Ch

Spring 2021
Programming Languages and Translators

Yvonne Chen, Isabella Cho, Katherine Kim, Jasmine Valera
Professor Stephen A. Edwards

mailto:sedwards@cs.columbia.edu

1. Introduction

C b is a computer language designed for musical composition. (The name of the language is
pronounced [SEE-FUHLAT] and can also be written as “C-Flat” when special characters are not
available.) Intended to be intuitive for users with a broad range of music theory knowledge, the
language is fundamentally built upon and inspired by rudimentary elements of music theory. The
language is statically scoped, strongly typed, statically typed, and complete with mutable and
immutable, atomic and composite data types.

The following sections describe the many data types and methods especially unique to the
musicality of C b .

1.1. White Paper

The Cb language is designed to enable ease in musical composition and audio synthesis
directly from a computer keyboard — as though via a piano keyboard. Favoring both flexibility
and readability, Cb is a programming language that can be as musically powerful and
technically efficient as the coder and composer themself. Within the realm of raised octaves,
key changes, and semiquavers, there is no limit to creativity inC b .

1.1.1. Musically Powerful

Being deceptively compact, features of the Cb language are surprisingly
minimal, but unbelievably powerful. The full suite of data types of the Cb
language, along with arrays, do provide for both a tangible coding experience and
realistic control over composition.

1.1.2. Natural and Intuitive

Cb is novel, with many original musical features. However, the chimeric C b
music language also borrows syntactic aspects of C, and shares a functional
resemblance with many object-oriented languages as well. Anyone familiar with
coding in C, Java, or Python will experience a very natural transition to writing
programs in C-Flat.

1.1.3. Music To Your Ears

Upon compilation, a Cb program can generate a midi file. Midi files are the
technical, standard file format for any playable or editable musical ambitions. Midi
files are extremely versatile, and can be played using a DAW (Digital Audio
Workstation, e.g. Logic Pro) or a Midi sequencer.

2. Language Tutorial

2.1. Environment Setup

This language requires the following prerequisites:

Dependency Supported Version
Docker Engine 20.10.2
LLVM 10.0.0
OCaml 4120
GCC 9.3

Once all prerequisites have been fulfilled, download all code, including all the tests in the
/tests directory, from the repository on GitHub.

2.2. Compilation Guide

Enter the /CF1at directory to build the compiler. Invoke Docker using the following command:

docker run —--rm -it -V ‘pwd :/home/microc -w=/home/microc
columbiasedwards/plt

Once inside Docker, first run make clean to make sure all pre-generated files are removed.
Then run make, which will both build the compiler and run all tests. All tests should pass
(indicated by 0OK).

Once you have a file with the format . cf containing C b code, run this command:

./cflat.native <filename>.cf

2.3. Programming Tutorial

Here is a walkthrough to create your first C b program! First, create a file with the format . cf,
e.g. helloworld.cf. Copy the following code into it:

int main ()
{
note ny;
string file;
n= (/C-/ /4/ /s./);:

printn(n);

file = "output";
playnote(n, file);
return 0;

}

This program should print /c-/ /4/ /s./ tothe standard output, and also create a MIDI file
named output.mid in your current /CFlat directory. Try playing the generated MIDI: you
could use this online tool: https://onlinesequencer.net/. You should hear a 1/16 C-flat 4 note,
with the default tempo of 120 bpm!

3. Language Manual

3.1. Lexical Conventions

In the following sections, “regex” refers to a regular expression. Specifically, that which was
used to tokenize certain lexemes in the scanner (Ocamllex) of the C b compiler. (Note that in
Ocamllex, if there exists more than one regex that matches the prefix of an input, the longest
match takes precedence. Moreover, “-” between two single characters represent a range of
characters. “~" indicates concatenation.)

3.1.1. Comments

Any sequence of characters that begin with the characters “(:” and end with the characters “:)”
is considered a comment. Comments may extend over any number of lines in the code.

3.1.2. Identifiers

Identifiers are simply sequences of characters. As a rule, the first character of an identifier must
be alphabetic or the “ ” character in order to be a valid identifier. Identifiers are also

case-sensitive. The purpose of an identifier ina Cb program is to identify a function or some
constant.

The following regex regulates identifiers: [ra'-'z' 'a'-'z']['a'~'z' 'a'='z' '0'='9" ' ']*,

3.1.3. Keywords

All sequences of characters that are shown below are reserved with a specified significance in
the C b language, and may never be used as identifiers.

if for bool else note make false float rhythm

int def true tone true void while string octave

https://onlinesequencer.net/

.tone

.tone ()

3.1.4.

.octave .rhythm .raiseOctave ()

.octave () .rhythm() .lowerOctave ()
Literals
3.1.4.1. Integer Literals

Integer literals are sequences of numeric symbols treated as decimal digits.
Integers in C b are 2 bytes. Both positive and negative integers are allowed from
-32,768 to 32,767. Integer literals are defined by this regex: ('0' - '9'7+.

3.1.4.2. Floating Point Literals

Floating point literals consist of an integer part, a decimal character, and a
fractional part. The integer part and fractional parts are observed as sequences
of numeric symbols, like integers. No part of the floating point literal may be
exempt from declaration. Floating point literals are always computed
single-precision, meaning 4 bytes are used, and are defined by the following
regular expression: digits '.' digit* (['e' 'E'] ['+' '-']? digits)?
where digit = ['0' - '9'] and digits = digit+.

3.1.4.3. Strings Literals

String literals are recognized in the C b language, enclosed in double quotation

marks “"". String literals may be of any length. In the scanner, they are
determined as so: '"' ((ascii | esc)* as s) '"'.

In the aforementioned regex, esc = '\\' ['\\' "' rmv rpr e ey oand
similarly, ascii = ([' "='1v vgrorpr oryrorary),

3.1.4.4. Boolean Literals

The two boolean literal constants as supported and represented in Cb are
“false” and “true” — and nothing else.

3.1.4.5. Tone Literals

The tone literals are unique to C b . They are observed by the following regex: ' /'
((['a'='Gg'10'+''=""."12) | 'r") '/'. In the following sections, the significance
of a tone literal, and its uses, as well as what the tone type means, specifically in
relation to the note type, will be discussed. For now, it is critical that one recalls

3.2.

that tone literals must start and end with a '/' character to distinguish them
from other literals.

3.1.4.6. Octave Literals

Octave literals are regulated as such: '/* ('0' - '9'] '/'. Once again, this
literal is significant in the context of the note type and the note type's
assignment. For now, it is critical that one recalls that octave literals must start
and end with a ' /' character to distinguish them from other literals.

3.1.4.7. Rhythm Literals

Rhythm literals require the following regex: '/' (('s''e"'"g"'n"'w']["."]2) '/".
Once again, this literal is significant in the context of the note type and the note
type's assignment. For now, it is critical that one recalls that rhythm literals must
start and end with a ' /' character to distinguish them from other literals.

3.1.4.8. Note Literals

Note literals, this, meaning the literal that can be assigned / is of type note, exist
in the Cb . In general, note literals look like the following: (/c-/ /4/ /n/).
Observe that this looks like a tone literal, octave literal, and rhythm literal
surrounded by parenthesis; this is not a coincidence. More on this in the
following sections.

Manual Notation

The current section describes fonts and notation used in this manual. In this manual, sections
are named in bold and numbered in dotted-decimal format for convenient referencing.
Furthermore, nested sections generally refer to corresponding belonging and topical relevance.
Throughout the manual, the courier New font is used to refer to specific / explicit sequences of
characters that will be used in the Cb language, in respective scenarios. Double or single
quotation marks around the courier new text simply gives added emphasis on the actual
spelling-out of each character itself.

The italics font is used to describe more generic syntactic categories. This is especially relevant
when explanations benefit from more general references to concepts, and not explicitly the
exact term used to describe a specific concept in Ocamllex.

3.3.

Types

In the C b language, two main characteristics of any identifier are to be understood at all times
— that is, the scope of the identifier and the type of the identifier. Type must be stated explicitly
by the user upon declaration. (Although this will be elaborated upon in latter sections, it may be
useful to learn that all variables used in a Cb program must be declared in somewhat of a
“declaration chunk” in the beginning of the program.) As a rule, identifiers must be declared
exactly once before assignment or any other use, before any other non-declaration statements
are made.

There are nine types supported by C b are as follows: void, integer, float, string, boolean, note,
tone, octave, rhythm, and array. Note, tone, octave, and rhythm are novel data types in C b . They
are explained at great lengths in this section, along with array, which are a composite data type.

3.3.1. Primitive Types

Out of the nine types, eight — void, integer, float, string, boolean, note, tone,
octave, and rhythm — are known as primitive types. Essentially, this is anything
but arrays.

3.3.2. Note

In the C b language, every note is defined by its three attributes — tone, octave,
and rhythm (the duration of the pitch). After declaration, during assignment, the
value of each note’s tone, octave, and rhythm can be explicitly stated together in /
as the note literal. Upon declaration (see note x; below), the note takes on
default values for tone, octave, and rhythm. Notes are a composite data type, in
that they can hold more than one value — in this case, of different types. The
following lines show examples of how notes are declared and assigned with a
note literal in C b :

note n; (: Declaring note n :)
n = (/C-/ /4/ /h/); (: Assigning note n with note literal :)
3.3.2.1. Tone

There are 12 tones in a single Western musical octave, represented by a letter (C,
D, E, F, G, A, B) and an accidental (5 b #). The 12 tones evenly divide an octave
and are each separated by a half-step. The C b language obeys this convention.
To represent a tone, letter names are modified by an accidental. The & (natural
symbol) indicates the natural pitch of the letter. The # (sharp symbol) raises the
natural letter pitch by a half-step, and the b (flat symbol) lowers the natural letter
pitch by a half-step.

The Cb language utilizes capital letters A through G to represent tones, and “+”
to represent a sharp, “-" to represent a flat. The absence of any accidental
assumes a natural. A note is like a specific built-in C b struct data type. The tone

of a note is a specific attribute of the note data type.

tone t; (: Declaring tone t :)
t = /C-/; (: Assigning tone t with tone literal :)

3.3.2.2. Octave

The octave value acknowledges which octave a tone belongs to, which is
important because there are theoretically infinitely many notes for each of the 12
tones. The C b language defines the octave value of middle C as 4. The octave of
a note is a specific attribute of the note data type.

octave o; (: Declaring octave o :)
o= /4/; (: Assigning octave o with octave literal :)

3.3.2.3. Rhythm

The rhythm of a note is a specific attribute of the note data type. A note requires
a rhythm value to indicate the amount of time a note is held. The C b language
strays from conventional music theory in that it does not regard traditional time
signatures in the same way. (Instead, the programmer may be liberal with the
tempo. See sections describing the bplay function.) In Cb, users are able to
assign the rhythm of a note from a finite set of possible rhythms.

Ry | NS N J e

Number of Beats | 0.25 0.5 0.75 1.0 1.5 2.0 3.0 4.0
Letter Syntax s e e. a q. h h. w
3.3.2.4. Rest

Rests are special notes whose rhythm attribute is specified in the same way as
any note. The rest tone is represented as /R/. Moreover, the octave of arestis 0
by convention, but this also does not affect the rest. A rest is simply the absence
of a played tone for some beats, determined by the rhythm value. Rests mean
silence.

3.3.2.5. Methods for Notes

Additionally, the note data-type in the C b language possesses built-in methods

3.4.

which are shown below. These methods may be used to access or reassign
attributes of a note. Let n be the default note — note n = (/c-/ 74/ /n/); —for
which the following methods are executed to obtain the following return values:

Get Methods (accesses and returns)

Method | Return Value Return Type
n.tone() | C- tone
n.octave () | 4 octave
n.rhythm() | h rhythm

Set Methods (sets and returns set value)

Method | Return Value Return Type
n.tone (/B-/) | B- tone
n.octave (/2/) | 2 octave
n.rhythm(/q./) | g. rhythm

3.3.3. Array

The array data type is another composite/compound data type. It stores an
ordered and indexed sequence of any number of objects, as long as all the
objects are all of the same type. Depending on the type of the objects inside the
array, the declaration of an array is different. For example, using an arbitrary
literal 2, the following are the only valid array declarationsinCb —“int[] A;”
“bool[] A;" “float[] A;" “char[] A;
Note that C b only supports one-dimensional arrays.

The size of the array, i.e. how many objects it can store, must be declared with
make (A, size), where A is the name of the array, and size is an int
that represents the number of elements in the array.

Each array element can be accessed such as A[index],where A isthe name
of the array, and index is an int that represents the index number of the

element to be accessed. Arrays in C b are zero-based.

n o« n oo

stringl[] A;’,

”

notel[] A; .

note n = (/C-/ /4/ /h/);

note[] arr; (: Declaring tone arr :)
arr = make (note, 10); (: Allocating memory; arr hold 10 notes :)
arr[0] = n; (: Assigning note n to the first element of arr :)

Expressions

3.4.1. Primary Expressions

Primary expressions consist of identifiers, constants, note expressions,
parenthesized expressions, and function expressions.

3.4.1.1. Identifiers

An identifier (of the token ID) is a primary expression, and its type is specified by its
declaration.

3.4.1.2. Constants

The literals mentioned in section 3.1.4 are primary expressions, which the grammar
calls LITERAL, FLIT, STRLIT, tlit, olit, rlit and notelit.

3.4.1.2.1. Notes

A note literal is a primary expression that the grammar calls notelit and is
of the form (tlit olit rlit).

3.4.1.3. (expression)

A function expression is a primary expression that the grammar calls func_expr
and is of the form ID(args_opt).

3.4.1.4. Functions

A function expression is a primary expression that the grammar calls func_expr
and is of the form ID(args_opt)

3.4.2. Unary Operators
C b has the following unary operators: - and !. The negation operator - will
negate the int or float that comes after it. The NOT operator ! negates the
boolean that comes after it.

3.4.3. Binary Operators

C b has the following binary operators: +, -, *, /, ==, ! =, <, <=,>,>=, s&,and | |.
The two operands of a binary operation must have the same type. Expressions

with binary operators have the form expression binop expression.

3.4.3.1. Arithmetic Operators

The multiplication operator * and the division operator have the same precedence
and are all of higher precedence than the addition operator + and subtraction
operator -. Arithmetic operators have higher precedence than relational operators
and are left-associative.

3.4.3.2. Relational Operators

The relational operators <, >, <=, and >= return either true or false. Relational
operators have higher precedence than equality operators and are
left-associative.

3.4.3.3. Equality Operators

The equality operators == and ! = are analogous to the relational operators and
return either true or false. Equality operators have higher precedence than
boolean operators and are left-associative.

3.4.3.4. Boolean Operators

The && operator returns true if both its operands are true, and false
otherwise. The | | operator returns true if one of its operands are true, and
false otherwise. The s & operator has higher precedence than the | | operator,
which has higher precedence than the assignment operator.

3.4.4. Assignment Expressions

The assignment operator = groups right-to-left and requires an Ivalue as its left
operand. The value of an assignment expression is the value stored in the left
operand after the assignment.

3.5. Program Structure

A Cb programs essentially consists of a list of declarations, among which there must be a
function declaration that declares a function named main, and main must return either an int
or void. Any variable declared inside functions belong to the scope of that function, while

variables declared outside functions are treated as global variables. Rules regarding scopes are
further discussed in section 9.

The syntax for both variable and function declarations are elaborated in the following section.
3.6. Declarations

3.6.1. Variable Declarations

Variable declarations are used to specify the interpretation given to each variable
identifier. Variable declarations have the form
type_specifier declarator ;

We will discuss both of these components in the following subsections.

3.6.1.1. Type Specifiers

The type specifiers include

int

float

bool

string

note

All of their corresponding types are discussed in detail in section 4.

In addition, to declare an array variable, the type specifier would have the form
element_typ []

where element_typ is the data type of elements contained in the array.

3.6.1.2. Variable Declarator

The variable declarator has the form
identifier
where identifier is the programmer-defined name of the variable being declared.

Identifiers must belong to the regular set that belongs to the regular expression
[lal_lzl lAl_lZl][la|_|Zl lA!_lZl lO|_|91 l_l]*

3.6.2. Function Declarations

Function declarations in C b follow the form
def return_type identifier (formals,,) { body_list }

3.7.

where return_type specified the type of the function’s return value (types that can
be a return_type are listed in section 4.7); identifier is the programmer-defined
name of the function; formals is the optional list of parameters passed into the
function; body_list is a list of statements to be executed in the scope of this
function.

Statements
3.7.1. Expression Statements

Most statements are expression statements, which have the form
expression ;

Usually expression statements are assignments or function calls.

3.7.2. Conditional Statements

The two forms of the conditional statement are
if (expression) statement
if (expression) statement else statement

In both cases the expression is evaluated and if it is true, the first substatement
is executed. In the second case, the second substatement is executed if the
expression is false.

3.7.3. While Statements

The while statement has the form
while (expression) statement

The substatement is executed repeatedly as long as the value of the expression
remains true. The test takes place before each execution of the statement.

3.7.4. For Statements

The for statement has the form
for (expression-1,,; expression-2,y; expression-3,,) statement

The first expression specifies initialization for the loop; the second specifies a
test, made before each iteration such that the loop is exited when the expression
becomes false; the third expression typically specifies an incrementation which is
performed after each iteration.

3.7.5. Return Statements

A function returns to its caller by means of the return statement, which has one
of the forms

return ;
return expression ;

In the first case, no value is returned. In the second case, the value of the
expression is returned to the caller of the function.

3.8. Scope Rules

Variables declared in a function are visible within that function. Variables can also be declared in
conditional statements and have scope within that statement. Moreover, a variable overrides
another variable with the same identifier if it has a smaller scope. A variable with wider scope
can be accessed from a block with a lower scope level, given that its identifier is unique to that
level.

The storage class is never explicitly state by the user; no keywords in the C b language pertain
to storage class or scope of an identifier.

