inversion *)
| A.Not -> L.build_icmp L.Icmp.Eq (L.const_null (ltype_of_typ t))

e’ "tmp" builder (* Still need to test on Pointer types *)
| _ -> raise(Failure("not implemented yet")) e’ "tmp" builder

(* | A.Deref -> L.build_load e’ "tmp" builder *) (* load object pointed
to *)

(* | A.AddrOf -> fst(lookup e’) *)(*L.build_store e’ builder*)
), (match op with
A.Neg -> (t, 0)
| A.Not -> (t, 0)
| _ -> (t, 0)
(* | A.Deref -> (match t with

A.Pointer x -> x)
| A.AddrOf -> A.Pointer t *)))

| A.Assign (s, e) -> let (e’, (t, _)) = expr table builder e and
(* if t string, otherwise is behavior normal?*)

(*snd lookup is type of thing*)

120

ltype = (fst (snd (lookup s table))) in (match (ltype,
t) with

| (A.Stone, A.Pointer(A.Char)) ->
let ptr =
L.build_call stone_create_func [|e’ |]

"stone_create_func" builder in
(*let res =
L.build_call stone_char_func [| e’ ; ptr |]
"stone_char_func" builder in *)
ignore(L.build_store ptr (fst (lookup s table))

builder); (ptr, (t, 0))

| _ -> ignore (L.build_store e’ (fst (lookup s table))
builder); (e’, (t, 0)))

| A.Call("access_mint", [e; i]) -> let (e’, (t, _)) = expr table builder e
and (i’, (t’, _)) = expr table builder i in
(L.build_call access_mint [| e’ ; i’ |] "access_mint" builder,

(A.Stone, 0));
| A.Call("access_curve", [e; i]) -> let (e’, (t, _)) = expr table builder

e and (i’, (t’, _)) = expr table builder i in
(L.build_call access_curve [| e’ ; i’ |] "access_curve" builder,

(A.Stone, 0));
| A.Call("access_point", [e; i]) -> let (e’, (t, _)) = expr table builder

e and (i’, (t’, _)) = expr table builder i in
(L.build_call access_point [| e’ ; i’ |] "access_point" builder,

(A.Stone, 0));
| A.Call ("printf", act) ->

let actuals, _ = List.split (List.rev (List.map (expr table builder)
(List.rev act))) in
let result = "" in (* printf is void function *)
(L.build_call printf_func (Array.of_list actuals) result builder,
(A.Pointer(A.Char), 0))

| A.Call("print_point", [e]) -> let (e’, (t, _)) = expr table builder e in
(L.build_call point_print_func [| e’ |] "point_print_res" builder, (t,

0));
| A.Call("print_point_sep", [e]) -> let (e’, (t, _)) = expr table builder

e in
(L.build_call point_print_sep_func [| e’ |] "point_print_res" builder,

(t, 0));
| A.Call("print_curve", [e]) -> let (e’, (t, _)) = expr table builder e in

(L.build_call curve_print_func [| e’ |] "curve_print_res" builder, (t,
0));

| A.Call("print_stone", [e]) -> let (e’, (t, _)) = expr table builder e in
(L.build_call stone_print_func [| e’ |] "stone_print_func" builder, (t,

0));
| A.Call("print_mint", [e]) -> let (e’, (t, _)) = expr table builder e in

(L.build_call mint_print_func [| e’ |] "mint_print_func" builder, (t,
0));

| A.Call("print_div", [e]) -> let (e’, (t, _)) = expr table builder e in
(L.build_call div_print_func [| e’ |] "div_print_func" builder, (t, 0));

| A.Call("scanf", [e]) ->
let (e’, (t, _)) = expr table builder e in
ignore(L.build_call read_func [| char_format_str ; e’ |] "scanf"

builder);

121

(e’ , (t, 0))
| A.Call("malloc", [e]) ->

let (e’, (t, _)) = expr table builder e in
(L.build_call malloc_func [| e’ |] "malloc" builder, (t, 0))

| A.Call("free", [e]) ->
let (e’, (t, _)) = expr table builder e in
(L.build_free e’ builder, (A.Void, 0)) (*void correct?*)

| A.Call("atoi", [e]) ->
let (e’, (t, _)) = expr table builder e in
(L.build_call atoi_func [| e’ |] "atoi_res" builder, (t, 0));

| A.Call (f, act) ->
let (fdef, fdecl) = StringMap.find f function_decls in

let actuals, _ = List.split (List.rev (List.map (expr table builder)
(List.rev act))) in

let result = (match fdecl.A.typ with A.Void -> ""
| _ -> f ^ "_result") in

(L.build_call fdef (Array.of_list actuals) result builder,
(fdecl.A.typ, 0))

| _ -> raise(Failure("illegal expression"))

in

(* Invoke "f builder" if the current block doesn’t already
have a terminal (e.g., a branch). *)

let add_terminal builder f =
match L.block_terminator (L.insertion_block builder) with

Some _ -> ()
| None -> ignore (f builder) in

(* Build the code for the given statement; return the builder for
the statement’s successor *)

let rec stmt table builder = function
A.Block (vl, sl) ->
let new_table =
let add_local m (t, n) =
let local_var = L.build_alloca (ltype_of_typ t) n builder
in StringMap.add n (local_var, (t, 0)) m

in
List.fold_left add_local table vl

in
List.fold_left (stmt new_table) builder sl

| A.Expr e -> ignore (expr table builder e); builder
| A.Return e -> ignore (match fdecl.A.typ with

A.Void -> L.build_ret_void builder
| _ -> L.build_ret (fst (expr table builder e)) builder); builder
| A.If (predicate, then_stmt, else_stmt) ->

let bool_val = fst (expr table builder predicate) in
let merge_bb = L.append_block context "merge" the_function in

let then_bb = L.append_block context "then" the_function in
add_terminal (stmt table (L.builder_at_end context then_bb) then_stmt)
(L.build_br merge_bb);

let else_bb = L.append_block context "else" the_function in
add_terminal (stmt table (L.builder_at_end context else_bb) else_stmt)
(L.build_br merge_bb);

122

ignore (L.build_cond_br bool_val then_bb else_bb builder);
L.builder_at_end context merge_bb

| A.While (predicate, body) ->
let pred_bb = L.append_block context "while" the_function in
ignore (L.build_br pred_bb builder);

let body_bb = L.append_block context "while_body" the_function in
add_terminal (stmt table (L.builder_at_end context body_bb) body)
(L.build_br pred_bb);

let pred_builder = L.builder_at_end context pred_bb in
let bool_val = fst (expr table pred_builder predicate) in

let merge_bb = L.append_block context "merge" the_function in
ignore (L.build_cond_br bool_val body_bb merge_bb pred_builder);
L.builder_at_end context merge_bb

| A.For (e1, e2, e3, body) -> stmt table builder
(A.Block ([], [A.Expr e1 ; A.While (e2, A.Block ([], [body ; A.Expr e3]))

]))
| _ -> raise(Failure("illegal statement"))

in

let local_vars =
let add_formal m (t, n) p = L.set_value_name n p;

let local = L.build_alloca (ltype_of_typ t) n builder in
ignore (L.build_store p local builder);
StringMap.add n (local, (t, 0)) m in (* local, t to add type info to map

as well *)

let add_local m (t, n) =
let local_var = L.build_alloca (ltype_of_typ t) n builder
in StringMap.add n (local_var, (t, 0)) m in (* BSURE this might be it *)

let formals = List.fold_left2 add_formal StringMap.empty fdecl.A.formals
(Array.to_list (L.params the_function)) in

List.fold_left add_local formals fdecl.A.locals in

(* Build the code for each statement in the function *)
let builder = stmt local_vars builder (A.Block ([], fdecl.A.body)) in

(* Add a return if the last block falls off the end *)
add_terminal builder (match fdecl.A.typ with

A.Void -> L.build_ret_void
| t -> L.build_ret (L.const_int (ltype_of_typ t) 0))

in

List.iter build_function_body functions;
the_module

Listing 9.8: scannerprint.mll

(* Prints program tokens *)

