
Nintendo GameBoy
Hardware Emulator

Donovan Sproule (das2313), Nicolas Alarcon (na2946), Claire Cizdziel (ctc2156)

BameGoy

GameBoy Specs

(https://en.wikipedia.org/wiki/Game_Boy)

SoC: Nintendo DMG-CPU (Sharp LR35902)

CPU: 4.194304 MHz Sharp SM83

Screen: 45.5mm x 41.5mm

Memory: 64 KB

- On SoC: 256 B "bootstrap" ROM, 127 B High RAM

- Internal: 8 KB RAM, 8 KB Video RAM

- External: (in cartridge) up to 1 MB ROM, up to 128 KB RAM

Resolution: 160 (w) × 144 (h) pixels (10:9 aspect ratio)

- 4 possible colors of gray

Power: 70–80 mAh, 4 x AA batteries

I/O: joypad, audio, graphics, LCD

https://en.wikipedia.org/wiki/Game_Boy

GB-Z80 Specs

GB-Z80: Using modified open-source Z80, also operating at 4.19 MHz

Timing: Instructions in multiples of 4 cycles

Interrupts: V-Blank, LCD controller, timer, serial, and joypad

I/O: performed through memory load/store instructions

Modifications: for this specific usage, there were modifications, shown in

the table on the right.

Memory
64 KiB Memory allocated as follows:

(https://crocidb.com/post/gameboy-emulator1/)

https://crocidb.com/post/gameboy-emulator1/

System Block Diagram

PPU

PPU Modes

During a scanline, PPU enters specific modes with distinct functions:

Mode 2: OAM Scan

- PPU searches OAM memory for sprites and stores in buffer

- 80 T-cycles (PPU checks new OAM every 2 T-cycles)

Mode 3: Drawing

- PPU transfers pixels to LCD

Mode 0: H-Blank

- “Padding” for remainder of scanline - til reaches total of 456 T-cycles

- PPU “paused”

Mode 1: V-Blank

- “Padding” similar to H-Blank

- Takes place at the end of every frame for longer duration

PPU Modes & Timing

GameBoy can display up to 40 moveable objects/sprites

- Maximum of 10 objects per scanline

- Each object consist of 4 bytes

- PPU compares (LCDC bit 2) to determine sprite height

Object attributes in memory at $FE00-$FE9F

Writing to OAM:

- Data is written to a buffer in WRAM

- WRAM copied to OAM

- Direct OAM writing only works during HBlank or VBlank

Object Attribute Memory (OAM)

OAM DMA Transfer:

- Writing to $FF46 – DMA initiates DMA transfer from WRAM to OAM

Selection priority:

- Only selects first (up-to) 10 objects to be drawn; can apply to off-screen objects

- Setting Y=0 would therefore “hide” sprite

Drawing priority:

- Priority given to smaller X coordinate

- If X identical, sprite located first in OAM

has higher priority

Object Attribute Memory (OAM)

(https://www.copetti.org/writings/consoles/game-boy/)

https://www.copetti.org/writings/consoles/game-boy/

PPU Block Diagram

Background Fetching

Fetching pixels takes 2 T-Cycles to complete, with the process:

1. Fetch Tile No.

a. For background pixel - offsets tile data by 32 * (((LY + SCY) & 0xFF) / 8)

2. Fetch Tile Data (Low)

a. Fetches first byte of tile data - with offset of 2 * ((LY + SCY) mod8)

3. Fetch Tile Data (High)

a. Same as Low, except next byte is read and stored

4. Push to FIFO

a. Only executes if FIFO is fully empty

b. Step 4 usually restarts twice before pushing - Steps 1-3 take 6 T-cycles, PPU takes 8

T-cycles to shift out all 8 pixels

Pixel FIFO

Individual pixels are pushed to the LCD one by one

- Each pixel holds the information of color, palette, sprite priority, and background priority

- The pixel fetcher is responsible for loading the FIFO registers

Background and Pixel FIFO are merged when pushed to LCD

(https://hacktix.github.io/GBEDG/ppu/#the-concept-of-ppu-modes)

https://hacktix.github.io/GBEDG/ppu/#the-concept-of-ppu-modes

Background Scrolling

SCX register allows for scrolling background on a per-pixel basis

- While shifting pixels out of background FIFO, start of scanline SCX mod 8 pixels are discarded

- Simultaneously, per-tile horizontal scrolling is handled with fetching process

- Results in PPU Mode 3 extending by SCX mod 8 cycles

(https://hacktix.github.io/GBEDG/ppu/#the-concept-of-ppu-modes)

https://hacktix.github.io/GBEDG/ppu/#the-concept-of-ppu-modes

Sprite Fetching

(https://gbdev.gg8.se/wiki/articles/OAM_DMA_tutorial)

The Sprite Fetcher works very similarly to the background fetcher:

1. Fetch Tile No.

2. Fetch Tile Data (Low)

3. Fetch Tile Data (High)

4. Push to FIFO

- Tiles taken from $8000-$87FF and unsigned

numbering

If (X-Position of any sprite in buffer) ≤ (current

Pixel-X-Position + 8), sprite fetch is initiated:

- resets the Background Fetcher to step 1 and

temporarily pauses it

- pixel shifter to the LCD is also suspended

https://gbdev.gg8.se/wiki/articles/OAM_DMA_tutorial

Sprite Timing
Once sprite fetch is completed

- PPU starts pushing pixels to LCD

- Background fetcher is restarted

- Delay occurs if <6 pixels remaining in Background FIFO (delay=6 - REMAINING_PIXEL_COUNT)

Sample timing diagram:

(https://hacktix.github.io/GBEDG/ppu/#the-concept-of-ppu-modes)

https://hacktix.github.io/GBEDG/ppu/#the-concept-of-ppu-modes

Sprite Timing

(https://hacktix.github.io/GBEDG/ppu/#the-concept-of-ppu-modes)

https://hacktix.github.io/GBEDG/ppu/#the-concept-of-ppu-modes

(https://imrannazar.com/GameBoy-Emulation-in-JavaScript:-Graphics)

Example of tiles creating background map:

https://imrannazar.com/GameBoy-Emulation-in-JavaScript:-Graphics

Tile Data

(https://gbdev.io/pandocs/Tile_Data.html)

Tile data stored in VRAM in $8000-$97FF

Tiles can be displayed as part of Background/Window and/or moveable Sprites

$8000 Method:

- $8000: base pointer

- TILE_NUMBER: unsigned 8-bit integer

- Add $8000 to (TILE_NUMBER * 16)

$8800 Method:

- $9000: base pointer

- SIGNED_TILE_NUMBER: signed 8-bit integer

- Add $9000 to (SIGNED_TILE_NUMBER * 16)

https://gbdev.io/pandocs/Tile_Data.html

Tile Map
Game Boy contains two 32×32 tile maps in VRAM at $9800-$9BFF and $9C00-$9FFF

Each tile map has 1 byte indexes of tiles to be displayed

- Tiles obtained through address from VRAM selected via LCDC register

Background-to-Object Priority

- BG/OBJ priority declared in 3 places: BG Map bit 7, LCDC bit 0, OAM bit 7

- Sample priority table shown below:

(https://gbdev.io/pandocs/Tile_Data.html)

https://gbdev.io/pandocs/Tile_Data.html

Interrupt Handling

VBlank INT $40 Requested every time Game Boy enters VBlank

STAT INT $48 Can be triggered by various sources

Timer INT $50 Requested every time the timer overflows

Serial INT $58 Requested upon completion of a serial data transfer (8 serial clock
cycles after starting transfer)

Joypad INT $60 Requested when a button is pressed

Color Rendering

The GameBoy is capable of 4 colors

- Each color takes 2 bits

- Each tile in tile data set is held in 16 bytes

Each color is achieved with the equation:

- (Each bit of first byte) + (bit in same position on second byte) => calculates color number

(https://imrannazar.com/GameBoy-Emulation-in-JavaScript:-Graphics)

https://imrannazar.com/GameBoy-Emulation-in-JavaScript:-Graphics

Scrolling
GameBoy scrolling is 160x144 pixels, but background map is 256x256 pixels → scrolling

- Background is defined at the top-left of screen

- By moving this point between frames, the background can scroll

- Top-left is defined by registers Scroll X, Scroll Y

Timing
Proper timing ensure proper synchronization with the CPU, frame rate and refresh rate, memory

access, and rendering pipelines (For testing)

- Calibrated clock cycles using gtkwave

- Example final timing diagram of PPU

Timing

Example timing diagram of memory mechanism

- “dots [8:0]” represents instructions processed by the PPU, for the sake of testing

- System stalls during testing but not deployment

- “dot” increments, then moves onto the next instruction.

PPU Testing

Using interactive test benches, gradually built up capabilities of PPU

- Example images of initial PPU testing

- Found issues with timing and synchronization

PPU Testing

Tile map drawn from one tile Tile map drawn from multiple tiles

PPU Testing

Sprites implemented
Sprites implemented and handles LCDC flags,

window, multiple BG maps, and scrolling

DONE!

Video

GameBoy Video: 160x144 pixels

VGA: 1280 x 1024 pixels @ 60Hz

VGA Game Window: 960 x 864 pixels (centered on screen)

- GameBoy pixel data written into framebuffer @ 4MHz

- VGA reads framebuffer with pixel frequency @ 108 MHz

- One pixel every cycle

- Referenced Lab 3 as a VGA scaling resource

- Background set to Pantone 292!

(http://www.tinyvga.com/vga-timing/1280x1024@60Hz)

http://www.tinyvga.com/vga-timing/1280x1024@60Hz

Joypad

(https://gbdev.gg8.se/wiki/articles/DMG_Schematics)

NES Controller

- Based on states of output pins (P14-15) and input pins (P10-13), CPU can identify a button press

- Configured to our CPU using libusb (referenced lab2)

https://gbdev.gg8.se/wiki/articles/DMG_Schematics

Cartridge

Obtained Tetris cartridge from online open source

Cartridge header ($0100-$014F) provides the information for running a game, namely:

- 0147 - Cartridge type

- 0148 - ROM Size

- 0149 - RAM Size

Cartridge ROM loaded to On-Chip RAM on DE1-SoC

(https://www.gamestop.com/game-boy-2/products/tetris---game-boy)

https://www.gamestop.com/game-boy-2/products/tetris---game-boy/10119682-10152452.html

PPU Compilation
Analysis and Synthesis Resource Utilization of PPU

Game Play Testing with PPU

Game Boy boot screen Dr. Mario start screen

Open Source Emulator

We utilized an open source emulator to base our systems on

- Used functional CPU in conjunction with our PPU, hardware/software interface, and

peripherals (joypad)

- Independently tested our PPU with testbenches, performing successfully in simulation

- Ran into issues with integration into larger emulator

- Confirmed PPU issues by successfully running open source game play

Qsys File

Tested open source CPU to ensure functionality

- Generated Qsys file shown below

- Managed interconnects and removed SDRAM (used utilized on-chip RAM instead)

Open Source Game Play

Confirmed the function of our peripherals and hardware/software interface through integration with

open source emulator, shown below

Tetris game play Dr. Mario game play

Demo!