Elaborating first on storage classes, the break-down of storage classes and variable lifetimes in
Cb is extremely simple. A variable is either global to the entire program, or local to only the
function in which it is declared, after its declaration. The location in the program of such a
declaration immediately assumes this natural differentiation of scope, and storage classes are
determined naturally to the identifier’s initialization.

3.9. Built-in Functions

3.9.1. Print Functions

In addition to the standard print functions provided by microC (printf, printbig, etc.),Cb
also supports the printing of its special types, i.e. note, tone, octave and rhythm, through their
respective print functions: printn (note n), print(tone t), printo (octave o)and
printr (rhythm r). Each of those functions will print the content of its parameter to
standard output in the form of a string.

3.9.2. playnote

C b allows users to generate a playable MIDI file for a single note using playnote (note n).
The default tempo for playnote is 120 bpm.

3.9.3. bplaynote

In additionto playnote, Cb also allows users to generate a MIDI file for a note with custom
tempo such as bplaynote (note n, int bpm), where bpm is the number of beats per
minute specified by the user.

3.9.4. playtrack

Rather than a single note, playtrack(note[] arr) takes an array of notes as its
parameter, and generates a MIDI file for the entire array. The default tempo for playtrack is
also 120 bpm.

As of the writing of this documentation, there is a known bug with this function: for unknown
reasons, playtrack can only generate MIDI files for note arrays with a hard-coded size of 23.
We intend to fix this bug in the future.

3.9.5. tone, octave and rhythm

C b takes an OOP-like approach to manipulate the note type as well as its attributes.

Suppose variable n is of type note: the user can then access attributes of n using
n.tone () (which returns a tone object), n.octave() (returns an octave object) and
n.rhythm() (returns arhythm object).

The user can also modify attributes of n using n.tone (tone t),n.octave (octave o)
andn.rhythm(rhythm r).Inthis case, tone, octave and rhythm return nothing.

4. ProjectPlan

4.1. Planning, Specification, Development, and Testing

Our team met 2 times a week on average to check in with each other on project progress
and to determine next steps. During our team meetings, we often worked together to
solve any issues a team member might have had and also determined next steps in the
project and split up tasks. We also met weekly with our TA Harry Choi to ask any
questions we had at that point. Throughout the week, we messaged each other regarding
any concerns that may have come up or to schedule one-off meetings with each other.
For development, we often paired up to gain an understanding of how to accomplish each
task. Tests were primarily written prior to developing the corresponding features.

4.2. Style Guide

Our team aimed to write clean, organized Ocaml and C code. We generally used the
following guidelines while writing our compiler:

1. Frequently commit.

2. Clearly indent.

w

Use descriptive variable/function names.

Keep lines under 100 characters.

5. All SAST types are named as the corresponding AST type with the addition of a
capital ‘'S’ at the beginning.

6. Simplify programs if possible.

7. Keep code modular and reusable.

>

4.3. Project Timeline

Date Tasks

1/24/21 | decide on type of language

1/30/21 | finalize syntax

2/3/21 submit project proposal

2/24/21 | complete LRM, parser

3/24/21 | compile “Hello World”

3/31/21 | begin integrating midi C-library to compiler

4/4/21 add C-like features to compiler

4/15/21 | complete CFlatAPI

4/23/21 | final project report, final project presentation, compiler for
the language

4.4. Team Roles and Responsibilities

4.4.1. Team Roles

Team Member Role

Jasmine Valera Project Manager

Isabella Cho Systems Architect

Katie Kim Language Guru

Yvonne Chen Tester

4.4.2. Responsibilities

Responsibilities were often split amongst more than one person, and we often used pair
programming while developing our compiler. Below shows a breakdown of who is mainly
responsible for each task, although everyone partook at least somewhat for most of the
tasks.

Initial scanner, parser, LRM Katie, Yvonne, Isabella, Jasmine
C-features Isabella, Jasmine

Note type Isabella, Jasmine

Note attributes and operators Isabella

Arrays Yvonne, Jasmine

Built-in function Integration Jasmine

Testing/Demo Katie

CFlatAPI Katie

Final Presentation Katie, Yvonne, Isabella

Final Report Katie, Isabella, Yvonne, Jasmine

Software Development Environment

Libraries and Languages: OCaml version 4.05.0
OCaml LLVM version 10.0.0
OCamlyacc version 4.05.0
Ocamllex version 4.05.0
C & C libraries: stdio.h,
stdlib.h,
string.h,
MIDI Library (https://github.com/MarquisdeGeek/midilib)

Project Log

See Appendix 8.1 Project Log for all our GitHub commit messages that show the course
of the project development.

5. Architectural Design

The CFlat compiler consists of 7 modules that work together to transform CFlat code into a binary file
which, when run, can produce a MIDI file as needed. This flow is shown in the diagram below.

g - $ o
e @ o = _
=5 (7] 7] wn QO
R S g s B
5 3 = 2 3 3
CFlat code e - = MIDI file
.cf .mid
C code midilib
cflatapi.c library

5.1. Scanner

The scanner takes in a Cb program (which is essentially a series of ASCII characters) and
translate them into tokens; those tokens will be used to identify keywords, operators, and a
variety of other programming language components. If any characters in the code are detected
to be illegal, lexing errors will be thrown. Spaces, newlines, and well as characters inside the
commented blocks will be ignored.

5.2. Parser

The parser evaluates the tokens generated by the parser and, according to the Cb grammar
specified in our Language Reference Manual, converts them to an abstract syntax tree (AST) by
matching tokens with AST nodes. If any mismatching (i.e. syntax error) is detected, a parser
error will be thrown.

5.3. Semantics
The semantic checker (semant.ml) runs through the AST (as specified in ast.ml), checks for

typing, and converts it to a semantically checked abstract syntax tree consisting of properly
typed objects (as specified in sast.ml). This process is especially important for our note type

(which holds three attributes, each with a specified type), as well as the array (which can only
hold elements of the same type). If a type error occurs, sement.ml will output an error message.

5.4. Code Generation

The code generator (codegen.ml) traverses the SAST, and generates the appropriate LLVM call
for each SAST node to build the LLVM equivalent for C b .

In addition to the standard functions of microC, our codegen.ml generates a series of standard
Cb functions; all of these functions are discussed in the Built-in Functions section of our
Language Reference Manual. For some of these functions (namely playnote, bplaynote and
playtrack), their implementation utilized a custom interface between LLVM and a third-party
library, which will be described in more detail in the next section.

5.5. Linking, APl and C Library

For our built-in functions that require the creation of MIDI files (namely playnote, bplaynote and
playtrack), we implemented an API (named cflatapi.c) that were linked into codegen.ml
through L.declare function. This APl imports a third-party C library named midilib
(https://github.com/MarguisdeGeek/midilib), and utilizes many of its functions and structs for
MIDI file manipulation.

All four team members work on the scanner, the parser, and the code generation. The AST and
SAST were mostly implemented by Isabella and Jasmine, with the array components
implemented by Yvonne. The MIDI library interface was mostly implemented by Katie.

6. TestPlan

6.1. Integration Tests

Our end-to-end integration tests can be found in the test/ directory. We each implemented modular
tests to rigorously test the functionality of our language as we implemented it. Because we ran all of
the previous tests each time we tested a new test, we ensured that none of the previously working
features broke when we added new ones.

We have three different types of tests in our test suite. All of the tests that successfully produce
output to standard output (mainly tests that call print, printb, printf, prints, printn) follow the naming
pattern of using test-*.cf for the test program and then using the same name but different file
extension of the form test-*.out for the expected output of the program. All of the tests that
successfully produce a midi file as the output (i.e. tests that call playnote, bplaynote) follow the
naming pattern of using midi-*.cf for the test program. The output should be a midi file with the
same name as the test midi-*.mid. This file should be created in the CFlat_ directory. We have a
matching midi-*.mid file with the same name as the test and the created midi file inside the tests/

https://github.com/MarquisdeGeek/midilib

directory that should match the output midi file that is generated by the midi test. All of the negative
tests similarly used fail-*.cf for the test program that should fail and used fail-*.err instead of .out for
the expected error message.

6.2. Testing Automation and Scripts

To run all of our tests, we modified the Makefile and the testall.sh script provided by Professor
Edwards for the MicroC compiler. The script runs all of the midi-*cf, test-*.cf, and fail-*.cf programs
sequentially, and compares it to the .mid, .out, .exe output files respectively. If the output of the
program matches it's expected output file (whether that be a .mid, .out, or .exe file), it will print an OK
after the test. If the output file doesn't match the expected output, it will print FAILED next to the test.
The testall.log file in the CFlat_ directory contains a more detailed error message that can be used to
debug. For the test-*.cf and fail-*.cf test programs that fail, a .diff file will be generated that will show
the difference between the expected and the actual output of the program. For midi-*.cf test
programs, the .diff file usually just states that they are different, which isn't very helpful. We have
found it helpful to use LogicPro to listen for the difference. Any other Digital Audio Workstation (DAW)
or midi sequencer can also be used to do this.

6.3. Sample Test Programs
6.3.1. Demo 1: letsdoit

This program creates the intro to the song “Let’s Do It,” by creating the notes necessary and creating
an array of notes that will be passed into the built in function playtrack() to generate a midi file based
on those notes. This program demonstrates declaring notes and an array of notes using our make
function to allocate space for our not array. Then, it demonstrates a variety of tones, octave, and
rhythm, that we can populate the attributes of our note with. This also demonstrates the use of built
in functions for notes such as .raiseOctave() in order to increase the octave of a note in place, without
having to create a whole new note. Then, the built in function playtrack() is called, which uses our
cflatapi library to generate a Midi file that the programmer is then able to play. We made this test
because it highlights both the declaration and assignment of our note and array and shows our play
method functions.

int main ()
{
note[] letsdoit;
note a f; note b f; note c¢; note d f; note e f; note e flat;

note f; note g; note c up; note f eighth; note e eighth;

note a eighth; note b eighth; note d eighth; note c eighth;

note r;

octave o;

int 1i;
note forNote;

string file;

file = "LetsDoIt";
letsdoit = make (note, 25);
o /4/;

(/A=/ /4/ /q/); a_eighth (/A=/ /4/ /el);
(/B-/ /4/ /q/); b_eighth (/B=/ /4/ /e/);
(/c/ /4/ /q/); c_eighth (/C/ 74/ /e/);
= (/C/ /5/ /a/);:
(/D-/ /4/ /a/); d_eighth (/D=/ /4/ /e/);
(/E=/ /4/ /a/):; e eighth (/E=/ /4/ /Je/);
(/¥/ /4/ /a/)i f_eighth = (/F/ /4/ /e/);
(/G/ /4/ /al);
(/R/ 74/ /a/);
letsdoit[0] = £ eighth;
letsdoit[1] = e eighth;
letsdoit[2] = £ eighth;
letsdoit[3] = a eighth;
letsdoit[4] = £f;
letsdoit[5] = e £f;

letsdoit[6] = c eighth;

b _eighth.octave (/3/);

letsdoit[7] = b eighth;
a eighth.octave (/3/);
letsdoit[8] = a eighth;
letsdoit[9] = b eighth;
letsdoit[10] c _eighth;
letsdoit[11] d eighth;
letsdoit[12] @ itf
letsdoit[13] f eighth;
letsdoit[14] e eighth;
letsdoit[15] i

letsdoit[16]
letsdoit[17]
letsdoit[18]
letsdoit[19]
f.octave (/5/) ;
letsdoit[20]
letsdoit[21]
letsdoit[22]

playtrack (letsdoit, "Letsdoit");

return H

6.3.2. Demo 2: letsdoit_modify

This function is source code 1 along with a control for loop added to it which will loop through
our created array of notes and increment the octave of each note by two. This will generate a
midi file called midi-demo2.mid which plays the melody from source code 1 two octaves higher.

In this way, Programmers can use our control loops to more powerfully act upon our note arrays.

int main ()

{

note[] letsdoit;

note a f; note b f; note c; note d f; note e f; note e flat;
note f; note g; note c up; note f eighth; note e eighth;
note a eighth; note b eighth; note d eighth; note c eighth;
note r;

octave o;

int 1i;

note forNote;

string file;

file = "LetsDoItOctave";
letsdoit = make (note, 25);
/4/;

(/p-/ /4/ /a/); a_eighth (/A=/ /4/ /el);
(/B=/ /4/ /q/); b_eighth (/B=/ /4/ /el/);
(/c/ /4/ /a/); c_eighth = (/C/ /4/ /e/);
= (/C/ /5/ /a/);:
(/D-/ /4/ /aq/):; d eighth (/D=/ /4/ Je/);
(/E-/ /4/ /a/); e_eighth (/E=/ /4/ /e/);
(/¥/ /4/ /a/)i f_eighth = (/F/ /4/ /e/);
(/G/ /4/ /al);:
(/R/ 74/ /a/);
letsdoit[0] = £ eighth;
letsdoit[1] = e eighth;
letsdoit[2] f eighth;
letsdoit[3] a eighth;
letsdoit[4] it g
letsdoit[5] @ g
letsdolit [6] c_eighth;
b eighth.octave (/3/);
letsdoit[7] = b eighth;

a eighth.octave (/3/);

letsdoit[8] = a eighth;
letsdoit[9] = b eighth;
letsdoit[10] c _eighth;
letsdoit[11] d eighth;
letsdoit[12] @ if
letsdoit[13] f eighth;
letsdoit[14] e eighth;
letsdoit[15] i
letsdoit[16] c up;
letsdoit[17]
letsdoit[18]
letsdoit[19]

f.octave (/5/);
letsdoit[20]
letsdoit[21]
letsdoit[22]

e 1 € 23 ¢
forNote = letsdoit[i];
forNote = forNote.raiseOctave (2) ;

letsdoit[1] = forNote;

}

playtrack (letsdoit, file);

return -

6.4. Testing: Division of Labor

The source was written by Katie. However, the end to end integration tests described in 6.1 were
written by everyone in the team as they implemented the functions they were testing. As the
members of the team developed each feature, tests were written and distributed.

7. Lessons Learned

Yvonne Chen:

1. Functional programming is really cool. As particular as it is, | feel like by suffering
through OCaml | learned a lot about programming in general.

2. | (re)learned the importance of time management. In this project, we encountered lots of
expected and unexpected roadblocks: some of them forced us to take a completely new
approach, some of them left us no choice but to wipe the slate clean and start over, and
some of them just took way longer than we ever anticipated to resolve. Basically, when
you have no idea how to solve a problem, you should just leave as much time for trial
and error as possible.

3. Sometimes you need to understand the end product and work backwards. Rather than
spending way too much time going back and forth on syntax and features, the VERY first
thing we should have done was to thoroughly learn what a MIDI is. This mistake led us to
make some very significant feature changes about 1.5 weeks from the due date.

4. TA Harry is a gem, and sometimes (oftentimes) getting help is the most productive
option, even when you feel like you're too scared about not knowing how things work.

Isabella Cho:

Before this project, | thought | knew a thing or two about working with other people on a group
project. Everything | thought | knew was debunked, and relearned this semester. | thought | was
a patient person. To this, well, | suppose | had never written a whole compiler from beginning to
end with three other independently minded individuals before. In addition to all the technical

skills | gained from this project, | gained so much more from the experience of having to make
compromises when opinions arise, communicate clearly so as to avoid future confusions,
maintain constant communication, realize and recognize my own behavior and tendencies when
working and making mistakes and fixing mistakes under high stress. | certainly feel more
prepared to know how, even the best of teams, which | do believe our team was regarding our
variety of skills and strengths, good-intentions, and hard-working / curious / thorough attitudes.
However, this is not to overshadow the fact that | gained more in technical skill than | could have
imagined. This was not a project one could simply... “fake it ‘til you make it"—to completion.
Also, the attention to detail and consistent billion part understanding and thinking required to
implement a program from scanner to codegen, then write tests for, then fix, then communicate
with team members about branches and merge conflicts with, was the most laborious, but also
rewarding experience ever. | am satisfied with how far | have come, given that codegen and lots
of OCaml used to scare me. | now feel like an LLVM.moe master. | feel comfortable taking risks
while coding in OCaml now, and then getting taught another lesson about being careful and
intentional to every detail of every value / type and function. At the end of the day, however, the
most important things | have learned from this project are: 1) When your teammates lose
momentum on the project timeline, it is not time to take a breather, rather, you must pull double
the weight. 2) | should reach out to TAs and the professor for help much earlier than | typically
have gotten into the habit of doing. 3) Trust the advice that is given to you, and look for
correctness in the details. This is also the advice | would like to give to figure teams. Don’t not
go to the TA because you don't know what is going on / what to do / how to start; rather, go to
the TA because you don’t know. Don't let yourself take breaks from working PLT throughout the
semester. Never stop. PLT is life. You signed up for this, so just enjoy it and grow to love the
.moe. Also, TA Harry is the best human ever, and Professor Edwards is not only a brilliant
human, but actually won't bite your head off during 1:1's during office hours, and is ACTUALLY
HILARIOUS. Finally, when the professor says to do something more than twice, definitely,
definitely, definitely do it. Don't be stubborn like me.

Katherine Kim:

Sometimes you spend a lot of time writing up C functions that would make Prof Jae cry tears of
joy, and they don't get used. And that'’s just life.

In all seriousness, this project really challenged my communication and management skills. |
learned that | get the most frustrated with others when working on a team when | myself don't
have it all together or know what I'm doing. And when | spent nearly 2 whole days banging my
head on arrays, all | could hear was Professor Edwards respond in a piazza post “Any idiot can
spend a bunch of time putting in effort, but we're looking for mastery of the subject.” (Source -
paraphrased from some random piazza post). Some harsh truth that really simmered in my
head as we got closer to the deadline.

I think our group did a decent job of not sticking to our assigned job label and just filling in the
role/task that was needed. While | was the “language guru”, | definitely got a taste of what being
the manager was at times and it was difficult trying to delegate tasks when | wasn’t sure what
exactly needed to get done.