123

{ open Printf }

rule token = parse
[’ ’ ’\t’ ’\r’ ’\n’] { token lexbuf } (* Whitespace *)

| "/*" { comment lexbuf } (* Comments *)
| "//" { comment2 lexbuf }
| ’(’ { print_string "LPAREN " }
| ’)’ { print_string "RPAREN " }
| ’{’ { print_string "LBRACE " }
| ’}’ { print_string "RBRACE " }
| ’[’ { print_string "LSQUARE " }
| ’]’ { print_string "RSQUARE " }
| ’;’ { print_string "SEMI " }
| ’,’ { print_string "COMMA " }
| ’+’ { print_string "PLUS " }
| ’-’ { print_string "MINUS " }
| ’*’ { print_string "STAR " }
| ’/’ { print_string "DIVIDE " }
| ’%’ { print_string "MOD " }
| ’&’ { print_string "ADDRESSOF " }
| ’=’ { print_string "ASSIGN " }
| ’^’ { print_string "POW " }
| "%=" { print_string "MODASSIGN " }
| "==" { print_string "EQ " }
| "!=" { print_string "NEQ " }
| ’<’ { print_string "LT " }
| "<=" { print_string "LEQ " }
| ’>’ { print_string "GT " }
| ">=" { print_string "GEQ " }
| "&&" { print_string "AND " }
| "||" { print_string "OR " }
| ’!’ { print_string "NOT " }
| "if" { print_string "IF " }
| "else" { print_string "ELSE " }
| "for" { print_string "FOR " }
| "while" { print_string "WHILE " }
| "do" { print_string "DO " }
| "break" { print_string "BREAK " }
| "continue" { print_string "CONTINUE " }
| "return" { print_string "RETURN " }
| "int" { print_string "INT " }
| "void" { print_string "VOID " }
| "char" { print_string "CHAR " }
| "NULL" { print_string "NULL " }
| "stone" { print_string "STONE " }
| "mint" { print_string "MINT " }
| "point" { print_string "POINT " }
| "curve" { print_string "CURVE " }
| ’~’ { print_string "INF " }
| "access" { print_string "ACCESS " }
| [’\’’][’ ’-’~’]*[’\’’] { print_string "CHARLIT " }
| [’"’][’ ’-’~’]*[’"’] { print_string "STRING " }
| [’0’-’9’]+ { print_string "LITERAL " }
| [’a’-’z’ ’A’-’Z’][’a’-’z’ ’A’-’Z’ ’0’-’9’ ’_’]* { print_string "ID " }

and comment = parse
"*/" { token lexbuf }

124

| _ { comment lexbuf }

and comment2 = parse
’\n’ { token lexbuf }

| _ { comment2 lexbuf }

{
let main () =
let lexbuf = Lexing.from_channel stdin in
try

while true do
ignore (token lexbuf)

done
with _ -> print_string "EOF\n"

let _ = Printexc.print main ()

}

9.1.2 Preprocessing

Listing 9.9: prescanner.mll

(* Ocamllex scanner for MicroC *)
{ open Parser

module B = Buffer }

(* why are some string and some chars LT, GT eg *)

rule prepro m = parse
’#’ { handle_pound m lexbuf }

| _ as t { print_char t; prepro m lexbuf }

and

handle_pound m = parse
"include" { handle_file m lexbuf }

| "define" { handle_define m lexbuf }
| "ifdef" { handle_ifdef m lexbuf }
| "endif" { raise(Failure("unexpected #endif")) }
| _ as t { raise(Failure("unexpected word " ^ t ^ " found after #")) }

and

handle_file m = parse
"\""(_ as file)"\"" { let in_stream = open_in file in prepro m in_stream }

and

handle_define m = parse
(_ as k)" "(_ as v) { StringMap.add k v m }

and

handle_ifdef m = parse
" "(_ as t)" " { try StringMap.find t m w; find_endif lexbuf with

Not_found -> prepro m lexbuf }

125

Listing 9.10: preprocessor.py

import sys

def add_preprocess_name(in_file_name):
temp = in_file_name.split(’.’)
temp[-2] += "_preprocess"
return ’.’.join(temp)

def preprocess_file(in_file_name, out_file, table):
in_file = open(in_file_name, ’r’)
wait_endif = 0
for line in in_file:

sys.stdout.write("%50s %s\n"%(line.rstrip(’\n’), in_file_name))
if wait_endif:

try:
if line.split()[0] == "#endif":

wait_endif = 0
except IndexError:

pass
elif line.strip() == ’’:

out_file.write(line)
elif line.strip()[0] == "#":

line = line[1:]
tokens = line.split()
if tokens[0] == "include":

file_name = tokens[1].lstrip(’ "’).rstrip(’ "’)
preprocess_file(file_name, out_file, table)

elif tokens[0] == "define": # just for build guards
not good for textual substitutions

table[tokens[1]] = 1
change this to tokens[2] for textual substitutions,
when implemented

elif tokens[0] == "ifdef":
if tokens[1] not in table:
wait_endif = 1

elif tokens[0] == "ifndef":
print table
if tokens[1] in table:
wait_endif = 1

elif tokens[0] == "endif":
pass

else:
raise Exception("illegal token " + tokens[0] + " found after #")

else:
out_file.write(line)

def main():
in_file_name = sys.argv[1]
out_file_name = add_preprocess_name(in_file_name)
out_file = open(out_file_name, ’w’)
symbol_table = {}
preprocess_file(in_file_name, out_file, symbol_table)
return 0

if __name__ == ’__main__’:
main()

126

9.1.3 C Wrappers

Listing 9.11: access.c
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <openssl/bn.h>
#include "types.h"

// takes a mint and an int (0 or 1),
// returning val for idx 0 and mod for idx 1
void *access_mint(struct mint m, int index) {

if(index == 0) { return m.val; }
return m.mod;

}

// takes a curve pointer and an index (0-3)
// 0-1 corresponding to mint1 stones, 2-3 to mint2 stones
void *access_curve(struct curve* c, int index) {

if(index < 2) {
return access_mint(c->a, index);

}
else {

return access_mint(c->b, index-2);
}

}

// takes a point pointer and an index (0-5)
// 0-3 correspond to curve stones, 4, 5 correspond to x, y coordinates
void *access_point(struct point* p, int index) {

if(index < 4) {
return access_curve(&(p->E), index);

}
else {

if(index == 4) {
return p->x;

}
}
return p->y;

}

Listing 9.12: special_arith.c
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <openssl/bn.h>
#include "types.h"

/*
* Stone
* @Michael We will need to implement these based on the bignum

127

* library. Implement all others assuming you have these
* functions. Ill make some headway on this once I
* come to a conclusion on a library
*/

int stone_print_func(void *a)
{
printf("%s\n", BN_bn2dec(a));

return 0;
}
//construct

void *stone_create_func(char *str) {
BIGNUM *r = BN_new();
BN_dec2bn(&r, str);
//fprintf(stderr, "Creating %p\n", r);

return r;
}

struct curve *curve_create_func(struct mint a, struct mint b) {
struct curve *E;
E = (struct curve *)malloc(sizeof(struct curve));
E->a = a;
E->b = b;
return E;

}

struct point *point_create_func(struct curve *E, void *a, void *b) {
struct point *R;
R = (struct point *)malloc(sizeof(struct point));
R->E = *E;
R->x = a;
R->y = b;
R->inf = 0;
return R;

}

int stone_free_func(void *a){
//fprintf(stderr, "Freeing %p\n", a);

BN_free(a);
return 0;

}

//Add
void* stone_add_func(void *a, void *b)
{
BIGNUM *r = BN_new();
//fprintf(stderr, "a: %p\nb: %p\n", a, b);
//fprintf(stderr, "Creating to add %p\n", r);

BN_add(r, a, b);
return r;

}

128

//Subtract
void* stone_sub_func(void *a, void *b)
{
BIGNUM *r = BN_new();
BN_sub(r, a, b);
return r;

}

//Multiply
void* stone_mult_func(void *a, void *b)
{
BIGNUM *r = BN_new();
BN_CTX* ctx = BN_CTX_new();
BN_mul(r, a, b, ctx);
BN_CTX_free(ctx);

return r;
}

//Divide
void* stone_div_func(void *a, void *b)
{
BIGNUM *r = BN_new();
BN_CTX *ctx = BN_CTX_new();
BN_div(r, NULL, a, b, ctx);
BN_CTX_free(ctx);

return r;
}

//Mod
void* stone_mod_func(void *a, void *b)
{
BIGNUM *r = BN_new();
BN_CTX* ctx = BN_CTX_new();
BN_mod(r, a, b, ctx);
if (BN_is_negative(r)) {

