
Musical Stimulus Visualization
ECSEE 4840 Embedded System Design Project Report

Guanxuan Li gl2619, Hongyu Zou hz2552, Shanglin Guo sg3640, Yiqi Sun ys3127
Columbia University

Abstract
Inspired by the patterns shown on the old generation MP3
screen that corresponds to the pitch and frequency of the
music being played, we have developed a music
visualization system based on the DE1-SoC development
platform that responds to the real-time musical stimulus.
One of the most difficult technical challenges that we
have encountered is getting the audio input from the
microphone and decode and sample the input signal
appropriately. Through extended testing, we were able to
achieve the real-time signal processing from the USB
microphone and visualize the generated pattern on a VGA
monitor.

1. Overview

1.1 Motivation

Inspired by the patterns shown on the old generation
MP3 screen that corresponds to the pitch and volume of
the music being played, we came by with the idea to
visualize the music in a way that not only looks nice but is
also computationally expensive. Therefore, using the
FPGA programmable fabric can accelerate the
computation of audio information and achieve real-time
processing as well as the video output generation.

1.2 Achievement

A USB microphone is utilized to collect the sound signal
and transferred into frequency & amplitude information
by using FFT. After that, 16 digits data are passed to shift
register in FPGA board, then add the size and decrease the
color till the circles fade into the background.

For different frequency intervals, lower frequency
denotes red/yellow circles, medium frequency demotes
green and purple circles and higher frequency denotes
blue circles.

The larger the volume is, the larger the initial size is.
Similarly, the larger the frequency is, the brighter the
color of the circles is.

2. Description

In this section, the objectives of our project will be
discussed, followed by several technical challenges that

we have encountered and our design decision to solve
these challenges. Finally, a system flowchart will be
shown to describe the whole system working process.

2.1. Objectives and Technical Challenges

The objective is to present four sets of rotating circles
that denote different intervals of frequency and different
input volume. When the user input signal of a specific
frequency, the corresponding set of circles may change
according to the volume.
During the implementation, we have encountered several

technical challenges along the way, which includes:
● Getting the frequency of the input signal in a

real-time way. Because the sample rate is
relatively high, algorithms need to be
implemented in order to get the representative
frequency.

● Transferring the data from software to the
hardware at an appropriate rate. Because in order
to display the result smoothly, the transfer rate
needs to match the register changing rate.

● Displaying all the circles simultaneously and
keep the previous circles when new circles feed
in. Shift registers are used to store historical data
and a trigger signal is set to control shift

2.2. Problem Formulation and Design

The audio input is collected from a USB microphone
and handled by the C code running on the hard processor
system (HPS). The audio input is sampled at a constant
interval (~ 0.4s). After FFT and noise suppression, the
resulting frequency and amplitude information is passed
to the hardware through Avalon Bus.

The hardware component read the data from software
and store it in SIPO shift registers, then the parallel output
from shift registers is used for visualization, and the result
is displayed on a 640x480 VGA monitor.
 The basic flow chart of the system is shown in Fig. 1.

Fig. 1 System flow chart

3. Software Design

The software part includes audio input, data sampling,
FFT operation, noise suppression, frequency & energy
selection and circular movement algorithm.

3.1 Audio Input

In order to get the audio input from a USB microphone,
supported drivers and software interfaces are required to
be installed on the board. However, since the original
Linux kernel on the board is a fully simplified one which
only contains the core components, it cannot support the
USB audio input directly. So the following steps are
required to read the USB microphone input.

Recompile Kernel: A new kernel containing the USB
sound drivers is implemented.

Install ALSA in the Linux system: Alsa is a software
framework that provides an application programming
interface (API) for sound card device drivers. It also
provides audio and MIDI functionality to the Linux
operating system.

With the supported USB sound drivers and application
programming interfaces, the audio data can be read from
the USB microphone.

Now that the audio input from the USB microphone is
connected, we have planned several methods of reading
and processing the audio input.

The first method that we have tried is using the Linux
shell command “arecord” to record from the microphone
to a “.wav” file and process the data from the “.wav” file.
This methods involves two threads, recording and
processing, and will involve a relatively large delay.

The second method is to read a pre-recorded “.wav” file
to generate visualization output on the display and play
the sound at the same time using SDL2. However,
without real-time input, this method is not perfect.

Finally, we were able to implement a method that
directly obtains the microphone data from a USB port
using c program and do data processing on the input
directly.