I'm really glad | got to take this class at this moment in my school/work career. Our group
worked decently well but | can definitely see myself encountering many of the issues our team
did like miscommunication, lack of communication, not knowing the next steps, not knowing
who/how to ask for help etc. and | feel better equipped to deal with these issues the next time |
work on a major group project - which could very well be in a weeks.

My advice to future groups is to spend less time talking and planning your language and dive
more into the programming ASAP. We spent a lot of time getting into the logistics of our vision
for our language and in the end got around to only implementing maybe 1/3 of it.

Jasmine Valera:

Through this project, | got to learn about functional programming and came to appreciate how
useful itis. | also thought it was really eye-opening to see the inner-workings of a compiler,
which was entirely a blackbox to me prior to this project. | learned a lot about the importance of
dividing up tasks into smaller, more manageable tasks. My best advice is to dive into coding as
soon as possible to get a feel for OCaml and generating LLVM. Don't let the complexity of this
project intimidate you and keep you from moving forward!

8. Appendix

8.1. Project log

commit 67735eeab6293a084645a263938¢2101d1fc5b56
Author: Katie Kim <katherine . kim@columbia.edu>
Date: Tue Apr 27 04:49:18 2021 -0400

Katies latest changes
with demo as midi-demo and midi-demo2

commit fc547b94e90c4587¢c8899d48f0a872527d88c669
Merge: 47¢c26¢2 d3ad87d

Author: Katie Kim <katherine . kim@columbia.edu>

Date: Tue Apr 27 02:46:42 2021 -0400

Committed izzi's changes
commit 47c26¢c226e8a3df33718aaf36e5371d00c3e5a82

Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Mon Apr 26 21:04:44 2021 -0400

play arraygit add semant.ml playarr.mid codegen.ml cflatapi.h cflatapi.c
tests/midi-play_arr.cf tests/test-arr_make_note.cf

commit 069d49fb32de870d9a66ae016a420e25154fab63c
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Mon Apr 26 20:57:18 2021 -0400

test midi play arr file

commit d3ad87d59db072f36a7dc584c32e3d5252247130
Author: isabellacho <isc2120@columbia.edu>
Date: Mon Apr 26 20:33:04 2021 -0400

nothing new. just trying new things for doing raiseTone() based on what edwards said on
piazza :(sad

commit 20d38e8ed65f8ea2e8801ccc164e62704c0711c0
Author: isabellacho <isc2120@columbia.edu>
Date: Mon Apr 26 14:44:59 2021 -0400

IMPLEMENTED RAISE AND LOWER OCTAVE

commit 360e48c2a7d9057549300e4d5f9628ddf7b2a5ab
Merge: 52706f1 a09cd6éb

Author: jvalera174 <jasmine.valera620@gmail.com>

Date: Mon Apr 26 12:57:19 2021 -0400

Merge branch 'fudgedRaise’ of https://github.com/katieskim/CFlat into playNote

commit 52706f135ce33ae88ae3817b80128b857a6144f3
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Mon Apr 26 12:57:05 2021 -0400

generate code for int arrays working
commit a09cd6b1de4d0f90b10c31a14ba1013f7d91b99f
Merge: a2fda98 6ba258e
Author: isabellacho <isc2120@columbia.edu>

Date: Mon Apr 26 12:44:20 2021 -0400

resolved merge conflicts between playNote and izzibranch

commit a2fda98a7ee7770e360a4cd542e3212aff650388
Author: isabellacho <isc2120@columbia.edu>
Date: Mon Apr 26 12:12:23 2021 -0400

GREEN CHANGES IN OUR NOTES GOOGLE DOC HAVE BEEN IMPLEMENTED

commit 6ba258ed8613b0f7b1070f4011cd6fced5f0b2e9
Merge: fa668bf 3d7ff09

Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Mon Apr 26 10:58:48 2021 -0400

illegal assn semant error

commit fa668bffe73a6fc7e67f51143ef793b746d90384
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Mon Apr 26 10:45:56 2021 -0400

semant

commit 6¢362d6d96901966928f38d857d9ac0795f3b40a
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Mon Apr 26 10:44:22 2021 -0400

passing play tests except arr

commit 9f0b12d3d7575230afb1e2d64eb5c6fd60570386
Merge: b708cb8 24080a2

Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Mon Apr 26 10:39:52 2021 -0400

merge with katie

commit 24080a2f54fa718fc7456a5d3e5ae86c363cff81
Merge: 98610d0 cece230

Author: Katie Kim <katherine.kim@columbia.edu>

Date: Mon Apr 26 10:36:48 2021 -0400

fixed the tests
commit 3d7ff09d9f889b74a2a1386d81094f09e40a328e

Author: YvonneChenCS <jc5349@columbia.edu>
Date: Mon Apr 26 10:33:24 2021 -0400

Added array assign and access for everything except codegen

commit b708cb836e3782f2604b4500e2c0940b9f4e13b9
Merge: cece230 534840d

Author: jvalera174 <jasmine.valera620@gmail.com>

Date: Mon Apr 26 09:43:57 2021 -0400

merge midi file name changes

commit cece230568abc191dfdd435d0bf85e00d640f536
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Mon Apr 26 09:39:39 2021 -0400

makearray

commit 534840d5f1¢c9ccbd0d495fb79900d40f5715f4d0
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Mon Apr 26 08:48:01 2021 -0400

add to strlit

commit c8de91ed348c7c5¢c1841d2d9%e71ee5a4c0ala8ee
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Mon Apr 26 08:00:57 2021 -0400

add midi filenames to playnote and bplaynote

commit 9ae2499¢804231bd4d79f70fe6cd781b703d5763
Merge: c62aa19 98610d0

Author: jvalera174 <jasmine.valera620@gmail.com>

Date: Mon Apr 26 07:35:06 2021 -0400

Merge branch 'katiearr' of https://github.com/katieskim/CFlat into jvcflatapi
commit 967d5edfa53ebd741b9bc9cc2d17¢356calc43b6
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Mon Apr 26 07:25:59 2021 -0400

committing to branch

commit 2f273c34b24fd5f11be041ab363b22434408edfb

Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Mon Apr 26 07:23:35 2021 -0400

stack overflow error

commit 98610d072fcdf6df0ef029c74aff52d31344e152
Author: Katie Kim <katherine . kim@columbia.edu>
Date: Mon Apr 26 01:07:37 2021 -0400

Testing shell script now tests midifiles

commit 999868faeeec858b47c9eab1cb1355bb78d70aa9
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Sun Apr 25 21:58:46 2021 -0400

arr tests failing but running

commit 1b3d6eb9233a1c0be9397b0296e639b583ceafbd
Author: jvaleral74 <jasmine.valera620@gmail.com>
Date: Sun Apr 25 21:10:53 2021 -0400

clean .s, .ll, etc

commit 6b1eda30e52b588f3a730629a7058d3b6cbcal5b
Author: Katie Kim <katherine.kim@columbia.edu>
Date: Sun Apr 25 21:00:56 2021 -0400

Added functions to test is_tone_equal and is_note_equal

commit e01db91e5¢72a0063f87cb9ead54a0560947ddea
Author: Katie Kim <katherine.kim@columbia.edu>
Date: Sun Apr 25 19:40:10 2021 -0400

Raise/lower tone and octave cflatapi functions
commit c62aa191688b7845c24d5a8a8a49bcad6f0dfO1f
Merge: 09a533a a8a690d
Author: jvalera174 <46391086+jvaleral74@users.noreply.github.com>
Date: Sun Apr 25 19:31:09 2021 -0400

Merge pull request #12 from katieskim/playNote

Play note

commit a8a690d30003fe0aalad4db7a2fe93b49f351770
Merge: 4da8acb 09a533a

Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Sun Apr 25 15:56:48 2021 -0400

resolve merge conflicts with set/get attrs

commit 09a533a23d0da977e63b18557f0d047506136585
Merge: 6582834 7a39f41

Author: izzicho <isabella.cho@columbia.edu>

Date: Sun Apr 25 15:50:17 2021 -0400

Merge pull request #11 from katieskim/getandset0
ALL THE .GET AND .SET METHODS WORK PERFECTTTTTTTT see my new test cal...

commit 4da8achfe9a7e85df5235e2b5a4c6530ab6b3a85
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Sun Apr 25 15:49:23 2021 -0400

not passing array tests yet

commit 64f1bea782fb2b006d025d85cfa7548d38d1ea7e
Merge: 5574d69 944c9bd

Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Sun Apr 25 15:46:40 2021 -0400

merge arr tests and cflatapi changes

commit 5574d69e7f9121ec09d8516012a417838fcba890
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Sun Apr 25 15:43:08 2021 -0400

delete cflatapi files
commit 7a39f414957222d89e6813f9332030fb5763afb8

Author: isabellacho <isc2120@columbia.edu>
Date: Sun Apr 25 15:41:19 2021 -0400

ALL THE .GET AND .SET METHODS WORK PERFECTTTTTTTT see my new test called
test-noteatt3_getset.

commit 6e72a546ce81b2e019c1f8067b8803cd112e9ffc
Merge: 7¢c7dd66 6582834

Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Sun Apr 25 15:37:06 2021 -0400

Merge branch 'main’ of https://github.com/katieskim/CFlat into playNote

commit 944c9bdc3244fdbcfel1adc1f39108fd460b749d6
Author: Katie Kim <katherine.kim@columbia.edu>
Date: Sun Apr 25 15:31:55 2021 -0400

Reverted change to test-playnote

commit 4a1b881b6808bf89111d1dbfea890b5¢c10ce0dda
Merge: 106c4be 7¢7dd66

Author: Katie Kim <katherine . kim@columbia.edu>

Date: Sun Apr 25 15:30:07 2021 -0400

trying to merge

commit 106c4be640ab5467d19531¢c96fdc91e743ac8bf9
Author: Katie Kim <katherine.kim@columbia.edu>
Date: Sun Apr 25 15:27:30 2021 -0400

added filename

commit 7¢7dd66160520eb33a6af25e6605fe49a2caecdb
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Sun Apr 25 15:08:05 2021 -0400

fix primitive type bugs
commit de90f759ad33969cbd9e8d2c2b75bd82349¢cc80c
Merge: 9130e67 4faeeb
Author: Katie Kim <katherine . kim@columbia.edu>

Date: Sun Apr 25 14:05:28 2021 -0400

adding tests

commit 4faeeb1cda2051e3b4991a6533b8d005c90977e9
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Sun Apr 25 09:25:26 2021 -0400

add array type to codegen

commit 6b3a01743df613c274446fbe3f3446d06972e810
Merge: 99765b9 a3b2972

Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Sun Apr 25 07:44:10 2021 -0400

Merge branch 'yvarr' of https://github.com/katieskim/CFlat into playNote

commit a3b297294193a368a657e06f63600e0432182680
Author: YvonneChenCS <jc5349@columbia.edu>
Date: Sun Apr 25 02:01:06 2021 -0400

Modified scanner to ast for array

commit 99765b9d03a0cb6ade8d9829ee1ab093634e5dfe
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Sun Apr 25 01:33:58 2021 -0400

bplaynote passes

commit c71e27d0d38abf2cbaa1255dca3a1483404dfc5a
Author: jvaleral74 <jasmine.valera620@gmail.com>
Date: Sun Apr 25 00:58:21 2021 -0400

add bplaynote tests
commit 30f3f5bb9f80f8660498480a15e1fadd4b4476d3
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Sun Apr 25 00:57:39 2021 -0400

add comma to scanner
commit 9130e6754a3db2d9be001a3c14fb07b989e2c49f
Author: Katie Kim <katherine.kim@columbia.edu>

Date: Sun Apr 25 00:56:50 2021 -0400

Added array tests

commit 6582834f0dba6e884a16e36f9c467f392bbeef07

Merge: f8c5081 9aeb577

Author: jvalera174 <46391086+jvaleral74@users.noreply.github.com>
Date: Sun Apr 25 00:51:13 2021 -0400

Merge pull request #10 from katieskim/playNote
Play note

commit 9aeb57712bc4e3da4bd10a4ff72f390e54dedcaa
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Sat Apr 24 23:21:27 2021 -0400

fix endian bug

commit bad547df1391¢c841b9¢c67903¢23f4b195¢123¢91
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Sat Apr 24 23:10:59 2021 -0400

test midi

commit €902d60ef0bc688904bd971777bc64db00f536be
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Sat Apr 24 22:12:52 2021 -0400

swapped cflatapi for cflatfile

commit 4e1850faa37e9284da6a60065548173e45df059a
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Sat Apr 24 21:46:40 2021 -0400

test hellonote.mid
commit 5704b0a702727b18a03e231e27e5fcc1a75c9ba7
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Sat Apr 24 20:02:45 2021 -0400

generate midi file with test-playnote

commit 16d5d948a24139dcf515b4203548881d77379d59
Author: jvaleral74 <jasmine.valera620@gmail.com>

Date: Sat Apr 24 19:33:26 2021 -0400
note passed to playnote

commit 429fcb341b5474931d4de930be737e4605bbc8bf
Merge: f8f620b 21bc8f6

Author: jvalera174 <jasmine.valera620@gmail.com>

Date: Sat Apr 24 16:19:50 2021 -0400

merge cflatapi

commit 21bc8f658995ed50a6ba22154b3192c6e44b4df2
Author: Katie Kim <katherine.kim@columbia.edu>
Date: Fri Apr 23 23:21:20 2021 -0400

Github is making me commit again

commit f361ca10f667950e9a747a4b73a26e€62f2646e17
Author: Katie Kim <katherine . kim@columbia.edu>
Date: Fri Apr2323:20:33 2021 -0400

cflatapi test

commit 89d40354f6881633b4210089095563ce820dd1b6
Author: Katie Kim <katherine.kim@columbia.edu>
Date: Fri Apr 23 21:56:43 2021 -0400

Added instrument functionality, and created header file for cflatapi
commit 338bd0e013d50a744d8fdbd70c2afcfb8971751a
Author: Katie Kim <katherine.kim@columbia.edu>
Date: Fri Apr 23 20:03:45 2021 -0400
User can play multiple tracks at oncegit status
commit 1d2b0371ffdf6c249aefa16ef004f5e77b269d9b
Author: Katie Kim <katherine.kim@columbia.edu>
Date: Fri Apr 23 19:23:42 2021 -0400

Can play two tracks

commit f8c5081249de329ee43d54d538b4a42bbae50c46

Merge: 677cal1 9c0b338
Author: Katie Kim <47716319+katieskim@users.noreply.github.com>
Date: Fri Apr 23 16:22:52 2021 -0400

Merge pull request #9 from katieskim/cflatapi
play_note, bplay_note, play_arr, bplay_arr, add_note. Currently working on adding tracks.

commit f8f620b5152c49d783f8f8a109476342729547ea
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Fri Apr 23 16:13:29 2021 -0400

print note (actually)

commit 8ab9dcc938f7f1dca2781c3c552377afa41d2232
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Fri Apr2316:07:19 2021 -0400

printing tone of note

commit 78d27ebe577f15275819579¢c7760175e7ff70e5b
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Fri Apr23 15:28:38 2021 -0400

resolved merge conflicts

commit eaf5a0d121da5f81e4faf4517634901e958fbb44
Merge: f3116b9 c9312e1

Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Fri Apr23 15:16:31 2021 -0400

merged changes

commit f3116b9e014e8af8bf45af22b7cb57feal6166c2
Author: jvaleral174 <jasmine.valera620@gmail.com>
Date: Fri Apr 23 14:41:47 2021 -0400

linked midi files
commit 663ed869ba3645b6710f53b0db5406aa08ad6c81

Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Fri Apr 23 14:41:08 2021 -0400

linked midi files

commit 852bc0109ab8916f56a210a3558afd2df5¢193dd
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Fri Apr 23 14:37:40 2021 -0400

linked midi files

commit c9312e159e7b97e73e16b356702e0480397ccaa’
Author: isabellacho <isc2120@columbia.edu>
Date: Fri Apr 23 14:23:27 2021 -0400

i got rid of the warning and tried to make printn(n) work, but i get a segfault in the SCall
of printn :(-izzi<3

commit 9c0b338b94ac721074af7acbc2f1b9672b629106
Author: Katie Kim <katherine . kim@columbia.edu>
Date: Fri Apr 23 13:42:20 2021 -0400

Added bplaynote and bplayarr functionality

commit f62c896874bc37e5ee727ab32e18ef5a37a68363
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Thu Apr 22 20:32:33 2021 -0400

attr comments in semant

commit 6f4a79ac284656a89f8f5b269328b84ceb8f5172
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Tue Apr 20 00:25:46 2021 -0400

attempt note attributes
commit 843905e3c049ecb31e8e423dfce604a7822e0cf8
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Mon Apr 19 10:37:09 2021 -0400

remove build files

commit 6286fc62f35f26b732eb78e321af32a8022c0b6d
Merge: 3ec48c2 286b31c

Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Mon Apr 19 10:34:41 2021 -0400

remove .DS_Store

commit 3ec48c2358d5617ac2e0051a18b80f8013128626
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Tue Apr 13 16:39:33 2021 -0400

print tone of note

commit 286b31c7be3f4cba5f3f7864db4261519bfe37f6
Author: Katie Kim <katherine.kim@columbia.edu>
Date: Tue Apr 13 16:21:58 2021 -0400

HELLLO FIRIENND GLLLL

commit e3b1ddb25c8f31d0b1eb74716f000fe2892c005f
Author: jvaleral74 <jasmine.valera620@gmail.com>
Date: Tue Apr 13 16:13:47 2021 -0400

note struct allocated

commit 9c1db58f82ba185c644c58be87b60ad5b294e605
Author: Katie Kim <katherine.kim@columbia.edu>
Date: Mon Apr 12 18:41:45 2021 -0400