BN_add(r, r, b);
}
BN_CTX_free(ctx);
return r;

}

//Exponent
void* stone_pow_func(void *a, void *p)
{
BIGNUM *r = BN_new();
BN_CTX* ctx = BN_CTX_new();
BN_exp(r, a, p, ctx);
BN_CTX_free(ctx);

return r;
}

//Comparators

//0 if true, else false
int stone_eq_func(void *a, void *b)

129

{
return BN_cmp(a, b);

}

//O if true, else false
int stone_neq_func(void *a, void *b)
{
return !BN_cmp(a, b);

}

int stone_less_func(void *a, void *b)
{
if (BN_cmp(a, b) == -1)
return 0;

return 1;
}

int stone_leq_func(void *a, void *b)
{
if (BN_cmp(a, b) <= 0)
return 0;

return 1;

}

int stone_greater_func(void *a, void *b)
{
if (BN_cmp(a, b) == 1)

return 0;
return 1;

}

int stone_geq_func(void *a, void *b)
{
if (BN_cmp(a, b) >= 0)
return 0;

return 1;
}

/* for point mult */

char *hex_to_bin_help(char *hx) {
size_t len = strlen(hx);
char *x = (char *)malloc(len * 4 + 1);
char *buf;
for (size_t j = 0; j < len; j = j + 1) {

switch (*hx) {
case ’0’:

buf = "0000";
break;

case ’1’:
buf = "0001";
break;

case ’2’:
buf = "0010";
break;

case ’3’:
buf = "0011";

130

break;
case ’4’:

buf = "0100";
break;

case ’5’:
buf = "0101";
break;

case ’6’:
buf = "0110";
break;

case ’7’:
buf = "0111";
break;

case ’8’:
buf = "1000";
break;

case ’9’:
buf = "1001";
break;

case ’A’:
buf = "1010";
break;

case ’B’:
buf = "1011";
break;

case ’C’:
buf = "1100";
break;

case ’D’:
buf = "1101";
break;

case ’E’:
buf = "1110";
break;

case ’F’:
buf = "1111";
break;

}
for (int i = 0; i < 4; i++) {

x[4*j+i] = buf[i];
}
hx++;

}
x[4*len] = ’\0’;
return x;

}

void point_add_func_help(struct point *R, struct point *P, struct point *Q) {
R->E = P->E;
if (P->inf) {

R->x = Q->x;
R->y = Q->y;
R->inf = Q->inf;

} else if (Q->inf) {
R->x = P->x;
R->y = P->y;
R->inf = P->inf;

131

} else { /* neither points are inf */
BIGNUM *xval = BN_new();
BIGNUM *yval = BN_new();
BN_CTX *ctx = BN_CTX_new();

BIGNUM *lambda = BN_new();
BIGNUM *t1 = BN_new();
BIGNUM *t2 = BN_new();

// calculate lambda
BN_sub(t1, Q->y, P->y);
BN_sub(t2, Q->x, P->x);
if (BN_is_zero(t2)) {

if (BN_is_zero(t1)) {
/* same point, double it
* calculate lambda this way */
BN_mod_sqr(t1, P->x, P->E.a.mod, ctx);
BN_mod_add(t2, t1, t1, P->E.a.mod, ctx); /* t2 = 2 t1 */
BN_mod_add(t2, t1, t1, P->E.a.mod, ctx); /* t1 = t1 + t2 = 3t1 */
BN_mod_add(t1, t1, t2, P->E.a.mod, ctx);
BN_mod_add(t1, t1, P->E.a.val, P->E.a.mod, ctx);

BN_mod_add(t2, P->y, P->y, P->E.a.mod, ctx); /* t2 = 2 P.y */
BN_mod_inverse(t2, t2, P->E.a.mod, ctx);

BN_mod_mul(lambda, t1, t2, P->E.a.mod, ctx);

} else {
/* additive inverses, return inf
* Fill coords with junk values from P */
R->x = P->x;
R->y = P->y;
R->inf = 1;
BN_free(t1);
BN_free(t2);
BN_CTX_free(ctx);
return;

}
} else {

// finish calculating lambda for "normal" case
BN_mod_inverse(t2, t2, P->E.a.mod, ctx);
BN_mod_mul(lambda, t1, t2, P->E.a.mod, ctx);

}

//calculate xval
BN_mod_sqr(t1, lambda, P->E.a.mod, ctx);
BN_mod_sub(t1, t1, P->x, P->E.a.mod, ctx);
BN_mod_sub(xval, t1, Q->x, P->E.a.mod, ctx);

//calculate yval
BN_mod_sub(t1, P->x, xval, P->E.a.mod, ctx);
BN_mod_mul(t1, lambda, t1, P->E.a.mod, ctx);
BN_mod_sub(yval, t1, P->y, P->E.a.mod, ctx);

//put in values
R->x = xval;
R->y = yval;
R->inf = P->inf;

132

BN_free(t1);
BN_free(t2);
BN_CTX_free(ctx);

}
}

struct point *point_add_func(struct point *P, struct point *Q) {
struct point *R;
R = (struct point *)malloc(sizeof(struct point));
point_add_func_help(R, P, Q);
return R;

}

struct point *point_sub_func(struct point *P, struct point *Q) {
((BIGNUM *) Q->y)->neg = !((BIGNUM *) Q->y)->neg;
struct point *R;
R = point_add_func(P, Q);
/* restore neg value of Q */
((BIGNUM *) Q->y)->neg = !((BIGNUM *) Q->y)->neg;
return R;

}

struct point *point_mult_func(void *k, struct point *P) {
char *x;
char *z;
BIGNUM *y;
y = stone_create_func("26");
z = BN_bn2hex((BIGNUM *) k);
x = hex_to_bin_help(z);
z = x; // free this at the end
struct point *R;
R = (struct point *)malloc(sizeof(struct point));
R->E = P->E;
R->x = P->x;
R->y = P->y;
R->inf = (*x) == ’0’ ? 1 : P->inf;
// if first bit is 0, then return infinity.
// this fixes leading zeroes in the binary string
// else, set result equal to P
while (*x != ’\0’) {

// if bit is 1, R = 2R + P
// if bit is 0, R = 2R
point_add_func_help(R, R, R);
if (*x++ == ’1’) {

point_add_func_help(R, R, P);
}

}
free(z);
return R;

}

/*
* Mint
*/

//Add
struct mint mint_add_func(struct mint* a, struct mint* b) {

133

BIGNUM *val = BN_new();
BN_CTX *ctx = BN_CTX_new();

//BN_mod_add_quick(val, v1, v2, v3);
BN_mod_add(val, a->val, b->val, a->mod, ctx);
BN_CTX_free(ctx);
struct mint r;
r.val = val;
r.mod = a->mod; /* use a’s modulus */
return r;

}

struct mint mint_sub_func(struct mint* a, struct mint* b) {
BIGNUM *val = BN_new();
BN_CTX *ctx = BN_CTX_new();

BN_mod_sub(val, a->val, b->val, a->mod, ctx);
BN_CTX_free(ctx);
struct mint r;
r.val = val;
r.mod = a->mod; /* use a’s modulus */
return r;

}

struct mint mint_mult_func(struct mint* a, struct mint* b) {
BIGNUM *val = BN_new();
BN_CTX *ctx = BN_CTX_new();

BN_mod_mul(val, a->val, b->val, a->mod, ctx);
BN_CTX_free(ctx);
struct mint r;
r.val = val;
r.mod = a->mod; /* use a’s modulus */
return r;

}

struct mint mint_to_stone_func(struct mint *a, void *b) {
BIGNUM *val = BN_new();
BN_CTX *ctx = BN_CTX_new();
if (BN_is_negative((BIGNUM *)b)) {

BN_mod_inverse(a->val, a->val, a->mod, ctx);
}
BN_mod_exp(val, a->val, b, a->mod, ctx);
/* BN_mod_exp takes the absolute value of b.
* This is why this works */
BN_CTX_free(ctx);
struct mint r;
r.val = val;
r.mod = a->mod;
return r;

}

struct mint mint_pow_func(struct mint* a, struct mint* b) {
return mint_to_stone_func(a, b->val);

}

/* testing function */

134

int div_print_func(struct mint a) {
printf("%s\n", BN_bn2dec(a.val));
return 0;

}

int mint_print_func(struct mint a) {
printf("<%s, %s>\n", BN_bn2dec(a.val), BN_bn2dec(a.mod));
return 0;

