
1

Language Manual

�. Introduction

�. Language Details

�.� Data Types

�.�.� Primitive types (call by value)

�.�.� Built-in types (call by reference, non-primitive types)

�.� Comments

�.�.� Single-line comment

�.�.� Multi-line comment

�.� Program

�.� Functions

�.�.� Define a Function

�.�.� Function Return Statements

�.�.� main Function

�.� Variables

�.�.� Define a Variable

�.� Loops

�.�.� While-loop

�.�.� For-loop

�.� If-elif-else

�.� Operators

�.�.� Assignment Operator

�.�.� Arithmetic Operator

�.�.� Comparison Operators

�.�.� Logical Operators

�.� Keywords & Separators

�.�� Memory

�.��.� Call-by-value for primitive types

�.��.� Call-by-reference for non-primitive types

2

�.�� Scope

�. Code Sample

Marble is a programming language that incorporates matrix manipulation functionalities natively

so that the compiled code can solve linear algebra problems efficiently. With standard library

classes Image and Pixels, it can process images swiftly as well. This programming language

would be useful in applications such as Computer Vision and Robotics.

With Marble, developers can define matrices using Matlab-like [] literal syntax, i.e. M =
[0,0,0;0,0,0] , as well as generator functions, i.e. M = zeros(2,3) , to create a 2-by-3

matrix with all 0's. We'll include a bare minimum number of matrix manipulation functions in the

language to speed up compiling. This language is flexible - developers can add methods to any

class. Developers can extend the Matrix class and define their own methods which can be used

later by Matrix objects.

Due to the time constraint, our language will deploy C libraries for accessing the file system

and reading/displaying images.

In order to accomplish certain operations and functions efficiently, we create the following

primitive types as building blocks (each of which contains simple values of a kind).

int : Integer under a range of -2^30 to 2^30 -1

float : OCaml float type (IEEE 754 with a 53-bit mantissa and exponents from -1022 to

1023)

Manager: Xindi Xu (xx2391)

Language Guru: Qiwen Luo (ql2427)

System Architect: Huaxuan Gao (hg2579)

Tester: Yixin Pan (yp2601)

1. Introduction

2. Language Details

2.1 Data Types

2.1.1 Primitive types (call by value)

●

●

3

boolean : true/false
null : type of variables after declaration and before assignment, type of defined functions,

type of variables assigned to functions without return statements

matrix :

accessor: a[1][0]

dimension: rows(a) cols(a)
initialization:

matrix A = [1,2;3,4];
mat_init()

All entries in the matrix need to be float . If entries are integers, we will cast them to

floats

The content after the symbol // within a line is recognized as a comment in our language and

our interpreter will skip the content during the execution.

Any content after /* and before */ is recognized as a comment in our language and our

interpreter will skip the content during the execution.

●

●

2.1.2 Built-in types (call by reference, non-primitive types)

●

○

○

○

■

■

○

2.2 Comments

2.2.1 Single-line comment

2.2.2 Multi-line comment

Java 复制代码

// two ways to initialize a matrix
matrix A = [1,2;3,4];
matrix B = mat_init(1,2,1.0); // [0.0, 0.0]

// access an element in the matrix
A[1][0]; // returns 3

// getting the matrix dimension, number of rows, number of cols
rows(A); // returns 2
cols(A); // returns 2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

Java 复制代码

// This is a comment1

4

When developers write code in Marble, the file that contains the code is a Marble program. A

program consists of a collection of function declarations, variable declarations, and one and

only one main() .

Function declarations and variable declarations are optional and can be in any order before

the main() function

One main() function is required for every program and it should be at the end of the file

A function is a collection of input parameters and statements. A function declaration creates

one function and binds the corresponding identifier to it.

A function must have a name; adding parenthesis () to the end of its name will invoke the

function

Input parameters are optional and multiple input parameters are separated by commas , .

Each input parameter must have a type and a name

Inside the curly braces {} is a collection of 0 or more statements

A function can have 0 or more return statements

Within the same scope, functions must have different names

2.3 Program

●

●

2.4 Functions

2.4.1 Define a Function

●

●

●

●

●

Java 复制代码

/*
This is also a comment
*/

1
2
3

Java 复制代码

matrix numbers;
function get(matrix m, int row, int col){
 return m[row][col];
}
main(){
 numbers = [1,2,3,4;5,6,7,8];
 return get(numbers, 0, 1); // 2
}

1
2
3
4
5
6
7
8

5

Once any return statement is executed, the function will terminate

The value returned by the function will be available in the context where the function is

invoked

Return values for the functions are optional. A function without return statements

returns null by default

Example:

main function is a special type of function. In particular, its name must be "main" and it lacks

input parameters.

main function must be at the end of the program and one program must have one main

function.

Return statements are allowed in the main function and they will terminate the program.

The value returned from the main function is useless

Code will start executing from main .

2.4.2 Function Return Statements

●

●

●

2.4.3 main Function

●

●

Java 复制代码

function fib(int n){
 if(n == 1){
 return 1;
 }
 if(n == 2){
 return 2;
 }
 return fib(n-1) + fib(n-2);
}

1
2
3
4
5
6
7
8
9

Java 复制代码

function get(matrix m, int row, int col){
 return m[row][col];
}
function set(matrix m, int row, int col, int val){
 m[row][col] = val;
}
matrix m = [1,2;1,2];
float a = get(m,0,0); // a = 1
boolean b = set(m,1,1,2); // b = null

1
2
3
4
5
6
7
8
9

6

A variable has a type, a name, and an optional value. A variable declaration creates one

variable, binds corresponding identifiers to it, and gives it a type and an initial value.

One variable can only have one type in its lifetime. There's no way to change its type. A

runtime error will be thrown if the variable and the value it is assigned to have mismatched

types. See the "2.1 Data Types" section for more details.