WHILE LOOP NOW WORKSSS AYOO0O00O0O and both rests and accidentals work
commit 08cfea800eea496b5f5bac3fb6ee99e31216c58f
Author: Katie Kim <katherine.kim@columbia.edu>
Date: Mon Apr 12 18:12:13 2021 -0400
Fixed the accidental issue
commit defb659dd6c2263f8d44df46cf7efebb6134ef2a7
Author: Katie Kim <katherine.kim@columbia.edu>

Date: Mon Apr 12 17:34:44 2021 -0400

Most recent push. Currently having error playing accidentals and need to fix forloop
condition

commit db98ae8a9chb3d7b806c151971b9f4de08334345¢
Author: isabellacho <isc2120@columbia.edu>
Date: Mon Apr 12 00:38:51 2021 -0400

AT LEAST WE GOT TONE AND OCTAVE AND RHYTHM! EVEN THO WE STILL
STRUGGING WITH STRUCT NAMED BLAH BLAH STUFF STILL

commit 815492b8bb6b817b9001d8de2b93f8b0a474f1fe
Author: isabellacho <isc2120@columbia.edu>
Date: Fri Apr9 22:02:54 2021 -0400

named struct for note

commit afdcd8e949d1ba27a2d311fcd2410c57e6f83fb5
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Fri Apr9 20:12:48 2021 -0400

add struct c files

commit 782faec14aae92326f721d50d93f1c4056ed1e67
Author: jvalera174 <jasmine.valera620@gmail.com>
Date: Fri Apr9 11:48:20 2021 -0400

attempt note struct
commit 5bc0d4e084db00ba7733076f75c806eb6aeb2eb64
Author: Katie Kim <katherine.kim@columbia.edu>
Date: Fri Apr9 02:52:51 2021 -0400

Added input/output info about each function in cflatfile.c
commit a5dfe3f02a376bfa2d3cdd0409fd41516c68b73c
Author: Katie Kim <katherine.kim@columbia.edu>
Date: Fri Apr9 02:02:48 2021 -0400

CAN PLAY AN ARRAY OF MUSIC NOW git add .git add .
commit b012c281cb9e386956c5a8966abaleac39d2ac79
Author: isabellacho <isc2120@columbia.edu>

Date: Thu Apr 8 16:58:19 2021 -0400

added note changes up to semant

commit 546be3d938807b83146221669c7bbc558459d94e
Author: Katie Kim <katherine . kim@columbia.edu>
Date: Wed Apr 7 22:22:41 2021 -0400

Pushing midifile stuff in katiefile

commit bd08c64e36ea57f25b513d80f42988d62ba86f7c
Author: Katie Kim <katherine.kim@columbia.edu>
Date: Wed Apr 7 22:20:22 2021 -0400

etest test

commit 2d54b157¢cb14¢c3375d945e699¢51ffbe5b5f11d1
Author: Katie Kim <katherine . kim@columbia.edu>
Date: Wed Apr 7 13:13:15 2021 -0400

CFlat API play_note() method

commit 677ca110e7fe4c718bbf8cd86876b5ea9b213e67
Author: isabellacho <isc2120@columbia.edu>
Date: Sun Apr 4 23:01:37 2021 -0400

added {} to our tests. it worksgit status

commit e1c6e63bd4ac1795349ee2662266940eb3alecd7

Merge: 2€93429 c4eb1fe

Author: jvalera174 <46391086+jvaleral74@users.noreply.github.com>
Date: Sun Apr 4 22:45:41 2021 -0400

Merge pull request #8 from katieskim/izzi0
1zzi0
commit c4e61fe8b9caf7bffdfd2c1eb71f535cc5eedeb9
Author: isabellacho <isc2120@columbia.edu>

Date: Sun Apr 4 22:42:56 2021 -0400

jas and izzi implemented expressions and statements and made tests! and printed a
string

commit 6429e791ab859704b965bc2b87a60a9c4533cfdf

Author: Isabella Cho <isabellacho@dyn-129-236-174-212.dyn.columbia.edu>
Date: Fri Apr212:22:19 2021 -0400

tried adding goodwin's stuff and making it work but make mfc120 has errors with
midiinfo.h not linking?

commit 2€93429431b915b6909e3eb40a664528ad8862e2
Merge: 50869b3 011acc4

Author: izzicho <isabella.cho@columbia.edu>

Date: Tue Mar 23 23:45:08 2021 -0400

Merge pull request #7 from katieskim/izzijasnoteO
printed (of note

commit 011acc465f056fa8d9fcaaded9d796a83e8280b1
Author: Isabella Cho <isabellacho@dyn-129-236-174-132.dyn.columbia.edu>
Date: Tue Mar 23 23:44:31 2021 -0400

printed (of note

commit 50869b31d4f7306d62cf27378aeb3acd29d8802b
Merge: b5c4663 88a8ac0

Author: izzicho <isabella.cho@columbia.edu>

Date: Tue Mar 23 15:57:15 2021 -0400

Merge pull request #6 from katieskim/trypointer0
after harry's oh thingy
commit 88a8ac0b8c5fae44fa8b82d41c7a112feb1da935
Author: Isabella Cho <isabellacho@dyn-129-236-174-132.dyn.columbia.edu>
Date: Tue Mar 23 15:56:24 2021 -0400
after harry's oh thingy
commit b5¢c4663a8ce5179056f2ecc984d4a16997535f89
Merge: ef5d533 c9cal171
Author: izzicho <isabella.cho@columbia.edu>

Date: Mon Mar 22 22:02:31 2021 -0400

Merge pull request #5 from katieskim/printfloattest0

added printfloat test stupid

commit c9cal171677753cff57efbb538cbff3da2ef94048
Author: Isabella Cho <isabellacho@dyn-160-39-173-46.dyn.columbia.edu>
Date: Mon Mar 22 21:59:25 2021 -0400

added printfloat test stupid

commit ef5d533bec21461bb0fdd0a2c2¢57640028df072

Merge: abd647c f830f1d

Author: jvalera174 <46391086+jvaleral74@users.noreply.github.com>
Date: Mon Mar 22 20:50:36 2021 -0400

Merge pull request #4 from katieskim/failtest0
make a fail test work

commit f830f1d8a8164d5d348a54ca5ceeaa903729624f
Author: Isabella Cho <isabellacho@dyn-160-39-173-46.dyn.columbia.edu>
Date: Mon Mar 22 20:44:29 2021 -0400

make a fail test work

commit abd647c¢5f89113ca95¢57484d05b572deefd66c5

Merge: b7a85f2 e9bcf71

Author: jvalera174 <46391086+jvaleral74@users.noreply.github.com>
Date: Sun Mar 21 16:00:51 2021 -0400

Merge pull request #3 from katieskim/stripped_0
Stripped 0
commit e9bcf71320d78a25946¢33a75de4f4b762208462
Author: Isabella Cho <isabellacho@dyn-160-39-173-46.dyn.columbia.edu>

Date: Sun Mar 21 15:59:12 2021 -0400

this is stripped CFlat_ is stripped if you make. it should be OK OK but fail tests should fail
inappropriately bc they're not for .cf and they're still just for .mc but it's okay u can work on it

commit db97912b93ea8af6f7¢c8e129f2a1c96038ee0e27
Author: Isabella Cho <isabellacho@dyn-160-39-173-46.dyn.columbia.edu>

Date: Sun Mar 21 14:15:50 2021 -0400

added CFlat_ folder that is a duplicate of the og og og squeaky clean microc. next we will
strip it to make our hello world and hopefully build off from there. we only want stuff we
UNDERSTAND in CFlat_

commit b7a85f273f4029edcd13dd718f0a70dee62788c7

Merge: 6817212 6b8804c

Author: jvalera174 <46391086+jvaleral74@users.noreply.github.com>
Date: Thu Mar 18 23:45:06 2021 -0400

Merge pull request #2 from katieskim/ast
Added some basic note features to ast, scanner, parser

commit 6b8804c1eebf6f8ceabcf9816de94a729b6726e€6
Author: Katie Kim <katherine.kim@columbia.edu>
Date: Thu Mar 18 23:44:18 2021 -0400

Added some basic note features to ast, scanner, parser

commit 6817212de9dc1eb01aaa407bb82cfaf124e6bb17

Merge: 8fb5f15 db70bc9

Author: jvalera174 <46391086+jvaleral74@users.noreply.github.com>
Date: Thu Mar 18 23:27:59 2021 -0400

Merge pull request #1 from katieskim/ast

Noahed the whole thing
commit db70bc97c1b8541c0497eb12d47ea7d28f27f774
Author: Katie Kim <katherine.kim@columbia.edu>
Date: Thu Mar 18 23:26:51 2021 -0400

Noahed the whole thing
commit 8fb5f15df5fac974514db9d963171d49e01656¢cd
Author: jvalera174 <jasmine.valera620@gmail.com>

Date: Thu Mar 18 20:19:28 2021 -0400

add microc-starter folder

commit 585e87a3b2681790af07034dc39f77f66e8ff5d6

Author: Isabella Cho <isabellacho@dyn-129-236-174-159.dyn.columbia.edu>

Date: Sun Mar 14 10:34:22 2021 -0400

first commit after meeting harry! time to change the 41 reduce errors time to throw expr

into stmts

commit 5a283977ea3¢c117b3360549377b4a3a343ddbd3b
Author: Katie Kim <katherine.kim@columbia.edu>
Date: Wed Feb 24 23:51:27 2021 -0500

AYYYY reduced all reduce/reduce and shift/reduce conflicts

commit Ocee10d60fe51244f3ee762984d215fca002a4d4e
Author: Katie Kim <katherine . kim@columbia.edu>
Date: Wed Feb 24 23:38:04 2021 -0500

Reduced all shift/reduce errors

commit e83324ed3517b8bbb806acfa6938932a9ce7a20e
Author: Katie Kim <katherine.kim@columbia.edu>
Date: Wed Feb 24 23:08:33 2021 -0500

parser_save
commit 10302015¢c4567483c3a4958e14db1bb213baa926
Author: Katie Kim <katherine.kim@columbia.edu>
Date: Wed Feb 24 23:06:24 2021 -0500
ahhhhhh lets reduce some shift/reduce
commit e9b784dedae097d500ca7e7b7c07090a083c59f5
Author: Katie Kim <katherine.kim@columbia.edu>
Date: Wed Feb 24 20:06:38 2021 -0500

Fixed some syntax errors, hit shift/reduce errors

commit 59¢d1eb901a5¢7736e08b6208ceebee948a91077

Author: Isabella Cho <isabellacho@dyn-129-236-174-173.dyn.columbia.edu>

Date: Wed Feb 24 15:34:36 2021 -0500

Prettied up the parser and finished writing out all of me and Yvonne's parts up to right
before stmt! Also prettied up the scanner a little.

commit da65d7d8a4a25e6fcc58d273a131f272e4421bc1
Author: Isabella Cho <isabellacho@dyn-129-236-174-173.dyn.columbia.edu>
Date: Wed Feb 24 14:20:30 2021 -0500

Uncommented the STRLIT and CHARLIT from the scanner.

commit 4af892b649b51f9a72da48ecc1388d4f4cce7f12
Author: Katie Kim <katherine . kim@columbia.edu>
Date: Wed Feb 24 02:31:05 2021 -0500

Restructured fils

commit 3f796bedf9cb77933855fb147c44df29cbadd361
Author: Katie Kim <47716319+katieskim@users.noreply.github.com>
Date: Wed Feb 24 02:24:39 2021 -0500

Uploaded CFlat project folder to Github.

commit ce7cbdcc7dd313b976ca2bf8947533¢7152b1d09
Author: Katie Kim <47716319+katieskim@users.noreply.github.com>
Date: Wed Feb 24 02:20:05 2021 -0500

Initial commit

8.2. cflat.ml

(* Top-level of the CFlat compiler: scan & parse the input,

check the resulting AST and generate an SAST from it, generate
LLVM IR,

and dump the module *)

type action = Ast | Sast | LLVM IR | Compile

let () =
let action = ref Compile in
let set action a () = action := a in

let speclist = [
("-a", Arg.Unit (set action Ast), "Print the AST");
("-s", Arg.Unit (set action Sast), "Print the SAST");

("-1", Arg.Unit (set action LLVM IR), "Print the generated LLVM

IR");
("-c", Arg.Unit (set action Compile),
"Check and print the generated LLVM IR (default)");
1 in
let usage msg = "usage: ./cflat.native [-al-s|-1|-c] [file.mc]" in
let channel = ref stdin in
Arg.parse speclist (fun filename -> channel := open in filename)

usage msg;

let lexbuf = Lexing.from channel !channel in
let ast = Parser.program Scanner.token lexbuf in
match 'action with
Ast -> print string (Ast.string of program ast)
| -> let sast = Semant.check ast in
match !action with
Ast -> ()
| Sast -> print string (Sast.string of sprogram sast)
| LLVM IR -> print string (Llvm.string of llmodule
(Codegen.translate sast))
| Compile -> let m = Codegen.translate sast in
Llvm analysis.assert valid module m;
print string (Llvm.string of llmodule m)

8.3. scanner.mll

(* Ocamllex scanner for CFlat *)

{ open Parser }

let digit = ['0"'" - '9'"]
let digits = digit+
let esc = AN O[TANT rrrormrorpr et rp]
let ascii = ([" "='"!" =TV)=~
rule token = parse
[" " "\t" "\r' '"\n'] { token lexbuf } (* Whitespace *)
"(e" { comment lexbuf } (* Comments *)
(! { LPAREN
') { RPAREN
! { LBRACK

(* arrays *)
! { LBRACE
! { RBRACE

e e e e

)
(
Y { RBRACK
{
}

SEMT }

{
' { COMMA }
4! { PLUS }
-1 { MINUS }
txl { TIMES }
A { DIVIDE }
'=1 { ASSIGN }
M=t { EQ)
r=n { NEQ }
nn { LT }
"<=" { LEQ }
n">n { GT }
">=" { GEQ }
"&&" { AND }
" { OR }
men { NOT }
"if" { IF }
"else" { ELSE }
"for" { FOR }
"while" { WHILE }
"make" { MAKE }
"return" { RETURN }
"note" { NOTE }
"tone" { TONE }
"octave" { OCTAVE }
"rhythm" { RHYTHM }
".tone ()" { TONEACCESS }
".octave ()" OCTAVEACCESS }

{
".rhythm ()" { RHYTHMACCESS }
".tone" { TONESET }
".octave" { OCTAVESET }
".rhythm" { RHYTHMSET }
".raiseTone" { TONERAISE }
" .raiseOctave" { OCTAVERAISE }
".lowerOctave" { OCTAVELOWER }
"string" { STRING }

"if" { IF }
"else" { ELSE }
"for" { FOR }
"while" { WHILE }
"return" { RETURN }
"int" { INT }
"bool" { BOOL }
"float" { FLOAT }
"string" { STRING }

| "void" { VOID }

| "true" { BLIT (true) }

| "false" { BLIT(false) }

| /" ((['"A'-'G']["+"'="","]?|'R") as 1lxm) '/' { TLIT (1xm) }

| '/' (digit | "-1" as 1lxm) '/' { OLIT (int of string lxm) }

| /" ((['s'"'e'"'g'"'"h"'w']['.']?) as 1lxm) '/' { RLIT (1xm) }
| '""' ((ascii | esc)* as s)'"! { STRLIT(s) }
| digits as lxm { LITERAL(int of string lxm) }

| digits '.' digit* (['e' '"E'] ['+'" '-']7? digits)? as 1lxm {

FLIT (1lxm) }

| ['a'-"z'" "A'-'"Z']['a'="z" 'A'=-'Z' '0'-'9"' ' ']% as 1lxm {
ID(lxm) }

(* make sure it can't be R or A B C D E F G *)

| eof { EOF }

| as char { raise (Failure("illegal character "
char)) }

A

Char.escaped

and comment = parse
":)" { token lexbuf }
| { comment lexbuf }

8.4. parser.mly

/* Ocamlyacc parser for CFlat */

5
open Ast

5}

$token SEMI LPAREN RPAREN LBRACE RBRACE COMMA PLUS MINUS TIMES DIVIDE
ASSIGN

%token LBRACK RBRACK

%$token TONEACCESS OCTAVEACCESS RHYTHMACCESS

$token TONESET OCTAVESET RHYTHMSET

%$token TONERAISE OCTAVERAISE OCTAVELOWER

%$token MAKE

%$token NOT EQ NEQ LT LEQ GT GEQ AND OR

%$token RETURN IF ELSE FOR WHILE

%token INT BOOL FLOAT VOID NOTE STRING TONE OCTAVE RHYTHM
$token <int> LITERAL OLIT

%$token <bool> BLIT

%$token <string> ID FLIT STRLIT TLIT RLIT

%$token EOF

$start program
Stype <Ast.program> program

$nonassoc NOELSE

%$nonassoc ELSE

$right ASSIGN

%left OR

$1left AND

$left EQ NEQ

$left LT GT LEQ GEQ

$left PLUS MINUS

$left TIMES DIVIDE

$right NOT

%right TONERAISE OCTAVERAISE OCTAVELOWER
%right TONESET OCTAVESET RHYTHMSET
$right TONEACCESS OCTAVEACCESS RHYTHMACCESS

o°
o°

program:
decls EOF { $1 }

decls:

/* nothing */ { ([1, [1) }
| decls vdecl { (($2 :: fst $1), snd $1) }
| decls fdecl { (fst $1, ($2 :: snd $1)) }

fdecl:

typ ID LPAREN formals opt RPAREN LBRACE vdecl list stmt list
RBRACE
{ { typ = $1;
fname = $2;
formals = List.rev $4;
locals = List.rev $7;
body = List.rev $8 } }

formals opt:
/* nothing */ { [] }
| formal list { $1 }
formal list:
typ ID { [(S1,82)] }
| formal list COMMA typ ID { ($3,%4) :: $1 }

typ:

primitive typ {

PrimitiveType ($1)

| array typ { $1 }

primitive typ:

INT
BOOL
FLOAT
VOID
NOTE
TONE
OCTAVE
RHYTHM
STRING

array typ:

primitive typ LBRACK RBRACK { ArrayType($1)

literal:
LITERAL
| FLIT
| BLIT
| STRLIT
| notelit
| tlit
| olit
| rlit

rlit:
RLIT

notelit:

Int }
Bool }
Float }
Void }
Note }
Tone }
Octave
Rhythm

String

e e T e s T e i e T T

}
}
}

{ Literal ($1)

{ Fliteral ($1)
BoolLit (S1)
StrLit (S$1)
$1
S1
S1
$1

e e e e

{ ToneLit ($1)

{ OctaveLit (S$1)

{ RhythmLit ($1)

LPAREN tlit olit rlit RPAREN
/* allow for default values? */

vdecl list:

/* nothing */
| vdecl list vdecl { $2 :: S1 }

vdecl:

{011}

}

e e e e e

{ NoteLit ($2,

typ ID SEMI { (81, $2) }

stmt list:
/* nothing */ { [] }
| stmt list stmt { $2 :: S1 }
stmt
expr SEMI { Expr $1
RETURN expr opt SEMI { Return $2
LBRACE stmt list RBRACE { Block(List.rev $2)

IF LPAREN expr RPAREN stmt ELSE stmt { I£($3, $5, $7)
FOR LPAREN expr opt SEMI expr SEMI expr opt RPAREN stmt
{ For(s3, $5, $7, $9)

|
|
| IF LPAREN expr RPAREN stmt $prec NOELSE { If($3, $5, Block(I[]))
|
|

| WHILE LPAREN expr RPAREN stmt { While ($3, $5)
expr opt:
/* nothing */ { Noexpr }
| expr { $1 }
expr
literal { S1 }
1D { Id(s1l) }

|

| ID ASSIGN expr { Assign($1, $3)

| ID LPAREN args_opt RPAREN { Call($1l, $3)
| ID TONEACCESS { ToneAccess ($1)
|
|
|

—— e e

ID OCTAVEACCESS { OctaveAccess (S1)
ID RHYTHMACCESS { RhythmAccess ($1) }
ID TONESET LPAREN expr RPAREN { ToneSet (S$1, $4)
}
| ID OCTAVESET LPAREN expr RPAREN { OctaveSet ($1, $4)
}
| ID RHYTHMSET LPAREN expr RPAREN { RhythmSet ($1, $4)
}
| ID TONERAISE LPAREN expr RPAREN { ToneRaise ($1, $4)
1
| ID OCTAVERAISE LPAREN expr RPAREN { OctaveRaise ($1, $4)
}
| ID OCTAVELOWER LPAREN expr RPAREN { OctaveLower ($1, $4)

| LPAREN expr RPAREN { $2

| expr PLUS expr { Binop($1, Add, $3)
| expr MINUS expr { Binop($1l, Sub, $3)
| expr TIMES expr { Binop($1l, Mult, $3)
| expr DIVIDE expr { Binop($1l, Div, $3)

—— e e e e

MINUS expr S%prec NOT

Binop ($1, Equal, $3)
Binop ($1, Neq, $3)
Binop ($1, Less, $3)
Binop ($1, Leq, $3)
Binop ($1, Greater, $3)
Binop ($1, Geq, $3)
Binop ($1, And, $3)
Binop($1, Or, $3)

{ Unop (Neg, $2)

NOT expr { Unop (Not, $2)

| expr EQ expr {
| expr NEQ expr {
| expr LT expr {
| expr LEQ expr {
| expr GT expr {
| expr GEQ expr {
| expr AND expr {
| expr OR expr {
|

|

|

MAKE LPAREN primitive typ COMMA expr RPAREN

| ID LBRACK expr RBRACK ASSIGN expr

$3, $6) '}

| ID LBRACK expr RBRACK

args_opt:
/* nothing */ { [] }

{ ArrayAccess (51,

| args_list { List.rev $1 }

args list:
expr
| args list COMMA expr

8.5. ast.ml

(* Abstract Syntax Tree

type primitive typ = Int
| Octave | Rhythm

type typ = PrimitiveType
primitive typ

type bind = typ * string

e e e e e e e e e

{ MakeArray($3,

$5)

{ ArrayAssign (S$1,

and functions for printing it *)

| Bool | Float | Void | Note |

of primitive typ |

type op = Add | Sub | Mult | Div | Equal |

| Geqg |
And | Or

type uop = Neg | Not

type expr =
Literal of int

ArrayType of

Neq | Less |

String

Leq |

$3)

Tone

Greater

Fliteral of string

BoolLit of bool

StrLit of string

NoteLit of expr * expr * expr
Tonelit of string

Octavelit of int

RhythmLit of string
ToneAccess of string
OctaveAccess of string
RhythmAccess of string
ToneSet of string * expr
OctaveSet of string * expr
RhythmSet of string * expr
ToneRaise of string * expr
OctaveRaise of string * expr
Octavelower of string * expr

MakeArray of primitive typ * expr

ArrayAssign of string * expr * expr

ArrayAccess of (string * expr)
Id of string

Assign of string * expr

Call of string * expr list
Binop of expr * op * expr
Unop of uop * expr

Noexpr

type stmt =

Block of stmt list

Expr of expr

Return of expr

If of expr * stmt * stmt

For of expr * expr * expr * stmt
While of expr * stmt

type func decl = {

typ @ typ;

fname : string;
formals : bind list;
locals : bind list;
body : stmt list;

type program = bind list * func decl

list

(* Pretty-printing functions *)

let string of op = function
Add -> "+"
| Sub -> "-"
| Mult -> "*x"
| Div -> "/"
| Equal -> "=="
| Negq -> "!I="
| Less —-> "<"
| Leg -> "<="
| Greater -> ">"
| Geg -> ">="
| And -> "&&"
| Or => "||"
let string of uop = function
Neg -> "-"
| Not —-> "!I"
let string of primitive typ =
Int -> "int"
| Bool -> "bool"
| Float —-> "float"
| Void -> "void"
| Note -> "note"
| Tone -> "tone"
| Octave -> "octave"
| Rhythm -> "rhythm"
| String -> "string"
let rec string of typ = function

PrimitiveType (t)
ArrayType (t) ->
rec string of expr = function

Literal(l) -> string of int 1

Fliteral(l) -> 1
BoolLit (true) -> "true"
BoolLit (false) -> "false"

StrLit(l) -> 1
NoteLit (t, o, r)

string of expr r
ToneLit (1) -> 1

function

-> string of expr t

A

14

(string of primitive typ t)

-> string of primitive typ t

A

A

"[]"

string of expr

OctaveLit (1) -> string of int 1
RhythmLit (1) -> 1

ToneAccess(n) -> n ~ ".tone ()"
OctaveAccess (n) -> n ".octave ()"
RhythmAccess(n) -> n * ".rhythm()"

A "w A

.tone (" string of expr e ~ ")"

A

OctaveSet(n, e) -> n ~ ".octave (" string of expr e ~ ")"

|

|

|

|

|

| ToneSet(n, e) -> n
|

| RhythmSet(n, e) -> n *~ ".rhythm(" ”~ string of expr e ~ ")"
|

|

|

ToneRaise(n, e) -> n * ".raiseTone(" "~ string of expr e ~ ")"
OctaveRaise(n, e) -> n ~ ".raiseOctave (" " string of expr e ~ ")"
Octavelower(n, e) -> n ~ ".lowerOctave (" " string of expr e ~ ")"
| MakeArray(t, e) -> "make(" ”~ string of primitive typ t ~ "," *
string of expr e ~ ")"
| ArrayAssign(arr name, el, e2) -> arr name ~ "[" © string of expr
el ~ "] ~ "=" 7 string of expr e2
| ArrayAccess(arr name, e) -> arr name "~ "[" * string of expr e "
myw
| Id(s) -> s
| Assign(v, e) -> v ~ " =" % string of expr e
| Call(f, el) —>
£ ~ "(" * String.concat ", " (List.map string of expr el) ~ ")"
| Binop(el, o, e2) ->
string of expr el ~ " " ~ string of op o * " " ” string of expr
e2
| Unop(o, e) —-> string of uop o ”~ string of expr e
| Noexpr -> ""
let rec string of stmt = function
Block(stmts) ->
"{\n" ~ String.concat "" (List.map string of stmt stmts) *
" } \nu
| Expr(expr) -> string of expr expr *~ ";\n";
| Return (expr) -> "return " » string of expr expr ~ ";\n"
| If(e, s, Block([])) -> "if (" ~ string of expr e " ")\n" *
string of stmt s
| If(e, sl, s2) -> "if (" ~ string of expr e * "Y\n" *
string of stmt sl " "else\n" "~ string of stmt s2
| For(el, e2, e3, s) ->
"for (" ”~ string of expr el ~ " ; " © string of expr e2 ~ " ;
string of expr €3 ~ ") " ” string of stmt s
| While(e, s) -> "while (" * string of expr e ~ ") " *

string of stmt s

let string of vdecl (t, id) = string of typ t ~ "™ "™ ~ id ~ ";\n"

let string of fdecl fdecl =

string of typ fdecl.typ ~ " " *

fdecl.fname ~ " (" »~ String.concat ", " (List.map snd fdecl.formals)
u) \n{ \nu A

String.concat "" (List.map string of vdecl fdecl.locals) *
String.concat "" (List.map string of stmt fdecl.body) *

\AJ } \n"

let string of program (vars, funcs) =

String.concat
String.concat "\n" (List.map string of fdecl funcs)

(List.map string of vdecl vars) * "\n"

8.6. sast.ml

(* Semantically-checked Abstract Syntax Tree and functions for
printing it *)

open Ast
type sexpr = typ * sx

and sx =
SLiteral of int
| SFliteral of string
| SBoolLit of bool
| SStrLit of string
| SNotelLit of sexpr * sexpr * sexpr
| STonelLit of string
| SOctavelit of int
| SRhythmLit of string
| SToneAccess of string
| SOctaveAccess of string
| SRhythmAccess of string
| SToneSet of string * sexpr
| SOctaveSet of string * sexpr
| SRhythmSet of string * sexpr
| SToneRaise of string * sexpr
| SOctaveRaise of string * sexpr
| SOctavelower of string * sexpr

| SId of string

SAssign of string * sexpr

SArrayAssign of string * sexpr * sexpr
SArrayAccess of string * sexpr
SMakeArray of primitive typ * sexpr

|
|
|
|
| SCall of string * sexpr list
| SBinop of sexpr * op * sexpr
| SUnop of uop * sexpr

|

SNoexpr

type sstmt =
SBlock of sstmt list
SExpr of sexpr
SReturn of sexpr

|

|

| SIf of sexpr * sstmt * sstmt

| SFor of sexpr * sexpr * sexpr * sstmt
|

SWhile of sexpr * sstmt

type sfunc decl = {
styp : typ;

sfname : string;
sformals : bind list;
slocals : bind list;

sbody : sstmt list;

type sprogram = bind list * sfunc decl list
(* Pretty-printing functions *)

let rec string of sexpr (t, e) =
"(" ~ string of typ t ~ " : " *~ (match e with
SLiteral(l) -> string of int 1
| SFliteral(l) -> 1
| SBoolLit (true) -> "true"
| SBoolLit (false) -> "false"
| SNoteLit(t, o, r) -> string of sexpr t *~ ", " * string of sexpr o
A", " 2 string of sexpr r
SToneLit (1) -> 1
SOctaveLit (1) -> string of int 1
SRhythmLit (1) -> 1

|

|

|

| SToneAccess(n) -> n ~ ".tone ()"

| SOctaveAccess(n) -> n ~ ".octave ()"

| SRhythmAccess(n) -> n *~ ".rhythm()"

| SToneSet(n, e) -> n ~ ".tone(" "~ string of sexpr e ~ ")"

| SOctaveSet(n, e) -> n ~ ".octave(" * string of sexpr e *~ ")"

| SRhytthet(n, e) -> n " ".rhythm(" ~ String_of_sexpr e A M

| SToneRaise(n, e) -> n * ".raiseTone(" * string of sexpr e ~ ")"

| SOctaveRaise(n, e) -> n ©~ ".raiseOctave(" " string of sexpr e "
ll) "

| SOctaveLower(n, e) -> n ~ ".lowerOctave(" * string of sexpr e "
") \AJ

| SMakeArray(t, e) -> "make(" ” string of primitive typ t ~ "," *

string of sexpr e *~ ")"

| SArrayAssign(n, el, e2) ->n ~ "[" * string of sexpr el ~ "]" %
"=" 7 string of sexpr e2

| SArrayAccess (arr _name, e) -> arr name ~ "[" ”~ string of sexpr e
myn

| SStrLit(l) -> 1

| SId(s) -> s

| SCall(f, el) ->

£~ "(" ~ String.concat ", " (List.map string of sexpr el)
Ay
| SBinop(el, o, e2) ->
string of sexpr el ~ " " * string of op o ~ " " *
string of sexpr e2
| SUnop (o, e) —-> string of uop o * string of sexpr e
| SAssign (v, e) -> v ~ " =" 7~ string of sexpr e
| SNoexpr -> ""
) ~m"
let rec string of sstmt = function
SBlock (stmts) ->
"{\n" » String.concat "" (List.map string of sstmt stmts) *
"}\n"
| SExpr (expr) -> string of sexpr expr ~ ";\n";
| SReturn (expr) -> "return " * string of sexpr expr ~ ";\n"
| SIf(e, s, SBlock([])) ->
"if (" ~ string of sexpr e ~ ")\n" " string of sstmt s
| SIf(e, sl1, s2) -> "if (" ~ string of sexpr e " ")\n" *
string of sstmt sl ~ "else\n" ”~ string of sstmt s2
| SFor(el, e2, e3, s) —->
"for (" ”~ string of sexpr el ~ " ; " ~ string of sexpr e2 * "
string of sexpr e3 ~ ") " ” string of sstmt s
| SWhile(e, s) -> "while (" "~ string of sexpr e ~ ") " *

string of sstmt s

let string of sfdecl fdecl =
string of typ fdecl.styp ~ " " *

fdecl.sfname ~ " (" ”~ String.concat ", " (List.map snd
fdecl.sformals) *

")\n{\n" A

String.concat "" (List.map string of vdecl fdecl.slocals) *
String.concat "" (List.map string of sstmt fdecl.sbody) "

Al } \n"

let string of sprogram (vars, funcs) =
String.concat "" (List.map string of vdecl vars) ~ "\n" *
String.concat "\n" (List.map string of sfdecl funcs)

8.7. semant.ml

(* Semantic checking for the Cflat compiler ¥*)

open Ast
open Sast

module StringMap = Map.Make (String)

(* Semantic checking of the AST. Returns an SAST if successful,
throws an exception if something is wrong.

Check each global variable, then check each function *)

(* Array checking helpers ¥*)

let match array = function
ArrayType() —-> true
| —-> false

let check array or throw typ a name =

A "

if match array typ then () else raise (Failure (a name is not

an array"))

let get array type = function
ArrayType (typ) -> typ
| -> raise (Failure "invalid array type")

let check (globals, functions) =

(* Verify a list of bindings has no void types or duplicate names
*)
let check binds (kind : string) (binds : bind list) =
List.iter (function

(PrimitiveType (Void), b) -> raise (Failure ("illegal void " *
kind ~ "™ " * D))
| => ()) binds;
let rec dups = function
(1 -> 0
| ((_,nl) (_,n2)) when nl = n2 ->
raise (Failure ("duplicate " ~ kind ~ " "™ ~ nl))
| :: t -> dups t
in dups (List.sort (fun (,a) (,b) -> compare a b) binds)
in

(**** Check global variables ***%*)

check binds "global" globals;

(**** Check functions ****)

(* Collect function declarations for built-in functions:

*)

let built in decls

let add bind map
typ
fname
formals

(name, tys)

name;
tys;
[]1; body

(]

locals

[
"x") 1)

[(PrimitiveType (Bool), "x")1);
[(PrimitiveType (Float), "x")1);
[(PrimitiveType (Int), "x")1);
"x") 1)

[(PrimitiveType (Note), "x")1);

"X")]);

"x") 1)

"x")1) i

PrimitiveType (Void) ;

} map
in List.fold left add bind StringMap

("print" ,

("prints",

("printt",

("printzr",

("printo",

StringMap.add name {

.empty

[(PrimitiveType (Int),

("printb",

("printf",

("printbig",

[(PrimitiveType (String),

("printn",

[(PrimitiveType (Tone),

[(PrimitiveType (Rhythm),

[(PrimitiveType (Octave),

no bodies

("playnote", [(PrimitiveType (Note),
"x"); (PrimitiveType(String), "yv")1);

("bplaynote”™, [(PrimitiveType (Note),
"x"); (PrimitiveType(Int), "y"); (PrimitiveType (String), "z")]1);

("playtrack", [(ArrayType (Note), "x");
(PrimitiveType (String), "y")]1);

]

in

(* Add function name to symbol table *)
let add func map fd =

let built in err = "function " ~ fd.fname ~ " may not be defined"
and dup err = "duplicate function " © fd.fname

and make err er = raise (Failure er)

and n = fd.fname (* Name of the function *)

in match fd with (* No duplicate functions or redefinitions of
built-ins ¥*)
_ when StringMap.mem n built in decls -> make err
built in err
| when StringMap.mem n map —-> make err dup err
| -> StringMap.add n fd map
in

(* Collect all function names into one symbol table *)

let function decls = List.fold left add func built in decls
functions

in

(* Return a function from our symbol table *)
let find func s =

try StringMap.find s function decls

with Not found -> raise (Failure ("unrecognized function " * s))
in

let = find func "main" in (* Ensure "main" is defined *)
let check function func =
(* Make sure no formals or locals are void or duplicates *)
check binds "formal" func.formals;
check binds "local" func.locals;

(* Raise an exception if the given rvalue type cannot be assigned
to
the given lvalue type ¥*)
let check assign lvaluet rvaluet err =
if lvaluet = rvaluet then lvaluet else raise (Failure err)

in

let check arr assign lvaluet rvaluet err =
if lvaluet = ArrayType (rvaluet) then rvaluet else raise
(Failure err)
in