}

int point_print_func(struct point *P) {
//mint_print_func(P.E.a);
//mint_print_func(P.E.b);
if (P->inf) {

printf("inf\n");
} else {

printf("<%s, %s>\n", BN_bn2dec(P->x), BN_bn2dec(P->y));
}
//stone_print_func(P.x);
//stone_print_func(P.y);
return 0;

}

int point_print_sep_func(struct point *P) {
printf("%s\n%s\n", BN_bn2dec(P->x), BN_bn2dec(P->y));
return 0;

}

int curve_print_func(struct curve *E) {
printf("a: %s\nb: %s\np: %s\n", BN_bn2dec(E->a.val), BN_bn2dec(E->b.val),

BN_bn2dec(E->a.mod));
return 0;

}

//Equality and Inequality ops ofr mints are in LRM,
//but we can hold off on implemenitng

/*
* @Michael other stuff that is left is point/curve ops
* thats your expertise so ill leave it to you to
* define the headers and functions in the same way as above
*/

Listing 9.13: types.h

// Defines all CMod Types

struct mint {
void *val;
void *mod; //should be immutable

};

struct curve {
struct mint a;
struct mint b;

};

struct point {

135

struct curve E;
void *x;
void *y;
char inf;

};

9.2 Compiler Interface

Listing 9.14: cmc.sh
#!/bin/sh

#Requires you have LLI variable set (I reccomend in your bash profile) to your
LLI

#may need to chmod this script to 755

VER="3.8"
LLC="/usr/local/opt/llvm@$VER/bin/llc-$VER"
CRYPTO="/usr/lib/libcrypto.0.9.8.dylib"
TEST="$2"

usage() { echo "Usage: $0 [-h help] [-t token] [-a ast] [-l llvm] [-c ll-file]
[-s s-file] [-e exe-file] <file-name>.cm" 1>&2; exit 1; }

help() { echo "\n Welcome to the C% compiler CMC!
\n USAGE: $0 [-h help] [-t token] [-a ast] [-l llvm] [-c ll-file] [-s s-file]

[-e exe-file] <file-name>.cm\n
\n OPTIONS:
-h help This option prints this message!\n
-t token This option prints the tokenized program to stdout.\n
-a ast This option prints the abstract syntax tree of the program to

stdout.\n
-l llvm Compiles <file-name>.cm to llvm and prints the result to

stdout.\n
-c ll-file Compiles <file-name>.cm to llvm and puts the result in

<file-name>.ll. This is the default option.\n
-s assembly Compiles <file-name>.cm to llvm, translates to assembly, and

puts the result in <file-name>.s
(leaves <file-name>.ll in directory as well)\n

-e executable Creates the executable version of <file-name>.cm, simply
called <file-name> to be run ./<file-name>

(leaves behind the corresponding .ll and .s files as well)\n"
1>&2; exit 1; }

if getopts "h:t:a:l:c:s:e:" c; then
basename=‘echo "$TEST" | sed ’s/.*\\///

s/.cm//’‘

case $c in
h) # help
help
;;

t) # print tokenized program
ocamllex scannerprint.mll
ocaml scannerprint.ml < "$TEST"
;;

a) # print the AST to stdout
ocamllex scannerprint.mll

136

ocaml scannerprint.ml < "$TEST" | menhir --interpret
--interpret-show-cst parser.mly

./cmod.native -a < "$TEST"
;;

l) # compile to llvm, print to stdout
./cmod.native < "$TEST"
;;

c) # compile to llvm, put in .ll file
./cmod.native < "$TEST" > ${basename}.ll
;;

s) # translate to .s file
./cmod.native < "$TEST" > ${basename}.ll
"$LLC" ${basename}.ll > ${basename}.s
;;

e) # create executable
./cmod.native < "$TEST" > ${basename}.ll
"$LLC" ${basename}.ll > ${basename}.s
cc -o ${basename} ${basename}.s special_arith.o access.o "$CRYPTO"
;;

*) # everything else
usage
;;

esac
else

DEFAULT
TEST="$1"
basename=‘echo "$TEST" | sed ’s/.*\\///

s/.cm//’‘
./cmod.native < "$TEST" > ${basename}.ll

fi

Listing 9.15: cmod.sh

#!/bin/sh

VER="3.8"
LLC="/usr/local/opt/llvm@$VER/bin/llc-$VER"
CRYPTO="/usr/lib/libcrypto.0.9.8.dylib"
TEST="$1"

while getopts "v:" c; do
case $c in

v) # Use Travis Paths
LLC="/usr/lib/llvm-3.8/bin/llc"
CRYPTO="/usr/lib/x86_64-linux-gnu/libcrypto.so.0.9.8"
TEST="$2"
;;

esac
done

#Requires you have LLI variable set (I reccomend in your bash profile) to your
LLI

#may need to chmod this script to 755
basename=‘echo "$TEST" | sed ’s/.*\\///

s/.cm//’‘
./cmod.native < "$TEST" > ${basename}.ll

137

"$LLC" ${basename}.ll > ${basename}.s

cc -o ${basename}.exe ${basename}.s special_arith.o access.o "$CRYPTO"
./${basename}.exe

9.3 Testing

Listing 9.16: testall.sh
#!/bin/sh

Regression testing script for MicroC
Step through a list of files
Compile, run, and check the output of each expected-to-work test
Compile and check the error of each expected-to-fail test

Path to the LLVM interpreter
LLI="lli"

VER="3.8"
LLI="/usr/local/opt/llvm@$VER/bin/lli-$VER"

Path to the microc compiler. Usually "./microc.native"
Try "_build/microc.native" if ocamlbuild was unable to create a symbolic link.
MICROC="./cmod.native"
#MICROC="_build/microc.native"

RUNSHELL="./cmod.sh"

FLAG=""

Set time limit for all operations
ulimit -t 30

globallog=testall.log
rm -f $globallog
error=0
globalerror=0

keep=0

Usage() {
echo "Usage: testall.sh [options] [.cm files]"
echo "-k Keep intermediate files"
echo "-h Print this help"
echo "-v Use alternate Travis build LLI path"
exit 1

}

SignalError() {
if [$error -eq 0] ; then
echo "FAILED"
error=1
fi
echo " $1"

}

Compare <outfile> <reffile> <difffile>

138

Compares the outfile with reffile. Differences, if any, written to difffile
Compare() {

generatedfiles="$generatedfiles $3"
echo diff -b $1 $2 ">" $3 1>&2
diff -b "$1" "$2" > "$3" 2>&1 || {
SignalError "$1 differs"
echo "FAILED $1 differs from $2" 1>&2
}

}

Run <args>
Report the command, run it, and report any errors
Run() {

echo $* 1>&2
eval $* || {
SignalError "$1 failed on $*"
return 1
}

}

RunFail <args>
Report the command, run it, and expect an error
RunFail() {

echo $* 1>&2
#stderr redirects to stdout, can no longe detect this
#Still will always check for an error being thrown
eval $* && {
#SignalError "failed: $* did not report an error"
#return 1

return 0
}
return 0

}

Check() {
error=0
basename=‘echo $1 | sed ’s/.*\\///

s/.cm//’‘
reffile=‘echo $1 | sed ’s/.cm$//’‘
basedir="‘echo $1 | sed ’s/\/[^\/]*$//’‘/."

echo -n "$basename..."

echo 1>&2
echo "###### Testing $basename" 1>&2

generatedfiles=""

generatedfiles="$generatedfiles ${basename}.ll ${basename}.out" &&
Run "$RUNSHELL" "$FLAG" $1 ">" "${basename}.out" &&
Compare ${basename}.out ${reffile}.out ${basename}.diff

Report the status and clean up the generated files

if [$error -eq 0] ; then
if [$keep -eq 0] ; then

rm -f $generatedfiles
fi

139

echo "OK"
echo "###### SUCCESS" 1>&2
else
echo "###### FAILED" 1>&2
globalerror=$error
fi

rm -f *.s *.ll *.exe
}

CheckFail() {
error=0
basename=‘echo $1 | sed ’s/.*\\///

s/.cm//’‘
reffile=‘echo $1 | sed ’s/.cm$//’‘
basedir="‘echo $1 | sed ’s/\/[^\/]*$//’‘/."

echo -n "$basename..."

