Pitch Perfect: A Hardware-Accelerated
Real-Time Phase Vocoder for Pitch Scaling

Embedded Systems Design (CSEE4840)
Spring 2024

Sanjay Rajasekharan (sr3764), Maria Rice (mhr2154), Steven Winnick (shw2139)

Our project aims to build a phase vocoder for real time pitch scaling primarily through hardware. We
utilize an FFT block from the Intel IP Core to perform a Short Term Fourier Transform on the input
audio stream. Combined with a series of other hardware-based transformations, further described
below, the input audio stream will be pitched up or pitched down by a configurable amount.

Our original inspiration for this project was to create a karaoke companion that allows users to hit
high notes through live pitch shifting. Once we more deeply understood the complexities of creating
a real-time phase vocoder, our focus shifted to doing just so, removing emphasis from both audio
input and output.

In our final output, each of the components of the pitch shifter have been written and compiled to
hardware, with the intention to test and execute the linked system on the DE1-SOC board. However,
due to a variety of constraints including significant time spent debugging, the system does not work
as a whole.

System Block Diagram

o=
e

WF:,_.‘

- —

ot i ey 6 i it

Software/Ul

Octave
[
+

Hardware
J

FF IP Block

—

Audio Codec e Input Audio

> ring_buf >

Hann ROM

FFT Buffers
Hann —
Window FFT
Scaling >

Sampler > pre_fft_buff - fft_real

fit_imag

]

> post_scaler_mag_buf 0 > — pre_ifft_real_buf ~ ——» ™ post_ifft_buff —»

polar_to_cart
> post_scaler_phase_buf_0->

Phase Shift

Scaler =

—> pre_ifft_imag_buf

[post_scaler_mag_buf_1

‘ mertace | - ost_scaler_phase_buf_1
FF IP Block

cart_to_polar

——» pre_scaler_mag_buf 0
pre_scaler_phase_buf_0
pre_scaler_mag_buf_1

pre_scaler_phase_buf_1

» out_ring_buf —»]

Stitcher Emitter

Audio Codec

|—» Output Audio

T
Hann ROM

The algorithm takes as input a stream of audio. In our implementation, these samples are signed
16-bit integer values at a sample rate of 48kHz.

The input audio stream is then split into overlapping “windows,” or groups of samples. Each window
contains 4096 samples, and is offset by a “hop length” of 1024 samples from the previous window.

The samples in each window are then scaled according to the Hann Function, so the zero-indexed
n™ sample in a window will be scaled by a factor of sin?(27zn/4095). This does not cause a loss of
information about the original audio stream. Because each window is offset by % of the window
length and for all n,

sin?(27n) + sin’(2zt(n + 0.25)) + sin*(27z(n + 0.5)) + sin*(2x(n + 0.75)) = 2

we are able to reconstruct the original audio by adding half of each sample’s windowed value for all
4 windows it appears in.

. = # «

@ %(1—cos(‘2mf))

Y L1-cnlanle02)
@ %(1—(:03(‘27[()6#»05)))

@ %(1 — cos(zn(x+ 0-75)))

@ %(1—cos(?m))-‘-%(1—c05(2n(x+0.‘25)))+%(1—coﬂ?n(x-&—()ﬁ)))“‘%(l_c“s(Qn(x+0'75))) "

A Fourier Transform is then applied to each scaled window. In our implementation, we use the polar
coordinate representation of the complex values for more space-efficient computation in hardware.

This is the point in the algorithm where the pitch scaling actually occurs. For each frequency bin in a
given window, we compare the difference in phase between the current and previous windows to
the difference we’d expect from a pure tone (sine wave) at that bin’s center frequency of n cycles
per window, which gives it an expected phase difference of

277n/(1024/4096) = 7n/2

The gap between the expected and observed phase differences, wrapped to a value between - and
7, gives us a fractional “bin deviation” indicating how high up or down the real pitch captured by the
bin was relative to the bin’s center. We then scale the sum of this value and n by a constant factor,
the pitch scaling amount, to determine the output “synthesis” bin for this sound. The amount that
this differs from the whole-number bin number it is rounded to again gives us a bin deviation, but
this time for the synthesized output bins. When multiple input bins end up scaled to the same
output bin, we sum their bin deviation contributions. In a process that exactly mirrors the one on
the input side, we compute a “phase remainder” using the fractional bin deviation, which tells us
how much the actual phase difference of the bin from the previous window to the current one
ought to differ from our expectation based on the bin’s center frequency. We then add this, the
expected phase difference, and the phase of the same bin in the prior window to get the new phase
for the bin. For the magnitude, we use the sum of all the input bin magnitudes that ended up in the
same synthesis bin.