(* Build local symbol table of variables for this function *)
let symbols = List.fold left (fun m (ty, name) -> StringMap.add
name ty m)
StringMap.empty (globals @ func.formals @
func.locals)
in

(* Return a variable from our local symbol table *)
let type of identifier s =
try StringMap.find s symbols
with Not found -> raise (Failure ("undeclared identifier " *

in

(* Return a semantically-checked expression, i.e., with a type *)
let rec expr = function
Literal 1 -> (PrimitiveType (Int), SLiteral 1)
| Fliteral 1 -> (PrimitiveType (Float), SFliteral 1)
| BoolLit 1 -> (PrimitiveType (Bool), SBoolLit 1)
| NoteLit (t, o, r) -> (PrimitiveType (Note), SNotelLit (expr t,
expr o, expr r))
TonelLit 1 -> (PrimitiveType (Tone), STonelit 1)
OctavelLit 1 -> (PrimitiveType (Octave), SOctavelLit 1)
RhythmLit 1 -> (PrimitiveType (Rhythm), SRhythmLit 1)
ToneAccess n -> (PrimitiveType (Tone), SToneAccess n)
OctaveAccess n —-> (PrimitiveType (Octave), SOctaveAccess n)
RhythmAccess n -> (PrimitiveType (Rhythm), SRhythmAccess n)

ToneSet (n, e) -> (PrimitiveType (Tone), SToneSet (n, expr e))
OctaveSet (n, e) -> (PrimitiveType (Octave), SOctaveSet (n,
expr e))
| RhythmSet (n, e) -> (PrimitiveType (Rhythm), SRhythmSet (n,
expr e))
| ToneRaise(n, e) -> (PrimitiveType (Note), SToneRaise (n, expr
e))
| OctaveRaise(n, e) -> (PrimitiveType (Note), SOctaveRaise (n,
expr e))
| OctavelLower (n, e) —-> (PrimitiveType (Note), SOctavelLower (n,

expr e))

StrLit 1 -> (PrimitiveType (String), SStrLit 1)
Noexpr -> (PrimitiveType (Void), SNoexpr)
Id s -> (type of identifier s, SId s)
Assign (var, e) as ex ->
let 1t = type of identifier var
and (rt, e') = expr e in

A "w — "

let err = "illegal assignment " * string of typ 1t =

A

string of typ rt ~ " in "
in (check assign 1t rt err, SAssign(var, (rt, e')))

string of expr ex

| Unop (op, e) as ex —->
let (t, e') = expr e in
let ty = match op with
Neg when t = PrimitiveType (Int) || t =
PrimitiveType (Float) -> t
| Not when t = PrimitiveType (Bool) -> PrimitiveType (Bool)

| -> raise (Failure ("illegal unary operator "
string of typ t

A A

string of uop op
" in " % string of expr ex))

in (ty, SUnop(op, (t, €')))
| Binop(el, op, e2) as e —->

let (tl, el') = expr el

and (t2, e2') = expr e2 in

(* A1l binary operators require operands of the same type

let same = tl1l = t2 in

(* Determine expression type based on operator and operand
types *)

let ty = match op with

Add | Sub | Mult | Div when same && tl

PrimitiveType (Int) -> PrimitiveType (Int)

| Add | Sub | Mult | Div when same && tl
PrimitiveType (Float) -> PrimitiveType (Float)

| Equal | Neqg when same ->

PrimitiveType (Bool)
| Less | Leg | Greater | Geq
when same && (tl = PrimitiveType (Int) || tl =
PrimitiveType (Float)) -> PrimitiveType (Bool)
| And | Or when same && tl = PrimitiveType (Bool) ->
PrimitiveType (Bool)
| -> raise (Failure ("illegal binary operator "
string of typ tl ~ " "™ ~ string of op op

A

string of typ t2 ©~ " in " © string of expr

in (ty, SBinop((tl, el'), op, (t2, e2')))
| MakeArray(t, e) as ex —->
let (t', e') = expr e in
if t' = PrimitiveType (Int)
then (ArrayType(t), SMakeArray(t, (t',e')))
else raise (Failure ("illegal make, must provide integer

A

size for " string of expr e))
| ArrayAccess (a_name, e) ->
let t = type of identifier a name
and (t', e') = expr e
in ignore (check array or throw t a name);

(PrimitiveType (get array type t), SArrayAccess(a name, (t',

| ArrayAssign (a name, el, e2) as ex —->

let 1t = (type of identifier a name)
and (t', el') = expr el
and (rt, e2') = expr e2 in

(PrimitiveType (get array type 1t), SArrayAssign(a_ name,
(¢, el"), (rt, e2'")))

(* let 1t = type of identifier a name
and (t', el') = expr el
and (rt, e2') = expr e2 in
let err = "illegal assignment " "~ string of typ 1t ~ " =

A

string of typ rt ~ " in " string of expr ex
in (check arr assign 1lt rt err, SArrayAssign(a name, (t',
el'), (rt, e2'))) *)
| Call (fname, args) as call ->
let fd = find func fname in
let param length = List.length fd.formals in
if List.length args != param length then

A

raise (Failure ("expecting " string of int param length

" " A

arguments in string of expr call))

else let check call (ft,) e =
let (et, e') = expr e in
let err = "illegal argument found " * string of typ et *

" expected " * string of typ ft ~ "™ in " *
string of expr e
in (check assign ft et err, e')
in
let args' = List.map2 check call fd.formals args
in (fd.typ, SCall (fname, args'))

in

let check bool expr e =

let (t', e') = expr e
in let err = "expected Boolean expression in " ~ string of expr
e ~ " insted type " * (string of typ t')
in if t' != PrimitiveType (Bool) then raise (Failure err) else
(L', e'")
in

(* Return a semantically-checked statement i.e. containing sexprs
*)
let rec check stmt = function
Expr e -> SExpr (expr e)
| If(p, bl, b2) -> SIf(check bool expr p, check stmt bl,
check stmt b2)
| For(el, e2, e3, st) ->
SFor (expr el, check bool expr e2, expr e3, check stmt st)
| While(p, s) -> SWhile(check bool expr p, check stmt s)
| Return e -> let (t, e') = expr e in
if t = func.typ then SReturn (t, e')
else raise (

A A

Failure ("return gives " string of typ t ~ " expected "

A

string of typ func.typ ©~ " in " string of expr e))
(* A block is correct if each statement is correct and
nothing
follows any Return statement. Nested blocks are
flattened. *)
| Block sl ->

let rec check stmt list = function
[Return as s] -> [check stmt s]

| Return :: -> raise (Failure "nothing may follow a
return")

| Block sl :: ss -> check stmt list (sl @ ss) (* Flatten
blocks *)

| s :: ss -> check stmt s :: check stmt list ss

[1] -> []

in SBlock(check stmt list sl)

in (* body of check function ¥*)
{ styp = func.typ;
sfname = func.fname;
sformals = func.formals;
slocals = func.locals;

sbody = match check stmt (Block func.body) with
SBlock(sl) -> sl
| -> raise (Failure ("internal error: block didn't

become a block?"))

}

in (globals, List.map check function functions)

8.8. codegen.ml
(*

Code generation: translate takes a semantically checked AST and
produces LLVM IR

LLVM tutorial: Make sure to read the OCaml version of the tutorial
http://1lvm.org/docs/tutorial/index.html
Detailed documentation on the OCaml LLVM library:

http://11lvm.moe/
http://11lvm.moe/ocaml/

*)

Llvm
Ast

module L
module A
open Sast

module StringMap = Map.Make (String)

(* translate : Sast.program -> Llvm.module *)
let translate (globals, functions) =
let context = L.global context () in

(* Create the LLVM compilation module into which
we will generate code *)

let the module = L.create module context "CFlat" in

(* Get types from the context *)

let 132 t = L.1i32 type context
and 18 t = L.1i8 type context
and 11 t = L.1i1 type context
and float t = L.double type context

and void t = L.void type context in
let str t = L.pointer type 1i8 t

and 132 ptr t L.pointer type 132 t

and 18 ptr t = L.pointer type 18 t in

let named struct note t = L.named struct type context
"named struct note t" in

ignore (L.struct set body named struct note t [| L.pointer type
i8 t; L.1i32 type context; L.pointer type i8 t |] false);

(* Return the LLVM type for a CFlat type *)
let ltype of primitive typ = function

A.PrimitiveType (A.Int) -> 132 t
| A.PrimitiveType (A.Bool) -> 11 t
| A.PrimitiveType (A.Float) -> float t
| A.PrimitiveType (A.Void) -> void t
| A.PrimitiveType (A.Note) -> named struct note t
| A.PrimitiveType (A.Tone) -> str t
| A.PrimitiveType (A.Octave) -> 132 t
| A.PrimitiveType (A.Rhythm) -> str t
| A.PrimitiveType (A.String) -> str t

in

let ltype of typ = function
A.PrimitiveType (t) ->
ltype of primitive typ(A.PrimitiveType (t))
| A.ArrayType(t) -> L.pointer type (ltype of primitive typ
(A.PrimitiveType (t)))
in

(* Create a map of global variables after creating each ¥*)
let global vars : L.llvalue StringMap.t =
let global var m (t, n) =
let init = match t with
A.PrimitiveType (A.Float) -> L.const float
(ltype of primitive typ t) 0.0
| -> L.const int (ltype of primitive typ t) O
in StringMap.add n (L.define global n init the module) m in
List.fold left global var StringMap.empty globals in

let printf t : L.lltype =

L.var arg function type 132 t [| L.pointer type 18 t |] in
let printf func : L.llvalue =

L.declare function "printf" printf t the module in

let printbig t : L.lltype =

L.function type 132 t [| 132 t |] in
let printbig func : L.llvalue =
L.declare function "printbig" printbig t the module in

let play note t : L.lltype =
L.function type 132 t [| L.pointer type named struct note t ;
L.pointer type i8 t |[] in
let play note func : L.llvalue =
L.declare function "play note" play note t the module in

let bplay note t : L.lltype =
L.function type 132 t [| L.pointer type named struct note t ;
132 t ; L.pointer type 18 t |] in
let bplay note func : L.llvalue =
L.declare function "bplay note" bplay note t the module in

let play note arr t : L.lltype =
L.function type 132 t [| L.pointer type named struct note t ;
L.pointer type 18 t |[] in
let play note array func : L.llvalue =
L.declare function "play note arr" play note arr t the module
in

let change tone t : L.lltype =
L.function type 132 t [| L.pointer type named struct note t ;
i32 t ; 132 t |] in
let change tone r : L.lltype =
L.return type change tone t in
let change tone func : L.llvalue =
L.declare function "change tone" change tone t the module in

(* Define each function (arguments and return type) so we can
call it even before we've created its body *)

let function decls : (L.llvalue * sfunc decl) StringMap.t =
let function decl m fdecl =
let name = fdecl.sfname

and formal types =

Array.of list (List.map (fun (t,) -> ltype of typ t)
fdecl.sformals)

in let ftype = L.function type (ltype of typ fdecl.styp)
formal types in

StringMap.add name (L.define function name ftype the module,
fdecl) m in

List.fold left function decl StringMap.empty functions in

(* Fill in the body of the given function *)
let build function body fdecl =
let (the function,) = StringMap.find fdecl.sfname
function decls in
let builder = L.builder at end context (L.entry block
the function) in

let int format str = L.build global stringptr "%d\n" "fmt"
builder

and note format str = L.build global stringptr "/%s/ /%d/ /%s/\n"
"fmt" builder

and float format str = L.build global stringptr "%g\n" "fmt"
builder

and tone format str = L.build global stringptr "/%$s/\n" "fmt"
builder

and octave format str
builder

and rhythm format str
builder

and str format str = L.build global stringptr "$s\n" "fmt"
builder in

L.build global stringptr "/%d/\n" "fmt"

L.build global stringptr "/%s/\n" "fmt"

(* Construct the function's "locals": formal arguments and
locally
declared variables. Allocate each on the stack, initialize
their
value, 1f appropriate, and remember their values in the
"locals" map *)
let local vars =
let add formal m (t, n) p = L.set value name n p;
let local = L.build alloca (ltype of typ t) n builder in
ignore (L.build store p local builder);
StringMap.add n local m

(* Allocate space for any locally declared variables and add
the
* resulting registers to our map *)
and add local m (t, n) =
let local var = L.build alloca (ltype of typ t) n builder
in StringMap.add n local var m
in

let formals = List.fold left2 add formal StringMap.empty
fdecl.sformals
(Array.to list (L.params the function)) in

List.fold left add local formals fdecl.slocals
in

(* Return the value for a variable or formal argument.
Check local names first, then global names *)
let lookup n = try StringMap.find n local vars

with Not found -> StringMap.find n global vars
in

————————————————————————— Array Constructors
mm— oo ____)

(* TAKEN/ADAPTED FROM C?
http://www.cs.columbia.edu/~sedwards/classes/2017/4115-fall/reports/I
nception.pdf

Whenever an array is made, we malloc an additional 16 bytes of
metadata,

which contains size and length information. This allows us to
implement

len() in a static context, and opens several possibilities
including

array concatenation, dynamic array resizing, etc.

The layout will be:

o o o o +
| element size | size (bytes) | len[int] | eleml |
- ———— o ———— - - +
*)
let elem size offset = L.const int 132 t (-3)
and size offset = L.const int i32 t (-2)
and len offset = L.const int 132 t (-1)
and metadata sz = L.const int i32 t 12 in (* 12 bytes overhead

let put meta body ptr offset llval builder =
let ptr = L.build bitcast body ptr i32 ptr t "i32 ptr t"
builder in
let meta ptr = L.build gep ptr [| offset |] "meta ptr" builder
in
L.build store llval meta ptr builder
in

let get meta body ptr offset builder =
let ptr = L.build bitcast body ptr i32 ptr t "i32 ptr t"
builder in

let meta ptr = L.build gep ptr [| offset |] "meta ptr" builder

in
L.build load meta ptr "meta data" builder
in
let meta to body meta ptr builder =
let ptr = L.build bitcast meta ptr 18 ptr t "meta ptr" builder
in
L.build gep ptr [| (L.const int i8 t (12)) |] "body ptr"
builder
in
let body to meta body ptr builder =
let ptr = L.build bitcast body ptr 18 ptr t "body ptr" builder
in
L.build gep ptr [| (L.const int i8 t (-12)) |] "meta ptr"
builder
in

(* make array *)
let make array element t len builder =
let element sz = L.build bitcast (L.size of element t) 132 t
"b" builder in
let body sz = L.build mul element sz len "body sz" builder in
let malloc sz = L.build add body sz metadata sz "make array sz"
builder in
let meta ptr
builder in
let body ptr
ignore (put meta body ptr elem size offset element sz builder);
ignore (put meta body ptr size offset malloc sz builder);
ignore (put meta body ptr len offset len builder);
L.build bitcast body ptr (L.pointer type element t)
"make array ptr" builder

L.build array malloc i8 t malloc sz "make array"

meta to body meta ptr builder in

in

(* Construct code for an expression; return its value *)
let rec expr builder ((, e) : sexpr) = match e with
SLiteral 1 -> L.const int 132 t 1
| SBoolLit b -> L.const int il t (if b then 1 else 0)

| SFliteral 1 -> L.const float of string float t 1

| SNoteLit (t, o, r) -> let t' = expr builder t and
o' = expr builder o and
r' = expr builder r in

L.const named struct
named struct note t [| t'; o'; r' |]
| SToneLit t -> L.build global stringptr (t ~ "\x00")
"tone ptr" builder
| SOctavelLit o -> L.const int 132 t o
| SRhythmLit r -> L.build global stringptr (r ~ "\x00")
"rhythm ptr" builder

| SStrLit 1 -> L.build global stringptr (1 ~ "\x00")
"str ptr" builder

| SNoexpr -> L.const int 132 t 0

| SId s -> L.build load (lookup s) s builder

| SAssign (s, e) -> let e' = expr builder e in

ignore(L.build store e' (lookup s)

builder); e'

| SBinop ((A.PrimitiveType(Float),) as el, op, e2) —->

let el' = expr builder el and e2' = expr

builder e2 in
(match op with

A.Add -> L.build fadd
| A.Sub -> L.build fsub
| A.Mult -> L.build fmul
| A.Div -> L.build fdiv
| A.Equal -> L.build fcmp L.Fcmp.Oeg
| A.Neq -> L.build fcmp
L.Fcmp.One
| A.Less -> L.build fcmp
L.Fcmp.Olt
| A.Leq -> L.build fcmp

L.Fcmp.Ole
| A.Greater -> L.build fcmp
L.Fcmp.Ogt
| A.Geq -> L.build fcmp
L.Fcmp.Oge
| A.And | A.Or ->
raise (Failure "internal error:
semant should have rejected and/or on float")
) el' e2' "tmp" builder
| SBinop (el, op, e2) ->
let el' = expr builder el and e2' = expr
builder e2 in
(match op with

A.Add -> L.build add
| A.Sub -> L.build sub
| A.Mult -> L.build mul
| A.Div -> L.build sdiv
| A.And -> L.build and
| A.Or -> L.build or
| A.Equal -> L.build icmp L.Icmp.Eq
| A.Neg -> L.build icmp L.Icmp.Ne
| A.Less -> L.build icmp L.Icmp.Slt
| A.Leqg -> L.build icmp L.Icmp.Sle
| A.Greater -> L.build icmp L.Icmp.Sgt
| A.Geqg -> L.build icmp L.Icmp.Sge
) el' e2' "tmp" builder
| SUnop (op, ((t,) as e)) —->
let e' = expr builder e in

(match op with

A.Neg when t = A.PrimitiveType (A.Float)

