
BLAStoff
Graph computation language based on the BLAS* specification

*Basic Linear Algebra Subprograms

Let’s hop right in

Motivation

Other features

Semirings

Dirty Details

Selection

Demo

01 02 03

04 05 06

Motivation

Graphs can be represented
as matrices.

Graph operations can be
written as matrix
operations.

Matrix operations are
highly optimized, fully
realizing parallel
computation.

Graphs as matrices Benefits

GraphBLAS API

BFS using the C GraphBLAS Library

From “The GraphBLAS C API Specification”, Buluç, et al

Can we do
better?

BFS in BLAStoff
def BFS(G, frontier) {
 #logical;
 N = |G|[0];
 levels = Zero(N : 1);
 maskedGT = G^T;
 depth = 0;
 while (plusColumnReduce(frontier)) {
 #arithmetic;
 depth = depth + 1;
 #logical;
 levels[rangeFromVector(frontier)] = depth;
 mask = !(levels)[0, Zero(N:1), N, 1];
 maskedGT = maskedGT @ mask;
 frontier = maskedGT * frontier;
 }
 #arithmetic;
 return levels + One(|levels|)~(-1);
}

There’s a lot going on here. Let’s talk about some of these features!

BLAStoff Overview

● Every object is a matrix
● Imperative
● Wide offering of primitive matrix operations
● Versatile matrix selection operator
● Semiring semantics

A set of two binary operators: addition and multiplication.

What is a semiring?

A set of two binary operators: addition and multiplication.

What is a semiring?

● (R, +) is a commutative monoid with identity element 0
● (R, *) is a monoid with identity element 1
● Multiplication left and right distributes over addition
● Multiplication by 0 annihilates R

A set of two binary operators: addition and multiplication.

What is a semiring?

Arithmetic semiring:
● 3 + 7 = 10
● 3 * 7 = 21
● etc.

A set of two binary operators: addition and multiplication.

What is a semiring?

Arithmetic semiring:
● 3 + 7 = 10
● 3 * 7 = 21
● etc.

Logical semiring:
● 3 + 0 = 1
● 3 + 7 = 1
● 0 + 0 = 0
● 3 * 0 = 0
● etc.

A set of two binary operators: addition and multiplication.

What is a semiring?

Arithmetic semiring:
● 3 + 7 = 10
● 3 * 7 = 21
● etc.

Logical semiring:
● 3 + 0 = 1
● 3 + 7 = 1
● 0 + 0 = 0
● 3 * 0 = 0
● etc.

Maxmin semiring:
● 3 + 7 = 7
● 3 * 7 = 3
● etc.

#semiring-name; to change semiring

Semirings in BLAStoff

#semiring-name; to change semiring

Semirings in BLAStoff

 1 A = [1, 2;
 2 3, 4];
 3
 4 B = [0, -1;
 5 -2, 5];
 6
 7 #maxmin;
 8 printm(A + B); // prints: 1 2\n3 5
 9 printm(A * B); // prints: -2 2\n-2 4
10
11 #arithmetic;
12 printm(A + B); // prints: 1 1\n1 9
13 printm(A * B); // prints: -4 9\n-8 17

Semirings in BLAStoff
 1 def addThree(A, B, C) {
 2 sum = A + B + C;
 3 return sum;
 4 }
 5
 6 def f(A, B, C) {
 7 #maxmin;
 8 printm(addThree(A, B, C)); // prints 6
 9 printm(A + B + C); // prints 3
10 }
11
12 A = 1;
13 B = 2;
14 C = 3;
15
16 printm(A + B + C); // prints 6
17 f(A, B, C);

Semirings in BLAStoff
 1 def addThree(A, B, C) {
 2 #maxmin;
 3 sum = A + B + C;
 4 return sum;
 5 }
 6
 7 def f(A, B, C) {
 8 #maxmin;
 9 printm(addThree(A, B, C)); // prints 3
10 printm(A + B + C); // prints 3
11 }
12
13 A = 1;
14 B = 2;
15 C = 3;
16
17 printm(A + B + C); // prints 6
18 f(A, B, C);

Semirings in BLAStoff
 1 def addThree(A, B, C) {
 2 #_;
 3 sum = A + B + C;
 4 return sum;
 5 }
 6
 7 def f(A, B, C) {
 8 #maxmin;
 9 printm(addThree(A, B, C)); // prints 3
10 printm(A + B + C); // prints 3
11 }
12
13 A = 1;
14 B = 2;
15 C = 3;
16
17 printm(A + B + C); // prints 6
18 f(A, B, C);

Selection

03
“There is wisdom in the
selection of wisdom.”

– Dr. Bergen Evans, English professor and TV host

● Robust
● Expressive
● Powerful
● But concise
● In other words, matrix.get(i,j) won't cut it

How should selection work?

● M[A, B, c, d]
● A: row indices, B: column indices
● c, d: size of the submatrices
● A is the only required argument
● B, c, d default to [0], [1], [1], respectively

Our selection operator

Example

Example

row indices

column indices

size

Example

row indices

column indices

size

Example

Operators
“It's not the operation

itself that is the concern,
it's the anesthesia.”

04
– Sanjay Gupta, neurosurgeon

A ~ B: slide B across A like so…

…where each windowed view becomes just one
entry in the resulting matrix.

Why is this useful for us?

Convolution ~

● Can be used to emulate other typical
operators, most notably scalar
multiplication.

● BLAStoff has no scalars. To achieve this,
we just use a sliding window of size 1x1!

Convolution ~

A = [1, 2, 3; 4, 5, 6];
k = 2;
B = A ~ k;
// B is now [2, 4, 6; 8, 10, 12];

● For an m x n matrix A, |A| returns a
2 x 1 column vector with values m
and n.

● For instance, to make an m x n
matrix of zeros would simply be:

Size | |

A = [1, 2, 3; 4, 5, 6];
B = Zero(|A|);

// B is now [0, 0, 0; 0, 0, 0];

If we isolate the values into
separate variables, we can
use selection to replace all
values of A!

Size | |: Nifty Example

m = |A|[0];
n = |A|[1];

A[range(m), range(n)] = 3;

Row-reductions with either
summation or product.

(And this works with semirings!!)

Reduce Rows %

A = [1, 2; 3, 4];
B = +%A; // B is [3; 7]
C = *%A; // C is [2; 12]

Graphs can be declared just like
matrices

Another Feature: Graph Literals

// These create equivalent matrices
G = [0->1; 2->3; 3->0]
M = [0,1,0,0;
 0,0,0,1;
 0,0,0,0;
 1,0,0,0]

● Matrix multiplication (*)
● Element-wise multiplication (@) and addition (+)
● Exponent: ^(b | T) where b is a 1x1 matrix and b ≥ 0
● Vertical concatenation (:)

Other basic operators

Dirty details;
Are we proud?

05

What We’re Proud Of

● Excellent division of
labor, everyone
specialized while still
interacting with all
the code

● Github issues for
feature tracking

● Implemented our
full LRM, save
stretch goals

● Learned linear
algebra and
abstract algebra

● Removed SAST
while keeping
type-checking of int
vs float matrices

● Programmatically
created function
types, definitions,
and calls

● Lazy evaluation
● Semiring stack

01 Our Process 02 Our Project 03 Our Code

What We’re Not Proud Of:
Our commit messages

CREDITS: This presentation template was created by
Slidesgo, including icons by Flaticon, infographics &
images by Freepik

BFS Demo
Questions?

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/