echo 1>&2
echo "###### Testing $basename" 1>&2

generatedfiles=""

generatedfiles="$generatedfiles ${basename}.err ${basename}.diff" &&
RunFail "$RUNSHELL" "$FLAG" "2>&1" $1 "|" "head" "-1" "|" "tee"

"${basename}.err" ">>" $globallog &&
Compare ${basename}.err ${reffile}.err ${basename}.diff

Report the status and clean up the generated files

if [$error -eq 0] ; then
if [$keep -eq 0] ; then

rm -f $generatedfiles
fi
echo "OK"
echo "###### SUCCESS" 1>&2
else
echo "###### FAILED" 1>&2
globalerror=$error
fi

rm -f *.s *.ll
}

while getopts kdpshv c; do
case $c in
k) # Keep intermediate files

keep=1
;;

h) # Help
Usage
;;
v) # Test flag for Travis-CI
LLI="/usr/lib/llvm-3.8/bin/lli"

FLAG="-v"
;;

esac

140

done

shift ‘expr $OPTIND - 1‘

LLIFail() {
echo "Could not find the LLVM interpreter \"$LLI\"."
echo "Check your LLVM installation and/or modify the LLI variable in

testall.sh"
exit 1

}

which "$LLI" >> $globallog || LLIFail

if [$# -ge 1]
then

files=$@
else

files="tests/compiler_tests/test-*.cm tests/compiler_tests/fail-*.cm"
fi

for file in $files
do

case $file in
test-)

Check $file 2>> $globallog
;;

fail-)
CheckFail $file 2>> $globallog
;;

*)
echo "unknown file type $file"
globalerror=1
;;

esac
done

exit $globalerror

Listing 9.17: Functionality Pass and Fail Tests

int main()
{
int i;
char c;

i = 42;
i = 10;
c = ’a’;
c = ’b’;
i = ’x’;

}
void myvoid()
{
return;

}

int main()

141

{
int i;

i = myvoid(); /* Fail: assigning a void to an integer */
}
int main()
{
int i;

i = 15;
return i;
i = 32; /* Error: code after a return */

}
int main()
{
int i;

{
i = 15;
return i;

}
i = 32; /* Error: code after a return */

}
int main()
{
int i;
for (; 1 ;) {} /* OK: Forever */

for (i = 0 ; i < 10 ; i = i + 1) {
if (i == 3) return 42;

}

for (j = 0; i < 10 ; i = i + 1) {} /* j undefined */

return 0;
}
int main()
{
int i;

for (i = 0; j < 10 ; i = i + 1) {} /* j undefined */

return 0;
}
int main()
{
int i;

for (i = 0; i < 10 ; i = j + 1) {} /* j undefined */

return 0;
}
int main()
{
int i;

for (i = 0; i < 10 ; i = i + 1) {
foo(); /* Error: no function foo */

142

}

return 0;
}
int foo() {}

int bar() {}

int baz() {}

void bar() {} /* Error: duplicate function bar */

int main()
{
return 0;

}
int foo(int a, int c) { }

void bar(int a, int a) {} /* Error: duplicate formal a in bar */

int main()
{
return 0;

}
int foo(int a, int c) { }

void bar(int a, void b, int c) {} /* Error: illegal void formal b */

int main()
{
return 0;

}
int foo() {}

void bar() {}

int printf() {} /* Should not be able to define printf */

void baz() {}

int main()
{
return 0;

}
int foo() {}

int bar() {
int a;
void b; /* Error: illegal void local b */

return 0;
}

int main()
{
return 0;

}
void foo(int a, int b)

143

{
}

int main()
{
foo(42, 1);
foo(42); /* Wrong number of arguments */

}
void foo(int a, int b)
{
}

int main()
{
foo(42, 1);
foo(42, 1, 0); /* Wrong number of arguments */

}
void foo(int a, int b)
{
}

void bar()
{
}

int main()
{
foo(42, 1);
foo(42, bar()); /* int and void, not int and int */

}
int c;
void a; /* global variables should not be void */

int main()
{
return 0;

}
int b;
int a;
int b; /* Duplicate global variable */

int main()
{
return 0;

}
int main()
{
if (1) {}
if (0) {} else {}
if (’c’) {} /* Error: non-bool predicate */

}
int main()
{
if (1) {
foo; /* Error: undeclared variable */

}
}

144

int main()
{
if (1) {
42;

} else {
bar; /* Error: undeclared variable */

}
}
int main()
{
stone x;
stone p;

mint m;
mint n;

x = "7";
p = "21";

m = <x, p>;
n = m + 2;

return 0;
}
int main()
{
mint m;

m = <5, 11>;

return 0;
}
int main()
{
mint m;

m = <"5", "11">;

return 0;
}
int foo() {

return 0;
}
int main() {

int x;
int y;
y = *x;
return 0;

}
int main() {

printf("%d\n", x, f);
return 0;

}
void foo()
{
if (1) return 42; /* Should return void */
else return;

}

145

int main()
{
return 42;

}
int main() {

int i;
for (i = 0; i < 5; i=i+1) {

int x;
int x; // should be error due to duplicate local

}
}
int main() {

int i;
for (i = 0; i < 5; i=i+1) {

int x;
x = 4;

}
x = 3; //this should give an error, since x doesn’t exist anymore
return 0;

}
int main()
{
int i;

while (1) {
i = i + 1;

}

while (’c’) { /* Should be boolean */
i = i + 1;

}

}
int main()
{
int i;

while (1) {
i = i + 1;

}

while (1) {
foo(); /* foo undefined */

}

}
int main()
{

stone a;
stone b;
stone c;
stone d;
mint m;
a = "3";
b = "5";
m = <a, b>;

146

printf("Calling print_stone on a (=3): ");
print_stone(a);

printf("Calling print_stone on b (=5): ");
print_stone(b);

c = access_mint(m, 0);
printf("Printing result of access_mint(m, 0), should = a: ");
print_stone(c);

d = access_mint(m, 1);
printf("Printing result of access_mint(m, 1), should = b: ");
print_stone(d);

return 0;
}
int main()
{

stone a;
stone b;
stone c;
stone d;

stone a1;
stone b1;
stone c1;
stone d1;

mint m;
mint n;

//curve cc;

a = "3";
b = "5";
c = "37";
d = "101";

m = <a, b>;
n = <c, d>;

//cc = <m, n>;

printf("Calling print_stone on a (=3): ");
print_stone(a);

printf("Calling print_stone on b (=5): ");
print_stone(b);

printf("Calling print_stone on c (=37): ");
print_stone(c);

printf("Calling print_stone on d (=101): ");
print_stone(d);

a1 = access_curve(<m, n>, 0);

147

printf("Printing result of access_curve(cc, 0), should = a: ");
print_stone(a1);

b1 = access_curve(<m, n>, 1);
printf("Printing result of access_curve(cc, 1), should = b: ");
print_stone(b1);

c1 = access_curve(<m, n>, 2);
printf("Printing result of access_curve(cc, 2), should = c: ");
print_stone(c1);

d1 = access_curve(<m, n>, 3);
printf("Printing result of access_curve(cc, 3), should = d: ");
print_stone(d1);

return 0;
}
int main()
{

stone a;
stone b;
stone c;
stone d;
stone e;
stone f;

stone a1;
stone b1;
stone c1;
stone d1;
stone e1;
stone f1;

mint m;
mint n;

//curve cc;
//point p;

a = "3";
b = "5";
c = "37";
d = "101";
e = "103";
f = "107";

m = <a, b>;
n = <c, d>;

//cc = <m, n>;

printf("Calling print_stone on a (=3): ");
print_stone(a);

printf("Calling print_stone on b (=5): ");
print_stone(b);

148

printf("Calling print_stone on c (=37): ");
print_stone(c);

printf("Calling print_stone on d (=101): ");
print_stone(d);

printf("Calling print_stone on d (=101): ");
print_stone(e);

printf("Calling print_stone on d (=101): ");
print_stone(f);

// p = <cc, e, f> = <<m, n>, e, f>;

a1 = access_point(<<m, n>, e, f>, 0);
printf("Printing result of access_point(p, 0), should = a: ");
print_stone(a1);

b1 = access_point(<<m, n>, e, f>, 1);
printf("Printing result of access_point(p, 1), should = b: ");
print_stone(b1);

c1 = access_point(<<m, n>, e, f>, 2);
printf("Printing result of access_point(p, 2), should = c: ");
print_stone(c1);

d1 = access_point(<<m, n>, e, f>, 3);
printf("Printing result of access_point(p, 3), should = d: ");
print_stone(d1);

e1 = access_point(<<m, n>, e, f>, 4);
printf("Printing result of access_point(p, 4), should = e: ");
print_stone(e1);

f1 = access_point(<<m, n>, e, f>, 5);
printf("Printing result of access_point(p, 5), should = f: ");
print_stone(f1);

return 0;
}
int add(int x, int y)
{
return x + y;