-> L.build fneg
| A.Neg -> L.build neg
| A.Not -> L.build not
) e' "tmp" builder
| SToneAccess n -> let tb = L.build struct gep (lookup n) O
"@tone" builder in
L.build load tb ".tone" builder
| SOctaveAccess n -> let ob = L.build struct gep (lookup n) 1
"@octave" builder in
L.build load ob ".octave" builder
| SRhythmAccess n -> let rb = L.build struct gep (lookup n) 2
"@rhythm" builder in
L.build load rb ".rhythm" builder
| SToneSet (n, e) -> let tb = L.build struct gep (lookup n) 0
"@tone" builder in

let e' = expr builder e in
ignore(L.build store e' tb builder); e'
| SOctaveSet (n, e) -> let ob = L.build struct gep (lookup n)
"@octave" builder in
let e' = expr builder e in
ignore(L.build store e' ob builder); e'
| SRhythmSet (n, e) -> let rb = L.build struct gep (lookup n)

"@rhythm" builder in
let e' = expr builder e in
ignore(L.build store e' rb builder); e'

| SOctaveRaise (n, e) -> let ob = L.build struct gep (lookup n)

1 "@octave" builder in

let el' = expr builder e and e2' =
L.build load ob ".octave" builder in
let sum = L.build add el' e2'
"add octaves" builder in
let x = L.build store sum ob builder in
L.build load (lookup n)
"raise octave of this note" builder

| SOctaveLower (n, e) -> let ob = L.build struct gep (lookup n)
1 "@octave" builder in
let el' = expr builder e and e2' =
L.build load ob ".octave" builder in
let sum = L.build sub e2' el'
"add octaves" builder in
let x = L.build store sum ob builder in
L.build load (lookup n)
"lower octave of this note" builder

| SToneRaise (n, e) -> let e' = expr builder e in

let b' = L.const _int i32 t 0 in

ignore (L.build call change tone func [|
(lookup n) ; e' ; b' |]

"change tone" builder);

L.build load (lookup n)
"raise tone of this note" builder

(* let r' = L.build alloca change tone r
"returned by change tone" builder in *)

(* let n' = L.build call change tone func
[| (lookup n) ; e' ; b'" |]

"change tone" builder in

L.build load n' "returned tone ptr"
builder *)

(* let nv = L.build load n'
"returned tone ptr" builder in

L.build load nv "returned tonelit"
builder *)

(*let ns = L.build load nv
"returned tonelit" builder in

expr builder (A.PrimitiveType (A.Tone),
SToneLit ns) *)

(* let nv
"from build call" builder in *)

(* let rv
"returned value" builder in *)

L.build load n'

L.build load r'

(* ignore(L.build store n' (lookup n)
builder); n' :) *)

(* ignore(L.build store rv (lookup n)
builder); rv *)

(* ignore(L.build store nv (lookup n)
builder); nv *)

(* expr builder (PrimitiveType (Note),
SAssign (n, (PrimitiveType (Note), n'))) *)

(* let t' = L.build struct gep n' O
"@tone" builder and

o' = L.build struct gep n' 1
"@octave" builder and
r' = L.build struct gep n' 2
"@rhythm" builder in
let nl = L.const named struct
named struct note t [| t'; o'; r' |] in

ignore(L.build store nl (lookup n)
builder); nl *)

(* let n' = L.build call change tone func

[| (lookup n) ; e' ; b' [|]
"change tone" builder in
ignore(L.build store n' (lookup n)

builder); n' *)
(* L.build global stringptr ("hiiii" *
"\x00") "tone ptr" builder *)
(* L.build extractvalue (lookup n) O
".tone" builder *)
(* in
L.value name tv *)
(* L.build global stringptr tv "tone ptr"
builder *)

(* let nv = lookup n in
let tv = L.build extractvalue nv O
".tone" builder in
let tvv = L.const extractvalue tv [| 0 []

in
L.build load tvv "note.tone" builder *)
(* L.const extractvalue (lookup n) [| O |]
*)
(* let nv = L.build load (lookup n) n
builder in
L.const extractvalue nv [| O [|] *)
(* L.build extractvalue nv 0 ".tone"
builder *)
(* let tb = L.build struct gep nv O
"@tone" builder in
L.build load tb ".tone" builder ¥*)

| SMakeArray (t, e) -> let len = expr builder e
in make array (ltype of primitive typ

(A.PrimitiveType(t))) (len) builder
| SArrayAssign (arr name, 1idx expr, val expr) ->
let idx = (expr builder idx expr)
and assign val = (expr builder
val expr) in
let llname = arr name ~ "[" *
L.string of llvalue idx ~ "]" in
let arr ptr = lookup arr name in

let arr ptr load = L.build load arr ptr
arr name builder in

let arr gep = L.build in bounds gep
arr ptr load [|idx|] llname builder in

L.build store assign val arr gep

builder
| SArrayAccess (arr name, 1idx expr) ->
let idx = expr builder idx expr in
let llname = arr name ~ "[" ~ L.string of llvalue idx "
in

let arr ptr load =
let arr ptr = lookup arr name in
L.build load arr ptr arr name builder in
let arr gep = L.build in bounds gep arr ptr load [[|idx]]
llname builder in
L.build load arr gep (llname ~ " load") builder
| SCall ("print", [e]) | SCall ("printb", [e]) ->
L.build call printf func [| int format str ; (expr
builder e) |]
"printf" builder

| SCall ("printbig", [e]) ->
L.build call printbig func [| (expr builder e) |]
"printbig" builder
| SCall ("printf", [e]) ->
L.build call printf func [| float format str ; (expr

builder e) |]
"printf" builder
| SCall ("prints", [e]) ->
L.build call printf func [| str format str ; (expr
builder e) |]
"printf" builder
| sCall ("printn", [e]) -> let (, SId n) = e in
let t' = expr builder
(A.PrimitiveType (A.Tone), SToneAccess n)
and o' = expr builder
(A.PrimitiveType (A.Octave), SOctaveAccess n)
and r' = expr builder
(A.PrimitiveType (A.Rhythm), SRhythmAccess n) in
L.build call printf func [| note format str ; t'; o'; r'
"printf" builder
| SCall ("printt", [e]) ->
L.build call printf func [| tone format str ; (expr
builder e) |]
"printf" builder
| SCall ("printo", [e]) ->

L.build call printf func [| octave format str ; (expr builder

"printf" builder
| SCall ("printzxr", [e]) ->

"] "

L.build call printf func [| rhythm format str ; (expr builder

"printf" builder
| sCall ("playnote", [el ; e2]) -> let (, SId n) = el in
L.build call play note func [| (lookup n) ; (expr builder e2)
|1 "play note" builder
| SCall ("bplaynote", [el
L.build call bplay note func [| (lookup n) ;
e2) ; (expr builder e3)|] "bplay note" builder
| SCall ("playtrack", [el ; e2]) -> let (, SId n) = el in
L.build call play note array func [| (expr builder el) ;
(expr builder e2) |] "play note array" builder
| SCall (£, args) —->
let (fdef, fdecl) = StringMap.find f function decls in
let llargs = List.rev (List.map (expr builder) (List.rev

; e2 ; e3]) -> let (, SId n) = el in
(expr builder

args)) in
let result = (match fdecl.styp with

A.PrimitiveType (A.Void) -> ""
| -> £ 7~ " result") in
L.build call fdef (Array.of list llargs) result builder

in
(* LLVM insists each basic block end with exactly one

"terminator"
instruction that transfers control.

builder"
if the current block does not already have a terminator.

This function runs "instr

Used,
e.g., to handle the "fall off the end of the function" case.
*)

let add terminal builder instr =
match L.block terminator (L.insertion block builder) with
Some -> ()
| None -> ignore (instr builder) in

(* Build the code for the given statement; return the builder for
the statement's successor (i.e., the next instruction will be

built
*)

after the one generated by this call)

let rec stmt builder = function
SBlock sl -> List.fold left stmt builder sl
| SExpr e -> ignore (expr builder e); builder

| SReturn e -> ignore(match fdecl.styp with
(* Special "return nothing" instr ¥*)

A.PrimitiveType (A.Void) ->
L.build ret void builder

(* Build return statement *)

| -> L.build ret (expr builder e)
builder);
builder
| SIf (predicate, then stmt, else stmt) ->

let bool val = expr builder predicate
in

let merge bb = L.append block context
"merge" the function in

let build br merge = L.build br
merge bb in (* partial function *)

let then bb = L.append block context
"then" the function in
add terminal (stmt (L.builder at end
context then bb) then stmt)
build br merge;

let else bb = L.append block context
"else" the function in
add terminal (stmt (L.builder at end
context else bb) else stmt)
build br merge;

ignore(L.build cond br bool wval
then bb else bb builder);
L.builder at end context merge bb

| SWhile (predicate, body) ->
let pred bb = L.append block context
"while" the function in
ignore(L.build br pred bb builder);

let body bb = L.append block context
"while body" the function in
add terminal (stmt (L.builder at end
context body bb) body)
(L.build br pred bb);

let pred builder = L.builder at end
context pred bb in

let bool val = expr pred builder
predicate in

let merge bb = L.append block context
"merge" the function in
ignore(L.build cond br bool val
body bb merge bb pred builder);
L.builder at end context merge bb
(* Implement for loops as while loops *)
| SFor (el, e2, e3, body) -> stmt builder
(SBlock [SExpr el ; SWhile (e2,
SBlock [body ; SExpr e3])])

in

(* Build the code for each statement in the function *)
let builder = stmt builder (SBlock fdecl.sbody) in

(* Add a return i1f the last block falls off the end *)

add terminal builder (match fdecl.styp with
A.PrimitiveType (A.Void) -> L.build ret void

.PrimitiveType (A.Float) -> L.build ret (L.const float

.0)

|
float t
| -> L.build ret (L.const int (ltype of typ t) 0))

+ o >

in

List.iter build function body functions;
the module

8.9. cflatapi
8.9.1. cflatapi.h

#ifndef CFLATAPI H
#define CFLATAPI H

/* Note struct */
struct note{
char* tlit;
int olit;
char* rlit;
}note;
/*Allocates space for a note struct*/
struct note *new note(char *tone, int octave, char *rhythm);

/ *
** CFLAT USER FUNCTION DECLARATIONS

*/

/* Plays a single note

**INPUT: Takes in a pointer to a single note struct

**QUTPUT: A midifile called " (i/b)hellonote.mid" that plays the note
*/

void play note(struct note *note ptr, char *filename);

void bplay note(struct note *n, int beat, char *filename); /*

bplay note takes in beat (beats/min) */

void iplay note(struct note *n, int instrument); /* iplay note takes
in an instrument 1-127%*/

/* Plays a single note

**INPUT: Takes in a pointer to an array of note struct pointers
**QUTPUT: A midifile called "notearray.mid" that plays a C Major
scale.

*/

void play note arr(struct note *note arr, char *filename);

vold bplay note arr(struct note *note arr[], int beat); /*

bplay note arr takes in beat (beats/min) */

void iplay note arr(struct note *note arr[], int instrument);
voild ibplay note arr(struct note *note arr[], int instrument, int
beat) ;

void play tracks(int i, ...);

#endif

8.9.2. cflatapi.c

/*The CFlat API. Codegen should call functions from this library */
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <stdarg.h>

#ifndef APPLE
#include <malloc.h>
#endif

#include "midifile.h"

finclude "cflatapi.h"

/*Mallocs space for and initializes a new note struct */
struct note *new note(char *tone, int octave, char *rhythm) {

struct note *n = malloc(sizeof (struct note));
if (n == NULL) return NULL;

strcpy (n->tlit, tone);
n->o0lit = octave;
strcpy (n->rlit, rhythm);

return n;

/* INTERNAL FUNCTIONS, CFLAT USERS SHOULD NOT CALL THESE */

/*INPUT: Takes in a pointer to a single note struct and pointer to a
midi file */

/*OUTPUT: No output but it will add the note to the midi file */
void add note(struct note *note ptr, MIDI FILE *mf, int track);

/*INPUT: Takes in a pointer to an array of note struct, pointer to a
midi file */

/*OQUTPUT: No output but it will add track with notes to the midifile
*/

void add track(struct note *note arr[], MIDI FILE *mf, int track);

void play note(struct note *note ptr, char *filename) {
MIDI FILE *mf;
char name[100];
strcpy (name, filename);
char midi[] = ".mid";
strcat (name, midi);
if ((mf = midiFileCreate (name, TRUE))) {
midiTrackAddProgramChange (mf, 1,
MIDI_PATCH_ACOUSTIC_GRAND_PIANO);
add note(note ptr, mf, 1);
midiFileClose (mf) ;

void bplay note(struct note *note ptr, int beat, char *filename) {
MIDI FILE *mf;
if ((mf = midiFileCreate ("output.mid", TRUE))) {
midiSongAddTempo (mf, 1, beat);

midiTrackAddProgramChange (mf, 1,
MIDI PATCH ACOUSTIC GRAND PIANO) ;
add note (note ptr, mf, 1);
midiFileClose (mf) ;
}

void iplay note(struct note *note ptr, int instrument) {
MIDI FILE *mf;

if ((mf = midiFileCreate ("hellonoteinst.mid", TRUE))) {

midiTrackAddProgramChange (mf, 1, instrument);
add note (note ptr, mf, 1);
midiFileClose (mf) ;

}

void play note arr(struct note *note arr, char *filename) {

MIDI FILE *mf;

char name[100];

strcpy (name, filename);

char midi[] = ".mid";

strcat (name, midi);

if ((mf = midiFileCreate (name, TRUE))) {

int 1 = 0;
for (i = 0; i < 23; i++) {
/*
printf ("%$s%d\n", "OCTAVE,", (*note arr) -> olit);
printf ("$s%s\n", "RHYTHM,", (*note arr) -> rlit);
printf ("%$s%s\n", "OCTAVE,", (*note arr) -> tlit); */

add note((¬e arr[i]), mf, 1);

midiFileClose (mf) ;

void bplay note arr(struct note *note arr[], int beat) {
MIDI FILE *mf;
if ((mf = midiFileCreate ("helloarraybeat.mid", TRUE))) {
midiSongAddTempo (mf, 1, beat);
while (*note arr) {
add note ((*note arr), mf, 1);

note arr++;

}

midiFileClose (mf) ;

void iplay note arr(struct note *note arr[], int instrument) {
MIDI FILE *mf;
if ((mf = midiFileCreate("helloarrayinst.mid", TRUE))) {
midiTrackAddProgramChange (mf, 1, instrument);
while (*note arr) {
add note((*note arr), mf, 1);
note arr++;
}

midiFileClose (mf) ;

void add note(struct note *note ptr, MIDI FILE *mf, int track) {

char *tlit = note ptr -> tlit;
int olit = note ptr -> olit;
char *rlit = note ptr -> rlit;

int miditone = 0;

int is rest = 0;

char tone = tlit[0];

printf ("tone: %s\n", tlit);
printf ("octave: %d\n", olit);
printf ("rhythm: %s\n", rlit)

if (tone == 'R') {is rest = 1;}

else 1f (tone == 'C') {miditone = 0;}

else 1f (tone == 'D') {miditone = 2;}

else if (tone == 'E') {miditone = 4;}

else i1f (tone == 'F') {miditone = 5;}

else if (tone == 'G') {miditone = 7;}

else 1f (tone == '"A') {miditone = 9;}

else if (tone == 'B') {miditone = 11;}

else {printf("%s", "This is not a wvalid tone.");}
int accidental = 0;

/*char acc = tlit[1l];*/
char acc = tlit[1l];

if (acc == '-') {accidental = -1;}

else 1f (acc == '4+') {accidental = 1;}

else 1f (acc == '.'") {accidental = 0;}

/* else {printf("%s\n", "This is not an allowable accidental
value.");}*/

miditone = (miditone + accidental)%12; /*Accounts for any

wraparound needed for B# or Cflat*/

/*CONVERTING CFLAT RHYTHM => MIDI RHYTHM*/

int midirhythm = MIDI NOTE CROCHET;

int dotted = 0;

if (strlen(rlit) > 1 && rlit[l] == '.') {dotted = 1;} /*checks
for dotted value*/

char rhythm = rl1lit[0];
if (rhythm == 's') {midirhythm = MIDI_NOTE_SEMIQUAVER;}
else 1if (rhythm == 'e') {midirhythm MIDI NOTE QUAVER;}

else if (rhythm == 'g') {midirhythm = MIDI NOTE CROCHET; }
else if (rhythm == 'h') {midirhythm = MIDI NOTE MINIM; }
else if (rhythm == 'w') {midirhythm = MIDI NOTE BREVE; }

else {printf ("%s%c\n", "Rhythm is not a wvalid rhythm.", rhythm);}

if (dotted) { midirhythm += midirhythm/2; } /* adds the dotted
portion */

/*CONVERTING CFLAT olit => MIDI OCTAVE*/
int midioctave = olit;
if (olit >= 0 && olit <= 10) {
midioctave *= 12;
}
/*DEFAULT TIME SIGNATURE */
midiSongAddSimpleTimeSig (mf, track, 4, MIDI NOTE CROCHET);
midiFileSetTracksDefaultChannel (mf, track, MIDI CHANNEL 1);
midiTrackAddText (mf, track, textLyric, tlit);

int volume = MIDI VOL MEZZO;
if (is_rest){
volume = 0;

midiTrackAddNote (mf,
FALSE) ;

volume,

TRUE,

track, miditone + midioctave, midirhythm,

vold add track(struct note *note arr[], MIDI FILE *mf, int track) {

printf ("sd",

while

void play tracks(int num tracks,

track) ;

note arr++;

MIDI FILE *mf;
va list valist;
va_start (valist,

struct note **track;

int 1i;
if ((mf
for

(*note arr) {
add note ((*note arr), mf,

num_tracks);

) A

track) ;

= midiFileCreate ("playTracks.mid", TRUE))) {

(i =

track = va arg(valist,

0;

1 < num_tracks;

add track(track, mf, 1i);

midiFileClose (mf) ;

