daFPGASwitch

or Simple Switch?



daFPGASwitch "Original Design”

Ingress 0:

Scheduler

Ingress 1:

Crosbar

Egress 0:

Egress 1:




Central Memory Unit (CMU)

(Demo with code)

alloc_en -

free_en——»

1-O,l—free_addr—>

;(- remaining =g
packet_length

clk

L

CMU 0
next
+free_addr_>
10, alloc
4 addr
reset



read control data in
next_write

set read_addr to
next_write

update next_write

determine next in
chain

write control data to
curr_write,

set curr_write to
next_write,

return next_write



Scheduling algorithm: Doubly Round Robin

e Targeting for fairness.

e By average, each ingress gets a equal change to pick first. (First RR)

e By average, each virtual queue of ingress gets a equal change to be picked
first. (Second RR)

e Takes 5 cycles (Falls within the 8 cycle heartbeat)

o  One cycle for continuing unfinished packet
o One cycle for each ingress, deciding with one to pick (decided by all_comb module pick_voq)



MetaData

Dest Port Src Port Length Start Time End Time
(2 bits) (2 bits) (6 bits) (11 bits) (11 bits)
Packet Data
Length Dest MAC Start Time End Time Src MAC Data Payload
(2 bytes) (6 bytes) (4 bytes) (4 bytes) (6 + 2 empty bytes) | Variable length




Simple Switch "Updated Design”

Simple Switch is the
version loaded on the
FPGA.

But daFPGASwitch has
more interesting features
we would like to present.

Ingress 0:
Output_queques
. |
— W ||
. |
T W
! \
Scheduler
Ingress 1:
Output_gueques
| |
__ . | #Vog MU
i E |
]

Cropsbar

Egress 0:

Egress 1:




start_idx

%
O@
OG

4



Scheduling algorithm: Doubly Round Robin

e How to be biased -> Give some ingress/egress more cycles

e \We have a list that sets the priority of each egress. When each ingress
considers its scheduling decision, it will proritize to send the packets with
higher priorities.

e (Demo the code)



Register Allocation

e One control register
o Lower 2 bits: 0 means reset, 1 means taking input but do not
output, 2 means input while output
o  Third bit: sched policy (0 for RR, 1 for Priority)
o  4~11: Scheduling priority

scheduling policy

e Four port registers: each port is allocated one register 8-bit scheduling
for packet data N ) prlolrlty
ctrl
port O 32-bit data
port 1 32-bit data
port 2 32-bit data
port 3 32-bit data

32-bit wide register

2-bit
experimenting flag
0: reset

1: input

2: input & output



How SW-HW talks

Software "polls" with ioread32, which
generates a high "read" signal for the Avalon
slave. For HW, the read signal is like an ack
signal ("read" means that sw has already
consumed the packet segment).

Software "interrupts" with iowrite32, which
generates a high "write" signal for the
Avalon slave. For HW, the write signal is like
an enable signal ("write" means that sw has
already put the packet_data on the writedata
wire.)

a picture of the Avalon slave here.

simple_switch 1

clock]

‘Ik

reset

‘eset

avalon_slave 0
ritedata[31..0]

rite

ead

ddress[2..0]

hipselect

addata[31..0]

clk

reset

writedata
write

read
address
chipselect
readdata

simple_switch




Figure 11. Read and Write Transfer with Fixed Wait-States at the Agent Interface

o 2 3 4 5
dk | |
address :. %ddress : address :
byteenable _ by:teenable : - E
read | : 1 ; :
-l ] u
readdata
response | response |

writedata - I writedata :




(X e |+

]«

D |:| System: soc_system Path: clk_0

Use Connections Name Description Export Clock
B ck 0 Clock Source
oy clk_in Clock Input clk exported
=g clk_in_reset Reset Input reset
< clk Clock Output clk_0
< clk_reset Reset Output
B0 hps 0 Arria V/Cyclone V Hard Proce...
h2f userl_clock |Clock Output hps_0_h2...
- memory Conduit hps_ddr3
OO hps_io Conduit hps
h2f reset Reset Output
> h2f_axi_clock Clock Input clk_0
h2f axi_master AX| Master [h2f_axi_...
> f2h_axi_clock Clock Input clk_0
‘ f2h_axi_slave AX| Slave [f2h_axi_...
| ? h2f lw_axi_clock |Clock Input clk 0
— h2f _lw_axi_master |AXI Master [h2f_Iw_a...
' f2h_irq0 Interrupt Receiver
f2h_irql Interrupt Receiver
B simple_switch_0 |Simple Switch
> clock Clock Input clk_0
> reset Reset Input [clock]
| S— avalon_slave_0 Avalon Memory Mapped Slave [clock] 0




Results (32 packet in total)

Total Latency Priority based (egress 0 has | Doubly RR
highest priority)

Even load 6.17 6.21

Overload egress 0 4.5 4.9

They obtain similar average performance.

Keep in mind that priority based implementation
guarantees low latency for egress 0 by compromising
the performance of other ports.




Takeaway:

Implementing algo in hw is different

State machine is hard

Manual is so helpful (Avalon bus, read signal length)
Start with drawing timing diagram: One cycle at a time.



Demo



