
CSEE W3827: Fundamentals of Computer Systems
Homework Assignment 3. Stephen Edwards. Columbia University

Due Sunday, June 21 at 11:59 PM EDT via Courseworks
Download and edit the .s files in the hw3.zip file. Edit and make them work in the SPIM simulator http://spimsimulator.
sourceforge.net/ as discussed in class. Package your modified .s files in a .zip file and upload them to Courseworks to submit them.
Do not rename the .s files. This time, you do not need to annotate or submit this file (hw3.pdf).

1. (25 pts.) In the SPIM simulator in MIPS assembly, write the itri
routine in the itri.s skeleton to make it print an inverted trian-
gle. The height of the triangle will be given in $a0, and will be
between 1 and 40 inclusive. For the first three tests, the included
test harness should print

Testing itri with 1
#
Test complete

Testing itri with 2
###
#

Test complete

Testing itri with 5
#########
#######
#####
###
#

Test complete

2. (30 pts.) Write a MIPS assembly routine sqrt that uses an iterative
Newton’s method to calcuate integer square roots. To compute the
square root of k, start with x0 = k and calculate

xn+1 =
1
2

(
xn +

k
xn

)
until either xn+1 = xn or xn+1 = xn +1, at which point you should
return xn+1. For example, for k = 24, you should observe the se-
quence 24,12,7,5,4,5 and return 5. Use divu to perform k/xn and
srl to divide by two.

Our test harness should print (omitted lines print identical outputs)

sqrt test harness
sqrt(1) = 1
sqrt(2) = 1
sqrt(3) = 2
...
sqrt(7) = 2
sqrt(8) = 3
...
sqrt(14) = 3
sqrt(15) = 4
...
sqrt(23) = 4
sqrt(24) = 5
...
sqrt(34) = 5
sqrt(35) = 6
...

3. (45 pts.) Dragon curves are self-similar fractals
that can be approximated recursively. Modify the
dragon.s file by writing a recursive function called
dragon that outputs a dragon curve of a given or-
der in SVG format. Here’s an order 6 dragon
curve generated by my solution:

Below is pseudocode for the dragon curve algorithm written for
“turtle graphics,” in which the “turtle” has a current point and di-
rection and can either move forward, drawing a line, or turn in
place. Note that in the algorithm, sign is either 1 or −1, so the
turtle only ever turns 90◦ or −90◦.

procedure DRAGON(order, sign)
if order = 0 then

Move forward
else

DRAGON(order−1,1)
Turn 90◦× sign
DRAGON(order−1,−1)

SVG is an XML-based text format for vector graphics. For this
assigment, you only need to know that its paths can be expressed
as a series of horizontal and vertical line segments. For example,
h-10 means “draw a horizontal segment 10 pixels to the left” and
v5 means “draw a vertical line segment 5 pixels down.”

Here is the order 3 dragon, which consists of 8 line segments, and
its corresponding SVG file:

<svg xmlns="http://www.w3.org/2000/svg">
<path stroke="black" fill="none"

d="M225 225h-5v-5h5v-5h5v5h5v-5" />
</svg>

The provided skeleton includes a test harness that prints out every-
thing but the various horizontal and vertical segments of the “d”
attribute of the path. Don’t change anything in the main function
except for the order number.

Keep the current direction of the turtle, coded as a byte with values
0, 1, 2, and 3, in the global variable in memory direction. To move
forward, print a string from the dirs array of string pointers, which
contain strings encoding the four compass directions in SVG, in-
dexed by direction. To turn, update the direction byte according to
the sign argument (passed as a signed integer in register $a1).

Your solution needs to be recursive. You will have to store various
registers (such as $ra) on the stack when your function is entered
and restore them when you return. My solution was about 40 lines.

I debugged my code by writing the output of my program to a .svg
file and previewed it with the Chrome browser. Inkscape can work,
but the curves may appear outside the document area.

1

http://spimsimulator.sourceforge.net/
http://spimsimulator.sourceforge.net/