3.2 Data Sampling

To read the audio input from the USB microphone, the
“alsa/asoundlib” C library has been used for real-time
audio input reading. Several parameters of the audio input
reading are set below:

- The sampling rate is set as 44100Hz;
- PCM_FORMAT is set as ‘S16_LE’ (signed 16

bits in little endian);
- Mono audio channel;

Input data decoding is crucial to generate the correct
time-domain sound signal for future processing. After
some research on the USB audio input, some of the data
point features are shown below:

- Each sample is a signed 16 bits data point in a
little-endian format consisting of higher 8 bits
and lower 8 bits.

- All data are stored in the form of two's
complement.

The decoding method act in the following way
combining the 2 bytes data to a single sampled data point:
--

 data = buffer[j+1];
 data <<= 8;
 data += buffer[j];

--
After decoding, a correct time-domain audio signal is

generated.

3.3 FFT Operation

The frequency information of the audio input is required
in this system. To extract information from the frequency
domain, fast Fourier transform (FFT) is considered to be
the most efficient way.

A fast Fourier transform (FFT) is an algorithm that
computes the discrete Fourier transform (DFT) of a
sequence, or its inverse (IDFT). Fourier analysis converts

a signal from its original domain (often time or space) to a
representation in the frequency domain and vice versa.

To perform FFT operation in the C program, “fftw3” C
library (provided by a team in MIT) is a good choice.
 The FFT flow chart is shown in Fig. 2.

Fig. 2 FFT flow chart

Based on the sampling rate and the hardware display

requirements, 16384 data points are sampled and
performed FFT operation each time. According to the
symmetrical pattern feature of the original FFT output,
only the left half part (8192 output points) of the output is
useful. Then the energy of each frequency component is
calculated using the real and imaginary values.

Several tests have been done to verify the accuracy of
the FFT operation. Fig. 3-a and Fig. 3-b refer to the signal
in the time domain and frequency domain respectively of
environmental noise. Fig. 4-a and Fig. 4-b refer to the
signal in the time domain and frequency domain
respectively of a test sound of 1KHz. Fig. 5-a and Fig. 5-b
refer to the signal in the time domain and frequency
domain respectively of a test sound of 10KHz. Finally,
Fig. 6-a and Fig. 6-b refer to the signal in the time domain
and frequency domain respectively of the human sound.

 ​Fig. 3-a Fig. 3-b

 ​Fig. 4-a Fig. 4-b

 ​Fig. 5-a Fig. 5-b

 ​ Fig. 6-a Fig. 6-b

From the results of the tests above, the accuracy of the

FFT operation can be demonstrated by the tests of the two
standard test sound (1KHz and 10KHz). Furthermore, the
frequency of the environmental noise and human sound
can be seen from the graph, both of which have relatively
low values.

3.4 Noise Suppression

As environment noise will have a negative impact on the
FFT result of useful data, noise suppression is required. A
straightforward way to suppress the noise influence is to
do simple spectral subtraction.

First, sample the noise signal and do FFT operation for
it. Then, figure out the main distribution of noise energy
in the frequency domain. Finally, in the frequency
domain, just subtract the energy of mixed signal with the
noise energy in each frequency component, omitting the
useless noise in the frequency domain.

Fig. 7-a and Fig. 7-b show the noise signal in the time
domain and frequency domain respectively. The
frequency domain result is used for spectral subtraction.

 ​Fig. 7-a Fig. 7-b

3.5 Frequency & Energy Selection
Since there is a large amount of FFT output data, it is

not realistic to transfer all of them to the hardware. So a
selection algorithm should be implemented to select some
valuable data which is able to filter out the most
remarkable characteristics of the audio input so that our
display can be distinguished among different kinds of
audio.

To begin with, in our implementation, we get rid of the
frequency that is greater than 11kHz, because normal
audio input like human sound or music would not
generate high energy under the frequency higher than
10kHz. Then, the whole frequency domain is divided into
4 parts, 150Hz to 1kHz, 1kHz to 2.5kHz, 2.5kHz to 5kHz
and 5kHz to 11kHz. Our division is not even because we
want to put more weight on the lower-frequency part,
which is normally the frequency of human voice and most
music. In each part, we choose one frequency having the
largest energy as our data feed.

Moreover, as the raw frequency & energy values of the
FTT output are too large, modulation should be done to
adapt them to meet the hardware requirement which
requires the frequency number is less than 765 and the
energy number is less than 100 in our implementation.
Therefore, we figure out an algorithm to map the data to
this range as shown in the function below.

Besides, we also encode the data to short int, so that we

can transfer the data through iowrite16. Then, four useful
<frequency, energy> pairs are generated and transmitted
to the hardware.

