
daFPGASwitch
or Simple Switch?



daFPGASwitch "Original Design"



Central Memory Unit (CMU)

 (Demo with code)





Scheduling algorithm: Doubly Round Robin

● Targeting for fairness.
● By average, each ingress gets a equal change to pick first. (First RR)
● By average, each virtual queue of ingress gets a equal change to be picked 

first. (Second RR)
● Takes 5 cycles (Falls within the 8 cycle heartbeat)

○ One cycle for continuing unfinished packet
○ One cycle for each ingress, deciding with one to pick (decided by all_comb module pick_voq)



MetaData

Packet Data



Simple Switch "Updated Design"

Simple Switch is the 
version loaded on the 
FPGA.

But daFPGASwitch has 
more interesting features 
we would like to present.



1

2

0

3

45

7

6

start_idx

end_idx
en

qu
eu

e

dequeue



Scheduling algorithm: Doubly Round Robin

● How to be biased -> Give some ingress/egress more cycles
● We have a list that sets the priority of each egress. When each ingress 

considers its scheduling decision, it will proritize to send the packets with 
higher priorities.

● (Demo the code)



Register Allocation
● One control register

○ Lower 2 bits: 0 means reset, 1 means taking input but do not 
output, 2 means input while output

○ Third bit: sched policy (0 for RR, 1 for Priority)
○ 4~11: Scheduling priority

● Four port registers: each port is allocated one register 
for packet data 



How SW-HW talks

Software "polls" with ioread32, which 
generates a high "read" signal for the Avalon 
slave. For HW, the read signal is like an ack 
signal ("read" means that sw has already 
consumed the packet segment).

Software "interrupts" with iowrite32, which 
generates a high "write" signal for the 
Avalon slave. For HW, the write signal is like 
an enable signal ("write" means that sw has 
already put the packet_data on the writedata 
wire.)

a picture of the Avalon slave here.







Results (32 packet in total)

Total Latency Priority based (egress 0 has 
highest priority)

Doubly RR

Even load 6.17 6.21

Overload egress 0 4.5 4.9

They obtain similar average performance.
Keep in mind that priority based implementation 
guarantees low latency for egress 0 by compromising 
the performance of other ports. 



Takeaway:

● Implementing algo in hw is different 
● State machine is hard
● Manual is so helpful (Avalon bus, read signal length)
● Start with drawing timing diagram: One cycle at a time.



Demo


