Pixel
Language Reference Manual

Alex Anthony Cortes-Ose (ac4441) - Language Guru
Dillon Davis (dhd2121) - Manager
Jessica Kim (sk4711) - Tester
Jessica Peng (jp3864) - System Architect

Table of Contents

1. Introduction

2. Data Types
2.1 Primitives
2.2 Structures
2.3 Image and Pixel

3. Lexical Conventions
3.1 Keywords
3.2 Operators
3.3 Literals
3.4 Identifiers
3.5 Comments
3.6 Variables

4. Syntax
4.1 Variables
4.2 Functions
4.3 Expressions
4.4 Array and Matrix Access

5. Standard Library

6. Code Samples
6.1 Thresholding

1: Introduction

Originally inspired by the concept of applying filters to images in social media platforms like
Snapchat and Instagram, Pixel is a language designed to process and manipulate images. With
Pixel, it is easy to write algorithms that perform enhancements, transformations, edge detection, and
basic analysis on images. An image is its own primitive type, containing a pixel matrix; pixel is
another primitive type. These types enable extended functionality and increased efficiency in many
image processing problems and applications.

The syntax for Pixel draws from Python and JavaScript with their effectiveness for array and matrix
manipulation.

2. Data Types
2.1 Primitives

Context-free grammar:
type-specifier-dec/

Data Type Description

int 32-byte signed integer type
float 64-byte floating point number
str Array of ASCII characters

2.2 Structures

Structured data types are dynamically sized and mutable.
Context-free grammar:
struct::type-specifier-decl

Structured Data Type Description

dict::key_type, value_type |Hash table storing int, float, or str. Follows syntax:
{ Ma": 1' Mb": 2' llc": 3' lld": 4 };

list::type A standard array consisting of elements of the same
type. Follows syntax: [“a”, “b”, “c”];
matrix: :type Mutable matrix data structure storing 2 or 3 dimensions
of ints or floats. Follows syntax: [[3 © 0]
[16 1 -3]
[-2 9 o]];
Function Description

transpose() Transpose a given matrix flipping

rows and cols dimensions
Returns amatrix

rows(), cols() |Returnthe number of rows and
columnsin a given matrix
Returns an int

2.3 Image and Pixel

The image and pixel are specialized data types which expose useful functionality for performing
various operations relevant to the field of image processing.

Context Free Grammar:

type direct-declarator (parameter-type-list)

Data Type |Description

image A matrix wrapper with built-in functions. Represents an image as a 3-D matrix
of pixels, integer brightness values, or floating point color or brightness values

Function Description

convert(“grayscale” || |Converta givenimage to either a different color

“color” || “double”) space or the current colorspace representing
color values as double precision floating point
numbers

Returns an image

red(), green(), blue() |Extractthe corresponding red, green, or blue
channel from a given image
Returns an image

.. matrix rows() and cols() can be applied to an image

pixel A list wrapper on top of a 3 element long list of either ints or floats with
built-in functions. Represents an image pixel

Function Description

red(), green(), blue() |Extract corresponding color value (the underlying
list can also be indexed)
Returns an int or float

brightness() Extract corresponding pixel brightness /
grayscale value
Returns an int or float

3: Lexical Conventions

3.1 Keywords

The following are reserved keywords for the Pixel language - all data types are considered as
reserved keywords as well.
Context Free Grammar:
selection-statement:
if (expression) statement
if (expression) statement else statement
while (expression) statement
return expression (IF NOT VOID) **if not executed, implicit return with no expression**

Keyword [Description

if Standard if, else clause. Follows syntax:

else if (condition) {statements} else {statements}

while Standard while loop that executes statements while a condition is true. Follows
syntax:

while (condition) {statements}

fun Function declaration. Follows syntax:
fun::type function_name (type var_name, ..) { ..}

return |Halts the current function execution and returns a value. Follows syntax:
return var_name or expression;

void Indicates that a function has no return value

print Function that prints any data type to standard output

3.2 Operators

Pixel enables many different ways to utilize basic arithmetic and matrix operators with support for
different operand types. Below is a detailed table of supported operand types and a description of
the expected computation. Here, scalar refers to either int or float, and matimg refers to either
matrix or image.

Operator and Operands Description

scalar + scalar -> scalar |[Standard scalar addition, returns sum

matimg + scalar -> matimg |Increases each matrix elementby a scalar,
returns a scaled matrix

matimg + matimg -> matimg [Element-wise matrix addition, returns the
matrix of summed elements

scalar - scalar -> scalar |Standard scalar subtraction, returns difference
matimg - scalar -> matimg |Decreases each matrix elementbya scalar,
B returns a scaled matrix
matimg - matimg -> matimg [Element-wise matrix subtraction, returns the
matrix of subtracted elements
scalar * scalar -> scalar [Standard scalar multiplication, returns product
* matimg * scalar -> matimg |Multiplies eachmatrix elementby a scalar,
and returns a scaled matrix
X matimg * matimg -> matimg [Returns the dot product of twomatrices
matimg .* matimg -> matimg |Element-wise matrix multiplication, returns the
matrix of products
scalar / scalar -> scalar |[Standard scalar division, returns the quotient
/d matimg / scalar -> matimg [Divides eachmatrix elementby a scalar,
an .
) returns a scaled matrix

matimg

./ matimg -> matimg

Element-wise matrix division, returns the
matrix of quotients

%

scalar

% scalar -> scalar

Returns the remainder of standard scalar
division

scalar

> scalar -> 1 or ©

Returns 1 if a scalar is greater than another
scalar, 0 otherwise

scalar

>= scalar -> 1 or ©

Returns 1 if a scalar is greater than or equal to
another scalar, 0 otherwise

scalar

< scalar -> 1 or 0

Returns 1 if a scalar is less than another
scalar, 0 otherwise

scalar

<= scalar -> 1 or ©

Returns 1 if a scalar is less than or equal to
another scalar, 0 otherwise

== | scalar == scalar -> 1 or 0 |Returns1ifa scalar is equal to another
scalar, 0 otherwise
I= | scalar != scalar -> 1 or @ [Returns1ifa scalar is unequalto another

scalar, 0 otherwise

An image contains three color channels which each can be accessed and then manipulated via
matrix operators. Each of the above matrix-by-matrix and matrix-by-scalar operations also
applies to images returning either an image or a scalar, respectively.