/* char **change tone(char *tlit, int

int miditone =

int is rest =

char tone = tlit[0];

if (tone ==

else
else
else
else
else
else

if
if
if
if
if
if

tone
tone

tone

(
(
(tone
(
(tone
(

tone

O.
O.

4

lRl)

4

{is rest = 1;}

{miditone =
{miditone =
{miditone =
{miditone =
{miditone =
{miditone =

1+4) {
struct note **);

incr, int is lower) {

~e

~e

~e

O J 0N O
~e N
e e o e

~e

else 1f (tone == 'B') {miditone = 11;}
else {printf("%s", "This is not a wvalid tone.");}

int accidental = 0;
char acc = tlit[1l];

if (acc == '-') {accidental = -1;}

else 1f (acc == '4+') {accidental = 1;}

else 1f (acc == '.'") {accidental = 0;}

else {printf ("%s\n", "This is not an allowable accidental
value."); }

1f(is lower) {miditone = miditone + accidental - incr;}

else{miditone = miditone + accidental + incr;}

miditone = ((miditone)%12+12)%12;

Char *toneMap[] = {IIC", "C+", "D", "D+", "E", "F", "F_I_", "G",

"G_I_", "A", "A+", "B"};

return &toneMap[miditone];

}ox/
void change tone(struct note *note, int incr, int is lower) {

char *tlit = note -> tlit;
int olit = note -> olit;

/* char *newtlit;

int newolit;

char *samerlit = note -> rlit;
struct note* newnoteptr;
struct note newnote; */

int miditone = 0;
int is rest = 0;
char tone = tlit[0];

if (tone == 'R') {is rest = 1;}

else i1f (tone == 'C') {miditone = 0;}
else 1f (tone == 'D') {miditone = 2;}
else if (tone == 'E') {miditone = 4;}
else i1f (tone == 'F') {miditone = 5;}
else i1f (tone == 'G') {miditone = 7;}
else 1f (tone == '"A') {miditone = 9;}

else 1f (tone == 'B') {miditone = 11;}
else {printf("%s", "This is not a wvalid tone.");}

int accidental = 0;
char acc = tlit[1l];

if (acc == '-') {accidental = -1;}

else 1f (acc == '4+') {accidental = 1;}

else 1f (acc == '.'") {accidental = 0;}

else {printf ("%s\n", "This is not an allowable accidental
value."); }

1f(is lower) {miditone = miditone + accidental - incr;}

else{miditone = miditone + accidental + incr;}

if (is lower) {
while (miditone < 0) {
miditone += 12;

olit -=1;
}
telse{
while (miditone > 11) {
miditone -= 12;
olit +=1;

if (is rest) {tlit = tlit;}

Char *toneMap[] e {"c", "C+", "D", "D_I_", "E", "F", "F+'l, "G",
"G_I_", "A", |IA+", "B"};

/* strcmp (newtlit, toneMap[miditonel]):;

newolit = olit;
newnoteptr = new note(newtlit, newolit, samerlit);
newnote = *newnoteptr; */

strcpy(tlit, toneMap[miditonel]);

note -> tlit tlit;
note -> olit = olit;

8.10. Makefile

CC=gcc

LINK = $(CC)

CFLAGS = -02 -ansi -Wall
LDFLAGS = -s

"make test" Compiles everything and runs the regression tests

.PHONY : test
test : all testall.sh
./testall.sh

"make all" builds the executable as well as the "printbig" library
designed
to test linking external code

.PHONY : all
all : cflat.native printbig.o cflatapi.o midifile.o

"make cflat.native" compiles the compiler

#

The tags file controls the operation of ocamlbuild, e.g., by
including

packages, enabling warnings

#

See
https://github.com/ocaml/ocamlbuild/blob/master/manual/manual.adoc

cflat.native
opam config exec -- \
ocamlbuild -use-ocamlfind cflat.native

"make clean" removes all generated files
.PHONY : clean
clean
ocamlbuild -clean
rm -rf testall.log ocamlllvm
rm -f *.o *.out *.mid *.11 *.s *. *.exe *.diff *.err

Testing the "printbig" example

printbig: printbig.c

cc -o printbig -DBUILD TEST printbig.c

midifiles
midifile.o: midifile.c midifile.h

cflatapi.o: cflatapi.c cflatapi.h

Building the tarball
TESTS = arr assign int arr assign note arr concat int arr concat int
arr decl int arr make int arr make note\

binop0 binopl bplaynote for0 forl helloworld0O helloworldl
if0 ifl if2 int microcfloatl note noteattl declare\

noteatt2 get noteatt3 getset playnote printfloat
tone features unopl0 whileO

FAILS = assign int note
FAILS = microcprint

MIDI = playnote bplaynote

TESTFILES = $S(TESTS:%=test-%.cf) S (TESTS:%=test-%.out)
S(FAILS:%=fail-%.cf) S$(FAILS:%=fa
f

\
il-%.err) \
S(MIDI:%=midi-%.cf) $(MIDI:%=midi-%.mid)
TARFILES = ast.ml sast.ml codegen.ml Makefile tags cflat.ml
parser.mly \

README scanner.mll semant.ml testall.sh \

printbig.c cflatapi.c midifile.c arcade-font.pbm font2c \

Dockerfile \

S(TESTFILES:%=tests/%)

cflat.tar.gz : $(TARFILES)
cd .. && tar czf cflat/cflat.tar.gz \
S (TARFILES:%=cflat/%)

8.11. testall.sh

#!/bin/sh

Regression testing script for MicroC

Step through a list of files

Compile, run, and check the output of each expected-to-work test
Compile and check the error of each expected-to-fail test

Path to the LLVM interpreter
LLI="114i"
#LLI="/usr/local/opt/1llvm/bin/11i"

Path to the LLVM compiler
LLC="11lc"

Path to the C compiler
CC="cc"

Path to the CFlat compiler. Usually "./cflat.native"
Try " build/cflat.native" if ocamlbuild was unable to create a

symbolic link.
CFLAT="./cflat.native"
#CFLAT=" build/cflat.native"

Set time limit for all operations
ulimit -t 30

globallog=testall.log
rm -f $globallog
error=0

globalerror=0

keep=0
Usage () {
echo "Usage: testall.sh [options] [.cf files]"
echo "-k Keep intermediate files"
echo "-h Print this help"
exit 1
}
SignalError () {
if [Serror -eq 0] ; then
echo "FAILED"
error=1
fi
echo " S$1"
}
Compare <outfile> <reffile> <difffile>
Compares the outfile with reffile. Differences,

difffile
Compare () |

if any,

written to

generatedfiles="$generatedfiles $3"
echo diff -b $1 $2 ">" $3 1>&2
diff -b "S$1"™ "S$2" > "33 2>&1 || |
SignalError "$1 differs"
echo "FAILED $1 differs from $2" 1>&2

Run <args>
Report the command, run it, and report any errors
Run () A
echo $* 1>&2
eval $* || {
SignalError "$1 failed on $*"
return 1

RunFail <args>
Report the command, run it, and expect an error
RunFail () {
echo $* 1>&2
eval S$* && {
SignalError "failed: $* did not report an error"
return 1

}

return O

Check () {
error=0
basename="echo $1 | sed 's/.*\\///
s/.cft//""
reffile="echo $1 | sed 's/.cfS$S//'"
basedir=""echo $1 | sed 's/\/["\/1*$//' /."

echo -n "S$basename...

echo 1>&2
echo "###### Testing Sbasename" 1>&2

generatedfiles=""

generatedfiles="$generatedfiles ${basename}.ll S${basename}.

S{basename}.exe ${basename}.out" &&

Run "SCFLAT" "s$1" ">" "S{basename}.ll" &&

Run "SLLC" "-relocation-model=pic" "${basename}.l11" ">"
"S{basename}.s" &&

Run "SCC" "-0o" "$S{basename}.exe" "S${basename}.s" "printbig.o"
"cflatapi.o" "midifile.o" &&

Run "./S$S{basename}.exe" > "S${basename}.out" &&

Compare ${basename}.out S${reffile}.out ${basename}.diff

Report the status and clean up the generated files
if [Serror -eq 0] ; then

if [Skeep -eq 0] ; then
rm -f $Sgeneratedfiles

fi

echo "OK"

echo "###### SUCCESS" 1>&2
else

echo "###### FAILED" 1>&2
globalerror=Serror
fi

CheckMidi () {
error=0
basename="echo $1 | sed 's/.*\\///
s/.cft//""
reffile="echo $1 | sed 's/.cf$//'"
basedir=""echo $1 | sed 's/\/["\/1*$//' /."

Al

echo -n "S$basename...

echo 1>&2
echo "###### Testing Sbasename" 1>&2

generatedfiles=""
generatedfiles="$generatedfiles ${basename}.ll S${basename}.s

S{basename}.exe ${basename}.out" &&
Run "SCFLAT" "S$S1"™ ">" "S{basename}.ll" &&

Run "SLLC" "-relocation-model=pic" "${basename}.l11" ">"
"S{basename}.s" &&

Run "$CC" "-o" "S$S{basename}.exe" "S${basename}.s" "cflatapi.o"
"midifile.o" &&

Run "./S$S{basename}.exe" > "S${basename}.out" &&

Compare output.mid tests/S${basename}.mid ${basename}.diff

Report the status and clean up the generated files

if [Serror -eq 0] ; then
if [Skeep -eq 0] ; then
rm -f $generatedfiles

fi

echo "OK"

echo "###### SUCCESS" 1>&2
else

echo "###### FAILED" 1>&2
globalerror=Serror
fi

CheckFail () {

&&

error=0

basename="echo $1 | sed 's/.*\\///
s/.cft//""

reffile="echo $1 | sed 's/.cf$//'"

basedir=""echo $1 | sed 's/\/["\/1*$//' /."

echo -n "$basename..."

echo 1>&2
echo "###### Testing Sbasename" 1>&2

generatedfiles=""
generatedfiles="$generatedfiles ${basename}.err S${basename}.diff"

RunFail "SCEFLAT" "<" $1 "2>" "S{basename}.err" ">>" Sgloballog &&
Compare S${basename}.err S${reffile}.err ${basename}.diff

Report the status and clean up the generated files
if [Serror -eq 0] ; then

if [Skeep -eq 0] ; then
rm -f $Sgeneratedfiles

fi

echo "OK"

echo "###### SUCCESS" 1>&2
else

echo "###### FAILED" 1>&2
globalerror=$error

fi

while getopts kdpsh c¢; do
case S$Sc in
k) # Keep intermediate files

keep=1
h) # Help
Usage
esac
done

shift “expr SOPTIND - 1°

LLIFail () {

echo "Could not find the LLVM interpreter \"SLLI\"."

echo "Check your LLVM installation and/or modify the LLI variable
in testall.sh"

exit 1
}
which "SLLI" >> S$globallog || LLIFail
if [! -f printbig.o]
then

echo "Could not find printbig.o"
echo "Try \"make printbig.o\""
exit 1

fi

if [$# -ge 1]
then
files=5@
else
files="tests/midi-*.cf tests/test-*.cf tests/fail-*.cf"
fi

for file in S$files
do
case S$file in
midi-)
CheckMidi S$file 2>> S$Sgloballog

rrs

test-%)

Check $file 2>> S$Sgloballog
fail-)

CheckFail $file 2>> S$globallog

r

echo "unknown file type $file"
globalerror=1
esac
done

exit $globalerror

8.12. tests
8.12.1. fail-assign_int_note.cf

int main ()

{
int i,
note n;
i = n;
return 0;

8.12.2. midi-bplaynote.cf

int main ()

{
note njy
string filename;
n= (/C-/ /4/ /s/);
filename = "output";
bplaynote(n, 60, filename);

return 0;

8.12.3. midi-bplaynote1.cf

int main ()

{
note n;y;
string filename;
n= (/C-/ /5 /w/);
filename = "output";

bplaynote (n, 360, filename);

return 0;

8.12.4. midi-play_arr.cf

int main ()

{

note n;

note m;

note[] note arr;

n= (/C-/ /4/ /a/):
m= (/E/ /5/ /w/);
note arr = make(note, 3);
note arr[0] = n;

note arr[l] = n;

note arr[2] = m;

playtrack(note arr, "playarr");
return 0;

8.12.5. midi-playnote.cf

int main ()

{
note njy;
string file;
n= (/C-/ /4 /s./);
file = "output";
playnote(n, file);

return 0;

8.12.6. midi-playnote1.mid

int main ()

{
note n;
string filename;
n= (/a+/ /7/ /h./);
filename = "output";
playnote(n, filename);

return 0;

8.12.7. test-arr_decl_int.cf

int main ()

{
int[] int arr;
return 0O;

8.12.8. test-arr_decl_note.cf

int main ()

{
note[] note arr;
return 0;

8.12.9. test-arr_make_int.cf

int main ()

{
int[] intarr;
intarr = make (int, 3);
intarr[0] = 1;
intarr[1l] = 2;
intarr[2] = 3;
(: print(int arr);
print (intarr[1]);

should

print out the array literal

2)

return 0;

8.12.10. test-arr_make_note.cf

int main ()

{

note n;

note m;

note k;

note[] notearr;

n= (/C-/ /4/ /al);
m= (/E/ /5/ /w/);
notearr = make (note, 6);
notearr[0] = n;
notearr[l] = m;

k = notearr[1l];

(: notearr[2] = m; :)

printn (k) ;
return 0;

8.12.11. test-binop0.cf

int main () {

1+ 2);

1 -2);

1 * 2);
print (100 / 2);
print (99);
return 0;

print
print
print

o~ o~ o~ —~

8.12.12. test-binop1.cf

int main() {
printb (1l == 2);
printb (1 == 1);

printb (1 != 2);

printb (1 != 1);
printb (1 < 2);
printb (2 < 1);
printb (1 <= 2);
printb (1 <= 1);
printb (2 <= 1);
printb (1 > 2);
printb (2 > 1);
printb (1 >= 2);
printb (1 >= 1);
printb (2 >= 1);

8.12.13. test-crazy_compbool.cf

int main ()

note n;
note m;

(/C/ /4/ /s./);
m = (/F/ /5/ /q/);

o}
Il

printb((n.tone() != m.tone()) && (n.tone() !'= m.tone())
printb((n.tone() != m.tone()) || (n.tone() == m.tone())

return 0;

8.12.14. test-for0O.cf

int main ()
{
int i;
for (1 =0 ; 1 <5 ; 1=1+4+1) {
print (i) ;
}
print (42);
return 0;

8.12.15. test-forl.cf

int main ()
{
int 1i;
i=0;
for (; i < 5;) {
print (i) ;
i =1+ 1;
}
print (42);
return 0;

8.12.16. test-helloworldO.cf

int main () {
prints ("Hello World");
return 0;

8.12.17. test-helloworld1.cf

int main () {
string s;
s = "I am alive";
prints(s);
return 0;

8.12.18. test-ifO.cf

int main ()

{
if (true) print (42);
print (17);
return 0;

8.12.19. test-if1.cf

int main ()

if (false) {
print (42);

}
print (17);
return 0;

8.12.20. test-int.cf

int main ()
{
int 1i;
i = 3;
return 0;

8.12.21. test-microcfloat1.cf

int main ()

{
float a;
a = 3.14159267;
printf (a);
return 0;

8.12.22. test-note.cf

int main ()

{

note nj;
n = (/C-/ /4/ /s./);

printn(n);

return 0;

8.12.23. test-noteatt1_declare.cf

int main ()

tone t;
octave o7
rhythm r;

t = /C-/;
o= /4/;
r = /s./;

printt(t);
printo (o) ;
printr(r);

return 0;

8.12.24. test-noteatt2_get.cf

int main ()

{
note njy;
tone t;
octave o0;
rhythm r;

(/C=/ /0/ /s./)

=}
Il

t n.tone () ;
printt(t);

o = n.octave();
printo (o) ;

r = n.rhythm();
printr(r);

return O;

8.12.25. test-noteatt3_getset.cf

int main ()

{

note njy;
note vy
tone t;
octave o;
rhythm r;

n= (/C-/ /4/ /s./);

t = n.tone();
o = n.octave();
r = n.rhythm();

v.tone (t);
printt(v.tone());

v.tone (/A/);
printt (v.tone());

v.octave (0) ;
printo(v.octave())

v.octave (/5/);
printo(v.octave()):;

v.rhythm(r) ;
printr (v.rhythm());

v.rhythm(/h/);
printr (v.rhythm());

return 0;

8.12.26. test-octave_compbool.cf

int main ()

{
note n;
note m;

octave o;
octave v;

n = (/C/ /4/ /s./);

m = (/F/ /5/ /a/);

o= /3/;

v = /3/;

printb (n.octave() == m.octave());
printb (n.octave() != m.octave());
printb(o == v);

printb(o != v);

return 0;

8.12.27. test-printfloat.cf

int main () {

float £f;

f = 3.14;
printf (f);
return 0;

8.12.28. test-raiselowerOctave.cf

int main ()

{

note n;
n = (/C/ /4/ /s./);

printo(n.octave());

n = n.raiseOctave (1) ;
printo(n.octave());

n = n.lowerOctave (3) ;
printo(n.octave());

return 0;

8.12.29. test-rhythm_compbool.cf

int main ()

{
note nj;
note m;

rhythm t;
rhythm wv;

n = (/C/ /4/ /s./);

m = (/F/ /5/ /q/);

t = /h/;

v = /h/;

printb (n.rhythm() == m.rhythm()
printb (n.rhythm() !'= m.rhythm()
printb(t == v);

printb(t !'= v);

return 0;

8.12.30. test-unopO.cf

int main () {
printb (true);
printb (false);
printb (true && true);
printb (true && false);
printb (false && true);
printb(false && false);
(
(
(
(
(

printb (true || true);
printb (true || false);
printb (false || true);
printb (false || false);
!false);

printb
printb (!true);
print (-10);
print (--42);
return 0;

8.12.31. test-while0.cf

int main ()
{
int i;
i=5;
while (1 > 0) {
print (i) ;
i=1-1;
}
print (42);
return 0;