}

int main()
{
printf("%d", add(17, 25));
return 0;

}
int main()
{
printf("%d", 39 + 3);
return 0;

}
int main()

149

{
printf("%d", 1 + 2 * 3 + 4);
return 0;

}
int foo(int a)
{
return a;

}

int main()
{
int a;
a = 42;
a = a + 5;
printf("%d", a);
return 0;

}
int main() {

stone a;
stone b;
stone p;

a = "7";
b = "26";
p = "61";

mint A;
mint B;
curve *E;

A = <a, p>;
B = <b, p>;
E = <A, B>;

print_curve(E);
return 0;

}
int fib(int x)
{
if (x < 2) return 1;
return fib(x-1) + fib(x-2);

}

int main()
{
printf("%d\n", fib(0));
printf("%d\n", fib(1));
printf("%d\n", fib(2));
printf("%d\n", fib(3));
printf("%d\n", fib(4));
printf("%d\n", fib(5));
printf("Done!\n");
return 0;

}
int main()
{
int i;
for (i = 0 ; i < 5 ; i = i + 1) {

150

printf("%d\n", i);
}
printf("%d\n", 42);
return 0;

}
int main()
{
int i;
i = 0;
for (; i < 5;) {
printf("%d\n", i);
i = i + 1;

}
printf("%d\n", 42);
return 0;

}
int add(int a, int b)
{
return a + b;

}

int main()
{
int a;
a = add(39, 3);
printf("%d", a);
return 0;

}
/* Bug noticed by Pin-Chin Huang */

int fun(int x, int y)
{
return 0;

}

int main()
{
int i;
i = 1;

fun(i = 2, i = i+1);

printf("%d", i);
return 0;

}

void printem(int a, int b, int c, int d)
{
printf("%d\n", a);
printf("%d\n", b);
printf("%d\n", c);
printf("%d\n", d);

}

int main()
{
printem(42,17,192,8);
return 0;

151

}
int add(int a, int b)
{
int c;
c = a + b;
return c;

}

int main()
{
int d;
d = add(52, 10);
printf("%d", d);
return 0;

}
int foo(int a)
{
return a;

}

int main()
{
return 0;

}
int a;

void foo(int c)
{
a = c + 42;

}

int main()
{
foo(73);
printf("%d", a);
return 0;

}
void foo(int a)
{
printf("%d", a + 3);

}

int main()
{
foo(40);
return 0;

}
int gcd(int a, int b) {
while (a != b) {
if (a > b) a = a - b;
else b = b - a;

}
return a;

}

int main()
{
printf("%d\n", gcd(2,14));

152

printf("%d\n", gcd(3,15));
printf("%d\n", gcd(99,121));
return 0;

}
int gcd(int a, int b) {
while (a != b)
if (a > b) a = a - b;
else b = b - a;

return a;
}

int main()
{
printf("%d\n", gcd(14,21));
printf("%d\n", gcd(8,36));
printf("%d\n", gcd(99,121));
return 0;

}
int a;
int b;

void printa()
{
printf("%d\n", a);

}

void printb()
{
printf("%d\n", b);

}

void incab()
{
a = a + 1;
b = b + 1;

}

int main()
{
a = 42;
b = 21;
printa();
printb();
incab();
printa();
printb();
return 0;

}
int main() {

printf("%s", "Hello World!\n");
return 0;

}
int main()
{
printf("%d\n", 42);
printf("%d\n", 71);
printf("%d\n", 1);
return 0;

153

}
int main() {

printf("abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzowytaowta86oa57ynoca375ya7o3yao3crya398yaco53ybaco389y5acn92835ycano2y5a2o35c3\n");
return 0;

}
int main()
{
stone x;
stone y;
stone p;

mint m;
mint n;

x = "15352395";
y = "11";
p = "65537";

m = <x, p>;
n = <y, p>;

print_mint(m);
print_mint(n);

return 0;
}
int main()
{
stone x;
stone p;

mint m;

x = "15352395";
p = "65537";

m = <x + x, p>;

print_mint(m);

return 0;
}
int main()
{
stone x;
stone p;

mint m;
mint n;

x = "15352395";
p = "65537";

m = <x, p>;
n = m - m;
print_mint(n);

n = n - m;

154

print_mint(n);

return 0;
}
int main()
{
stone x;
stone p;

mint m;
mint n;

x = "5";
p = "11";

m = <x, p>;
n = m * m;
print_mint(n);

n = n * m;
print_mint(n);

return 0;
}
int main()
{
stone x;
stone p;

mint m;
mint n;

x = "2";
p = "11";

m = <x, p>;
n = m ^ m;
print_mint(n);

n = n ^ m;
print_mint(n);

return 0;
}
int main()
{
stone x;
stone p;

mint m;
mint n;

x = "7";
p = "21";

m = <x, p>;
n = m * m + m * m;
print_mint(n);

155

return 0;
}
int main()
{
stone x;
stone p;

mint m;
mint n;

x = "3";
p = "5";

m = <x, p>;
n = m ^ x;
print_mint(n);

return 0;
}
int main()
{
stone x;
stone y;
stone p;

mint m;
mint n;

x = "15352395";
y = "11";
p = "65537";

m = <x, p>;
n = <y, p>;

print_stone(x);
print_stone(y);
print_stone(p);

print_mint(m);
print_mint(n);

return 0;
}
int main()
{
stone x;
stone p;

mint m;
mint n;

x = "15352395";
p = "65537";

m = <x, p>;
n = m;

156

print_mint(m);
print_mint(n);

return 0;
}
int main()
{
printf("%d\n", 1 + 2);
return 0;

}
int main()
{
printf("%d\n", 100/2);
return 0;

}
int main()
{
printf("%d\n", 1 == 2);
return 0;

}
int main()
{
printf("%d\n", 1 == 1);
return 0;

}
int main()
{
printf("%d\n", 1 >= 2);
return 0;

}
int main()
{
printf("%d\n", 1 >= 1);
return 0;

}
int main()
{
printf("%d\n", 2 >= 1);
return 0;

}
int main()
{
printf("%d\n", 1 > 2);
return 0;

}
int main()
{
printf("%d\n", 2 > 1);
return 0;

}
int main()
{
printf("%d\n", 1 <= 2);
return 0;

}
int main()
{

157

printf("%d\n", 1 <= 1);
return 0;

}
int main()
{
printf("%d\n", 2 <= 1);
return 0;

}
int main()
{
printf("%d\n", 99);
return 0;

}
int main()
{
printf("%d\n", 1 < 2);
return 0;

}
int main()
{
printf("%d\n", 2 < 1);
return 0;

}
int main()
{
printf("%d\n", 1 * 2);
return 0;

}
int main()
{
printf("%d\n", 1 != 2);
return 0;

}
int main()
{
printf("%d\n", 1 != 1);
return 0;

}
int main()
{
printf("%d\n", 1 - 2);
return 0;

}
int main() {

stone a;
stone b;
stone c;
stone d;

stone a1;
stone b1;
stone p;

a = "25";
b = "37";
c = "19";
d = "8";

158

a1 = "7";
b1 = "26";
p = "61";

mint A;
mint B;
curve *E;

A = <a1, p>;
B = <b1, p>;
E = <A, B>;

point *P;
point *Q;

P = <E, a, b>;
Q = <E, c, d>;

print_point(P+Q); // should print (59, 2)
return 0;

}
int main() {

stone a;
stone b;

stone a1;
stone b1;
stone p;

a = "25";
b = "37";

a1 = "7";
b1 = "26";
p = "61";

mint A;
mint B;
curve *E;

A = <a1, p>;
B = <b1, p>;
E = <A, B>;

point *P;

P = <E, a, b>;

print_point(P+P); // should print (27, 16)
return 0;

}
int main() {

stone c;
stone d;

stone a1;
stone b1;
stone p;

159

c = "19";
d = "8";

a1 = "7";
b1 = "26";
p = "61";

mint A;
mint B;
curve *E;