image base = image_in("“../imgs/base_img@.png”);
image boosted_red = base.red() + 100;
image_out(“boosted_red”, join(boosted_red, base.green(), base.blue()));

3.3 Literals
Literal Type Description Example
Integer Literals |A series of digits that represent a number 0,1 2, .,9

Float Literals A series of zero or multiple digits accompanied by a dot |12 .34
character after the first sequence, followed by 1 or
more digits

String Literals | A series of character primitives encompassed by “Hello World”
quotation marks that represents a string that is
unnamed

3.4 Identifiers

Identifiers follow the same “lowercase letters separated by underscores” convention as is used in
the Python language. They must begin with a lowercase letter, and can be followed by any
combination of lowercase and uppercase letters, numbers, or underscores.

int my_varNAME = 0;
fun::image threshold_1(image default) { /* code here */ }
str new_image_name = “basic_blur.png”;

3.5 Comments

Single line comment: //
Multi line (nestable) comment: /* */

3.6 Variables

Variables that are uninitialized outside the function must be declared at the start of the program, they
can be assigned values inside function bodies. Any variable declarations inside functions must occur
at the start of the function scope.

4. Syntax

4.1 Variables

Variables are defined by first specifying a type and then a valid identifier. They are assigned with the
identifier followed by the assignment (=) character within a function body. Structured types including
matrix, list, and dict must specify stored types after their double colon characters.

str new_image_name;
int example;

fun::void main() {
dict::str,str props;
matrix::int identity_kernel;

identity_kernel = |
[6 0 0]
[6 1 @]
[6 0 0]

1;
props = { “name”: “John”, “date”: “02-23-21" };
new_image_name = “basic_blur.png”;
example = 0;

}

4.2 Functions

Functions are defined with the fun keyword and the return type must be specified after double colon
characters. Arguments must also be typed, and statements for the function body are written within a
pair of curly braces.

Context Free Grammar:

key::type-decl

key::type-decl-list

fun::int add_two(int a, int b) {
return a + b;

|3

4.3 Expressions

When an expression contains multiple operators, these operators are executed based on rules of
precedence. The following lists the types of expressions in order of highest to lowest precedence.
For operators of equal precedence, they are executed from left to right.

1. Function calls, array subscripting, and membership access-operator expressions

2. Unary operators: logical negation

3. Multiplication, division, and modular division expressions

4. Addition and subtraction (scalar and matrix) expressions

5. Greater-than, less-than, greater-than-or-equal-to, and less-than-or-equal-to (scalar and matrix)
expressions

6. Equal-to and not-equal-to expressions

7. Logical AND expressions

8. Logical OR expressions

9. All assignment expressions

10. Comma operator expressions

4.4 Array and Matrix Access

The square brackets allow the user to access a specific element within an array with an integer
index, and within a matrix with comma-separated integers wrapped by square brackets.

/* Accessing an element within an array */
list::int array = [1,2,3];
int first_element = array[0];

/* Accessing an element within a matrix */
matrix::int m = |

[1 0 3]

[2 4 9]

[6 0 0]

1;

int matrix_element = m[1, 2]; /* This will be the value 9 */

5. Standard Library

Context Free Grammar:
Type conversion explicitly by cast: type-name specifier-qualifier-list abstract-declarator

Function Description

len(list 1) Takes one argument of type 1ist and returns the length
range(int start, int Takes two arguments of type int and returns the range
end) from start inclusive to end exclusive

sum(list 1) Returns the sum of all elements ina 1list or the

or element-wise sum of amatrix

sum(matrix m)

image_in(str file_path) |Takes one argument of type str which specifies the file

path of a png image and returns an image

image_out(str file_name, |Takes two arguments of type str and either image or

image i) matrix and saves the second argument as a png image

or to the user’s hard disk

image_out(str file_name,

matrix m)

join(image r, image g, Takes in three arguments of type image or matrix.

image b) Combines each argument as respective red, blue, and

or green channels and returns a color image

join(matrix r, matrix g,

matrix b)

zeros(int m, int n) Takes in two arguments of type int, called m and n, and
returns an mxn matrix filled with zeros

int(float f) Casting a float or strintoan int

or

int(str s)

float(int i) Castingan int or strintoa float

or

float(str s)

str(int i) Castingan int or floatintoa str
or
str(float f)

matrix(list 1) Castinga listintoamatrix

image(matrix m) Castingamatrix into an image

6: Code Samples

6.1 Thresholding

fun::image binary_brightness_threshold(image in) {
matrix::int m = zeros(in.rows(), in.cols());
for (int i = 0; i < in.rows(); i++) {
for (int j = 0; j < in.cols(); j++) {
m[i, j] = in[i, j] >= 178;
}

}
return image(m);

}