A variable declared without assigning an initial value will have a null value. Variables can

be reassigned later in the program

Variables must be declared before assigning a value to it or before using it

Variable declarations end with a semicolon ;
Within the same scope, variables must have different names

The format for while-loop is while(expr){stmts} . The expression is the condition part of

the loop. The expression is of type boolean and the type check will be done during runtime. The

loop-body is a statement list.

Example:

2.5 Variables

2.5.1 Define a Variable

●

●

●

●

●

2.6 Loops

2.6.1 While-loop

Java 复制代码

main(){
 // ...
}

1
2
3

Java 复制代码

// declare a variable i with type i and assign 0 to it
int i = 0;
// declare a variable j with type int without assigning initial value
// j should be null
int j;

// assign a new value 1 to i
i = 1;
// assign a new value 1.5 to j
// Run-time error: type mismatch
j = 1.5;

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

7

The format for for-loop is for(assigstmts;expr;expr){stmts} . The assignment

statement is the init part, such as int i = 0 , i = 0 , i += 1 or i -= 1 . The expression

with type boolean is the condition part and the type check will be done during runtime. The part

after the condition part is also an expression, which will be executed after each iteration. The

loop-body is a statement list.

Example:

The format is if(expr){stmts}elif(expr){stmts}else{stmts} .

The if-branch is required and can only have one. The elif-branch is optional and can have

multiple elif. The else-branch is optional and can have zero or one else.

Example:

2.6.2 For-loop

2.7 If-elif-else

2.8 Operators

Java 复制代码

int i = 0;
while(i < 10){
 i = i + 1;
}

1
2
3
4

Java 复制代码

int n = 1;
for(int i = 0; i < 10; i = i + 1){
 n = n * 10;
}

1
2
3
4

Java 复制代码

if (a<=10) {
 // ...
}
elif (a<=20) {
 // ...
}
else {
 // ...
}

1
2
3
4
5
6
7
8
9

8

The equal sign = is used to indicate storing values in variables with the format type ID =
expr; or ID = expr; . Type checking will be done during the runtime.

We also support +=, -= and the syntax is expr += expr; or expr -= expr; . This

shortcut is only available for int and float.

If a variable is assigned a value before the declaration, the error will be caught during the

complilation.

Example:

int x = 1;
x += 2;

The following standard arithmetic operators are provided (only applies to int/float):

addition +
subtraction and sign negation -
multiplication *
division /
modular %

The following comparison operators are provided:

greater than >
less than <
greater than or equal to >=
less than or equal to <=
equal to ==

not equal !=
ref equal ~=

All comparison operators, except ref equal, will be performed on the values of the operands,

not the reference addresses.

Non-primitive types can only use ref equal.

The following logical operators are provided:

negate !
and &&

2.8.1 Assignment Operator

2.8.2 Arithmetic Operator

●

●

●

●

●

2.8.3 Comparison Operators

●

●

●

●

●

●

●

2.8.4 Logical Operators

●

●

9

or ||
Only boolean expressions are allowed. Any other expressions will cause runtime errors.

The following keywords are reserved. If used as a variable name, the compiler will throw an

error indicating that the keyword cannot be used.

Call-by-value example:

●

2.9 Keywords & Separators

2.10 Memory

2.10.1 Call-by-value for primitive types

Keywords Format Remarks

if, elif, else if(expr){stmts}elif(expr)
{stmts}else{stmts}

Reserved for conditional

statements

for, while for(assignstmt;expr;expr)
{stmts}
while(expr){stmts}

Reserved for flow control

main main(){stmts} main function is used to

indicate the starting point to

execute the program

function function foo(){} Reserved for functions

return return expr; Reserved for function return

statements

null Evaluates to false when

used as a boolean

int , float ,

boolean ,

matrix

type ID; Built-in datatypes

() [] { } ,
;

separators

10

Call-by-reference example:

We choose to use static scoping in our language since we want to facilitate modular coding. In

this scoping, a variable always refers to its top top-level environment.

Example:

2.10.2 Call-by-reference for non-primitive types

2.11 Scope

Java 复制代码

function swap(int a, int b){
 int c = a;
 a = b;
 b = c;
}

int a = 1;
int b = 2;

main(){
 swap(a,b); // a = 1, b = 2
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

Java 复制代码

function swap(matrix a, matrix b){
 matrix c = a;
 a = b;
 b = c;
}

matrix a = [3,2,1;4,5,6];
matrix b = [1,2,3;2,5,6];

main(){
 // both a and b are pointing to the same matrix [1,2,3;2,5,6]
 swap(a, b);
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

11

3. Code Sample

Java 复制代码

function meth(){
 int a = 0;
}
function meth2(){
 // Invalid since "a" is not declared in meth2's scope
 int b = a + 2;
}

1
2
3
4
5
6
7

Java 复制代码

int a = 10;
function meth(){
 return a;
}
function meth2(){
 int a = 20;
 return meth();
}
main(){
 return meth2(); // 10
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

12

Java 复制代码

function get(matrix mat, int r, int c){
 return mat[r][c];
}

function set(matrix mat, int r, int c, int val){
 mat[r][c] = val;
}

function mult(matrix mat, matrix m2){
 // initialize a matrix with same dimension
 matrix res = mat_init(rows(m1), cols(m2), 0);
 for(int i=0; i<rows(m1); i+=1){
 for(int j=0; j<cols(m2); j+=1){
 for(int k=0; k<rows(m2); k+=1){
 res[i][j] += m1[i][k] * m2[k][j];
 }
 }
 }
 return res;
}

main(){
 matrix m1 = [1,2,3;4,5,6];
 matrix m2 = [1,2,3;4,5,6];
 matrix res = mult(m1, m2);
 return res;
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