A = <a1, p>;
B = <b1, p>;
E = <A, B>;

print_curve(E);

point *Q;
point *R;

Q = <E, c, d>;

d = "53";
R = <E, c, d>;

print_point(Q+R); // should print inf
return 0;

}
int main() {

stone a;
stone b;

stone a1;
stone b1;
stone p;

a = "25";
b = "37";

a1 = "7";
b1 = "26";
p = "61";

mint A;
mint B;
curve *E;

A = <a1, p>;
B = <b1, p>;
E = <A, B>;

point *P;

P = <E, a, b>;

print_point(b1 * P); //abuse of variables, but should print 26P = (42, 54)
return 0;

160

}
int main() {

stone a;
stone b;

stone a1;
stone b1;
stone p;

a = "25";
b = "37";

a1 = "7";
b1 = "26";
p = "61";

mint A;
mint B;
curve *E;

A = <a1, p>;
B = <b1, p>;
E = <A, B>;

point *P;

P = <E, a, b>;

print_point(P);
return 0;

}
int main() {

stone a;
stone b;
stone c;
stone d;

stone a1;
stone b1;
stone p;

a = "25";
b = "37";
c = "19";
d = "8";

a1 = "7";
b1 = "26";
p = "61";

mint A;
mint B;
curve *E;

A = <a1, p>;
B = <b1, p>;
E = <A, B>;

161

point *P;
point *Q;

P = <E, a, b>;
Q = <E, c, d>;

print_point(P-Q); // should print (58, 51)
return 0;

}
int main() {

printf("%s\n%s\n", "Hello World!", "\t o k \’\"");
return 0;

}
int main() {

int i;
for (i = 0; i < 5; i=i+1) {

int x;
x = 3 + i*i;
printf("%d\n", x);

}
int x;
x = 6;
printf("%d\n", x);

}

int main() {
int x;
x = 1;
{

int y;
y = 3;
{

int z;
z = 3;
printf("%d\n", z*y+x); // prints 10

}
y = 4;
printf("%d\n", y); //prints 4

}
x = 5;
printf("%d\n", x); // prints 5
return 0;

}
int main() {

int i;
for (i = 0; i < 5; i=i+1) {

int x;
x = 3 * i;
printf("%d\n", x);

}
i = 10;
printf("%d\n", i);
return 0;

}
int main () {

stone s1;
stone s2;

162

stone s3;
stone s4;
stone s5;

s1 = "7";
s2 = "13";
s3 = "16";
s4 = "20";
s5 = "123";

print_stone(s1);
print_stone(s2);
print_stone(s3);
print_stone(s4);
print_stone(s5);

}

int main () {
stone s1;
stone s2;
stone s3;
stone s4;

s1 = "7";
s2 = "8";

s3 = s1 + s1 * s2 + s2;
print_stone(s3);

s3 = s1 * s1 ^ s2 * s2;
print_stone(s3);

s1 = "100";
s2 = "10";
s3 = "2";

s4 = s1 - s2 - s3;
print_stone(s4);

}
int main () {

stone s1;
stone s2;
stone s3;
stone s4;

s1 = "2";
s2 = "3";
s3 = "5";

s4 = s1 ^ s2 ^ s3;
print_stone(s4);

}
int main () {

stone s1;
stone s2;

s1 = "71823746";
s2 = "13125867384543241324534";

163

print_stone(s1);
print_stone(s2);

}

int main () {
stone s1;
stone s2;
stone s3;
stone s4;

s1 = "148";
s2 = "2017";
s3 = s1 + s2;
s4 = s2 - s1;

print_stone(s1);
print_stone(s2);
print_stone(s3);
print_stone(s4);

}

int main () {
stone s1;
stone s2;
stone s3;
stone s4;

s1 = "14854673828914735847914672361";
s2 = "201782412734165593248672146782593647";
s3 = s1 + s2;
s4 = s2 - s1;

print_stone(s1);
print_stone(s2);
print_stone(s3);
print_stone(s4);

}
int main () {

stone s1;
stone s2;
stone s3;
stone s4;

s1 = "12";
s2 = "4";
s3 = s1 * s2;
s4 = s2 * s1;

print_stone(s1);
print_stone(s2);
print_stone(s3);
print_stone(s4);

}
int main () {

stone s1;
stone s2;
stone s3;

164

stone s4;

s1 = "4261379284712349123746192345";
s2 = "2348178942317623416767421766";
s3 = s1 * s2;
s4 = s2 * s1;

print_stone(s1);
print_stone(s2);
print_stone(s3);
print_stone(s4);

}
int main () {

stone s1;
stone s2;
stone s3;
stone s4;

s1 = "5";
s2 = "0";
s3 = "1";

s4 = s1 * s2;
print_stone(s4);

s4 = s1 * s3;
print_stone(s4);

}
int main () {

stone s1;
stone s2;
stone s3;
stone s4;

s1 = "4";
s2 = "2";

s3 = s1 ^ s2;
print_stone(s3);

s2 = "3";
s3 = s1 ^ s2;
print_stone(s3);

}
int main () {

stone s1;
stone s2;
stone s3;

s1 = "4261379284712349123746192345";
s2 = "8";
s3 = s1 ^ s2;

print_stone(s3);
}
int main()
{

stone a;

165

stone b;

a = "123";
b = "456";

printf("%d\n", a < b);
printf("%d\n", a == b);
printf("%d\n", a != b);
printf("%d\n", a > b);
printf("%d\n", a >= b);
printf("%d\n", a <= b);

}
int main()
{

//test unop NEG on int types
int x;
x = 45;
printf("%d\n", -x);
return 0;

}
int main()
{

// test for NOT on int types
int x;
int y;

x = 4;
y = 0;

printf("%d\n", !x);
printf("%d\n", !y);

return 0;
}
int main()
{
int a;
a = 42;
printf("%d", a);
return 0;

}
int a;

void foo(int c)
{
a = c + 42;

}

int main()
{
foo(73);
printf("%d", a);
return 0;

}
int main()
{
int i;
i = 5;

166

while (i > 0) {
printf("%d\n", i);
i = i - 1;

}
printf("%d\n", 42);
return 0;

}
int foo(int a)
{
int j;
j = 0;
while (a > 0) {
j = j + 2;
a = a - 1;

}
return j;

}

int main()
{
printf("%d", foo(7));
return 0;

}
int main() {

stone a;
stone b;
stone c;
stone d;

stone a1;
stone b1;
stone p;

a = "25";
b = "37";
c = "19";
d = "8";

a1 = "7";
b1 = "26";
p = "61";

mint A;
mint B;
curve *E;

A = <a1, p>;
B = <b1, p>;
E = <A, B>;

point *P;
point *Q;

P = <E, a, b>;
Q = <E, c, d>;

print_point(P+Q); // should print (59, 2)
print_point(P); //should print original P <25,37>

167

return 0;
}
#ifndef __MYADD_CM__
#define __MYADD_CM__

int myadd(int a, int b) {
return a + b;

}

#include "myadd.cm" //buildguards plz
#endif
#include "myadd.cm"

int main() {
printf("%d\n", myadd(5, 6));
return 0;

}
int main() {

char *a;

a = malloc(10);
scanf(a);
printf("%s\n", a);

return 0;
}

Listing 9.18: Grammar Pass and Fail Tests

int main() {
mint m;
access m;

}

int main() {
mint m;

access m + 2;
access m * 2;

}

int main() {
int x;

x = 1 + 2 + 3;
}

int main() {
char c;
c = ’x’;

}

int main() {
char c;
c = ’\n’;

}

int main() /* This is the main function */ {

168

int x; /* Int declaration */
} /* That was a cool test, huh? */

int main() {
mint m1;
mint m2;
curve c;

c = <m1, m2>;
}

int main() {
int x;

x = 6 / 2 - 6 / 3;
}
int main() {

int x;
x = 0;

do {
x = x + 1;

} while (x < 5)
}

int main() {
int i;
int x;

x = 0;

for (i = 0; i < 10; i = i+1) {
x = x + 2;

}
}

int main() {
int x;

if (5 > 3) {
x = 1;

} else {
x = 0;

}
}

int main() {
int x;
x = 0;

x = (1 && !x) || 0;
}

int main() {
int x;
int y;

x = 1;

169

y = 0;

x = (x > y);
y = 0 || 1 && 0;