3.6 Circular Movement
 In addition to the <frequency, energy> pair data, we
also transfer 8 location data to the hardware, so that our
pattern is able to move and look fancier.
 In our display, 4 dynamic circles will move around the
center of the screen. The circular movement algorithm is
implemented in the software C program.

 As shown in the pseudocode above, “x” and “y” are the
position data we need to transfer and they are computed
from the variable angle which denotes the radian of the
circle. The if the statement shows that if the points are
now within a circle, the radian will add 0.05 to itself in
every cycle where 6.28 is equal to 2π denoting a full
circle. Then, we can compute the “x” and “y” position
data. Since the vga_clock signal is 25MHz and the system
clock signal is 50MHz in the hardware, so “x” needs to be
multiplied by 2.
 Therefore, the positions (coordinate) of the 4 dynamic
circles are generated in real-time and passed to the
hardware.

4. Hardware Design

The hardware part includes the input of 4*16 digits
frequency, 4*16 digits amplitude, and 8*16 digits position
data (4 for x position and 4 for y position). Also, it
includes 4*48 digits serial in parallel out shift registers.
 The design logic is shown in Fig. 8.

 ​Fig. 8 Hardware Design Logic

4.1 Data Input

4 sets of 16 digits frequency and 4 sets of 16 digits
energy data are transferred into hardware through 16
digits “writedata” logic input. As long as there is an input,
either frequency or size, the enable signal would be set to

“1”, which means there would be a new 16-digit value
shift into the shift register and the oldest value is shifted
out. Besides, we have a “tictoc” pulse signal denotes the
enable of the increase or decrease of the value inside the
shift register. As soon as the “tictoc” signal is “1”, 0~15
digits, 16~31 digits and 32~47 digits of all the shift
registers would change simultaneously and for size
register it’s “+1” and for frequency register it’s “-2” to
ensure when the circle is getting bigger the color of the
circle is getting darker and finally fade into the
background.

The schematic diagram of the input and the shift
registers is shown in Fig. 9.

Fig. 9 Shift Register Logic

4.2 Display logic
​There are four sets of circles displayed on the screen and

each set has a different color range, which denotes a
different range of frequency. The initial size of the circle
is related to input volume and the brightness of the color
is related to the input frequency.
 The frequency is divided into four intervals and the
red/yellow circles denote the lowest frequency, green and
purple circles denote two medium frequencies. Blue
circles denote the highest frequency. We also have a
rotation logic. There are four x_position input and four
y_position input represent different positions of the sets of
circles.
 The logic is to execute “+1” on size and execute “-2” on
frequency in order to make the circles fade into the black
background and increase the size at the same time. The
logic of the circle is to show the pixel when the pixel is
larger than the square of the size and smaller than the
square of the size plus 1. We utilize multipliers to
accomplish the square function. It’s not time efficient but
easy to implement.

5. Results

In order to show the result in different frequency
intervals, we firstly use vocal input to test the output.
Because the vocal signal mainly consists of

low-frequency signals, the size of red/yellow circles
would increase significantly as well as the green circles.

Then we used the sound signal which frequency
continuous changes according to time. When the
frequency is relatively low, the red/yellow circles are
significantly larger than other circles. Along with the
increase of the time, the size of green circles, purple
circles, and the blue circles would increase one by one.

All of the sets of circles rotate around the center of the
screen continuously and smoothly.
 One of the displaying results is shown in Fig. 10.
.

 ​ Fig. 10 Display Result

6. Conclusion
​In conclusion, in this project, we successfully built a

music stimulus data visualization system utilizing both
the software and hardware resources. In other words, this
is also a streaming data processing and hardware data
visualization project. In the software part, we managed to
gather data from a USB microphone and make use of the
data by decoding it. Then, we implemented an FFT
component for data processing in which we used many
innovative algorithms and data processing techniques to
make our result much more reliable. Moreover, we also
implemented a pattern control logic to control the
movement of our pattern to make the result fancier.
Then we transferred all the data feed through Avalon bus

to the hardware. And we built a VGA monitor display
logic in the hardware system, including several shift
registers and some innovative technique to display a fancy
pattern based on the data input.

This project is aiming to turn the theory we learned in
class into practice and we made use of lots of knowledge
we learned in class including device driver, Avalon bus,
communication with peripherals, etc. to successfully
establish the system.

7. Acknowledgments
We would like to express our special thanks of gratitude

to our professor (Stephen A. Edwards) as well as our
teaching assistants (John Hui, Martha Barker) who gave
us the golden opportunity to do this wonderful project in
the course of Embedded System Design, which also
helped us in doing a lot of research. We learned many
new knowledge and skills during this project and we are
really thankful to them.