}

int main() {
int x;
int y;

x = 1;
y = 0;

x = (1 == 0 < 7);
y = (5 <= 5 != 0);

}

int main() {
mint m;
m = <5, 7>;

}

int main() {
mint m;
m = <1 || 0, 3 ^ 2>;

}

int main() {
stone s1;
stone s2;
mint m;

m = <s1, s2>;
}

int main() {
int x;
x = 20;

x %= 2 ^ 2 - 1;
}

int main() {
int x;

x = 6 % 4 * 7 - 14;
}

int main() {
int x;

x = 1 * 2 + 3 * 4;
}

int main() {
int x;
int y;

170

x = -2 * 10;
y = -x;

}

int main() {
int x;

x = (1 + 2) * (6 / (3 - 2));
}

int main() {
curve c;
point p;

p = <c, 5, 6>;
}

int main() {
curve c;
point pInf;

pInf = <c, ~>;
}

int main() {
int x;
int y;
int z;

z = &x ^ *y;
}

int main() {
int x;

x = 6 * 2 ^ 2 / 8;
}

int main() {
stone x;
x = 5;

}

int main() {
stone x;
x = 9999999999999999;

}

int main() {
char *arr;

arr = "Hello, I am a test string!";
}

int main() {
int x;

x = 3 - 2 - 1;

171

}

int main() {
int x;
x = 0;

while (1) {
if (x = 1) {

x = 2;
continue;

}

x = x + 1;
if (x = 10) {

x = x * 2;
break;

}
}

}

int main() {
int x;
x = 0;

while (x < 5) {
x = x + 1;

}
}

9.4 Libraries

9.4.1 ElGamal Encryption

Listing 9.19: alice-decrypt.cm
int main() {

stone g_div;
stone h_div;
stone p;
mint g;
mint h;

//alice’s private key
stone y;
stone y_neg;
y = "131";
y_neg = "-131";

//public keys
p = "977";
g_div = "3";
g = <g_div, p>;
h = g^y;

//shared secret g^xy
mint s;

172

char *x;
x = malloc(100);
int msg_len;
int i;
scanf(x);
msg_len = atoi(x);
for (i = 0; i < msg_len; i = i + 1) {

scanf(x);
stone t_div;
mint t;
t_div = x;
t = <t_div, p>;
s = t^y_neg;

scanf(x);
stone z_div;
mint z;
z_div = x;
z = <z_div, p>;
print_div(z * s);

}
return 0;

}

Listing 9.20: bob-encrypt.cm

int main() {
stone g_div;
stone h_div;
stone p;
mint g;
mint h;

//public keys
p = "977";
g_div = "3";
h_div = "249"; //alice’s g^x for her secret x
g = <g_div, p>;
h = <h_div, p>;

//bob’s private key
stone y;
y = "77";

//shared secret g^xy
mint s;
s = h^y;

char *x;
x = malloc(100);
int msg_len;
int i;
scanf(x);
msg_len = atoi(x);
printf("%s\n", x);
for (i = 0; i < msg_len; i = i + 1) {

scanf(x);
stone z_div;

173

mint z;
z_div = x;
z = <z_div, p>;

print_div(g^y);
print_div(z * s);

}
}

9.4.2 Standard Diffie Hellman

Listing 9.21: alice-dh.cm
int main()
{
//Decls
stone alice_g;
stone alice_p;
stone bob_div;

stone alice_sec;

mint alice_gap;
mint bob_gap;
char *bob_gap_input;

alice_p = "153";
alice_g = "161";

alice_sec = "6";

alice_gap = < (alice_g^alice_sec) , alice_p >;
//Send p to Bob
print_stone(alice_p);
//Send g to Bob
print_stone(alice_g);
//print_stone(alice_g);
print_div(alice_gap);

//Send and recieve gaps
//Allice recieves first
bob_gap_input = malloc(100); //free this!
scanf(bob_gap_input);
//printf("SYM: %s\n", bob_gap_input);
bob_div = bob_gap_input;

bob_gap = <bob_div, alice_p>;

print_div(bob_gap^alice_sec);

return 0;

}

Listing 9.22: bob-dh.cm
int main()
{

174

stone alice_g;
stone alice_p;
stone alice_div;

stone bob_sec;

mint bob_gap;
mint alice_gap;
char *alice_gap_input;

char *alice_p_input;
char *alice_g_input;

bob_sec = "54";

alice_p_input = malloc(100);
alice_g_input = malloc(100);

scanf(alice_p_input);
scanf(alice_g_input);

alice_gap_input = malloc(100);
scanf(alice_gap_input);

alice_div = alice_gap_input;
//printf("%s\n %s \n", alice_p_input, alice_g_input);

alice_p = alice_p_input;
alice_g = alice_g_input;
//print_stone(alice_p);
//print_stone(alice_g);

bob_gap = < (alice_g^bob_sec) , alice_p >;

//Send and recieve gaps
print_div(bob_gap);

alice_gap = <alice_div, alice_p>;

print_div(alice_gap^bob_sec);

return 0;

}

9.4.3 Eliptic Curve Diffie Hellman

Listing 9.23: alice-dh-ec.cm
int main() {

curve *E;
mint A;
mint B;

stone a;
stone b;
stone p;

175

stone t;

a = "7";
b = "26";
p = "61";

A = <a, p>;
B = <b, p>;
E = <A, B>;

point *P;
point *Q;

a = "25";
b = "37";

P = <E, a, b>;
t = "13"; // alice’s private key
P = t * P;

print_point_sep(P); //send it over

char *x;
char *y;
x = malloc(100);
y = malloc(100);

scanf(x);
scanf(y);

a = x;
b = y;

Q = <E, a, b>;

print_point(t * Q);
return 0;

}

Listing 9.24: bob-dh-ec.cm

int main() {
curve *E;
mint A;
mint B;

stone a;
stone b;
stone p;
stone t;

a = "7";
b = "26";
p = "61";

A = <a, p>;
B = <b, p>;

176

E = <A, B>;

point *P;
point *Q;

a = "25";
b = "37";

P = <E, a, b>;
t = "23"; // bob’s private key
P = t * P;

print_point_sep(P);// send it over

char *x;
char *y;

x = malloc(100);
y = malloc(100);

scanf(x);
scanf(y);

a = x;
b = y;

Q = <E, a, b>;

print_point(t * Q);
return 0;

}

177

	Introduction
	Language Goals
	Wrap Large Number Arithmetic
	Readability
	Encourage Correctness
	Extensibility

	Background
	Modular arithmetic
	General setting
	Elliptic curves

	Language Tutorial
	Environment Setup
	Using the Compiler
	Building A Basic Program in C%
	File Extension
	Parts of a C% Program
	Hello World
	Variables
	Functions
	Style and Organization
	Using Pointers
	Malloc and Free
	Utilizing C%'s Built in Types
	Code Examples

	Language Reference Manual
	Introduction
	Types
	Basic Data Types
	Cryptographic types
	Grouping

	Lexical Conventions
	Expressions
	Primary Expressions
	Order of Evaluation

	Operators
	Unary operators
	Exponential operator
	Multiplicative operators
	Additive operators
	Relational operators
	Equality operators
	Assignment operator

	Statements
	Statement Terminator & Blocks
	Control flow

	Program Structure
	Functions
	Scope

	File I/O
	I/O Channels
	printf()
	scanf()

	Project Plan
	Planning Process
	Specification Process
	Development Process
	Testing Process
	Team Responsibilities
	Github Stats
	Project Log
	Development Environments
	Style Guide

	System Architecture and Design
	The Compiler
	Scanner
	Parser
	Semantic Checker
	Preprocessor
	Code Generator

	Supplementary Code
	Cryptography Library
	Big-Num Integration and Memory Management
	Built-in Functions

	Test Plan
	Testing Phases
	Grammar Testing
	TravisCI Performance

	C% to LLVM IR
	Example 1
	Example 2
	Example 3

	Lessons Learned
	Zack
	Michael
	Josh
	Maggie
	Richard

	Appendix on Elliptic Curve Cryptography
	Background and definitions
	Addition formula
	Translation to cryptography
	Comparison with modular arithmetic

	Code Listing
	Compiler Source
	Primary
	Preprocessing
	C Wrappers

	Compiler Interface
	Testing
	Libraries
	ElGamal Encryption
	Standard Diffie Hellman
	Eliptic Curve Diffie Hellman