After being converted back from polar to imaginary values, an inverse Fourier Transform will be
done to each window to return it to an array of samples.

To minimize artifacts in the synthesized sound, we repeat the same Hann Function scaling a second
time. This allows for a smoother blend between windows whose time-domain waveforms may now
be discontinuous from one another.

The de-transformed phase-adjusted windows of samples are then stitched back together into a
main audio stream by adding half of each sample’s windowed value for all 4 windows it appears in.

The algorithm outputs a stream of audio. Like the input, in our implementation these will be signed
16-bit integer values at a sample rate of 48kHz.

Utilizing another

Initially, we attempted to implement our pitch scaler in C without any code reference that
implemented our exact pitch-scaling algorithm. We had reference code for a similar algorithm we
found from a YouTube video that claimed to work with pitch scaling but only included code for time
stretching. We attempted to implement this in C, adapting the code based on the logic in the video
to perform pitch scaling instead of time stretching, but despite much time debugging, couldn’t get it
to work.

We then found another video on a related algorithm from a course at Queen Mary University of
London, with skeleton code from a corresponding homework assignment to implement the
algorithm in C++. This time, we decided to attempt the implementation in Python first, allowing us
to limit variables relating to reading an input file and performing the Fourier Transform, which we
were still in the process of testing in C, using SciPy and Librosa. We also used NumPy to abstract
away details of the matrix operations done in the pitch scaling algorithm. Having this more abstract
Python simulation allowed us to easily fine-tune details of our algorithm, such as the window size
and hop length, before implementing them in C.

https://github.com/JentGent/pitch-shift/blob/main/audios.ipynb
https://www.youtube.com/watch?v=PjKlMXhxtTM
https://www.youtube.com/watch?v=2p_-jbl6Dyc
https://github.com/BelaPlatform/bela-online-course/blob/master/lectures/lecture-20/code-examples/fft-pitchshift.zip

The next step was to create a slightly modified version of our outer-level C program which could be
used to test our algorithm in “real time,” allowing it to process a stream of input audio of any length
and output a stream of pitch-scaled audio as it ran. Our simulation worked by reading samples from
the standard input and emitting the scaled stream to the standard output, which would allow it to
connect to programs to stream live audio to it and playback its output as live audio. For our testing,
however, we would simply pipe in a long sequence of samples from a file and output them to
another file, which we would then convert to a listenable format.

Our Fourier Transform functions in C were created based off of various implementations found
online. The transform consists of 3 main functions:

void rearrange (float real[], float imaginary[], const unsigned int N);

This function is crucial for preparing data before applying the FFT algorithm. Its purpose is to
reorder the real and imaginary parts of the complex numbers so that the FFT computation may be
applied more efficiently. It does so using a bit-reversal method, reordering the elements of an array
so that their indices are reversed in binary representation.

void compute (float real[], float imaginary[], const unsigned int N);

This function performs the core FFT computation on the inputted complex numbers. It iteratively
computes the FFT by dividing the input data into smaller groups and applying twiddle factors to
combine them, following the Cooley-Tukey FFT algorithm. The Cooley-Tukey FFT algorithm is a

commonly used method which breaks down FFT computation into smaller subproblems, applying a
divide-and-conquer approach, to efficiently compute the FFT.

void inverseCompute (float real[], float imaginary([], const unsigned int N);
This function computes the inverse FFT of the given complex numbers. It first conjugates the data
before calling both rearrange () and compute () in order to perform a forward FFT on the data.
Lastly, it conjugates the results again to receive the inverse transform before scaling the result by
1/N in order to get the correct inverse FFT output.

Both the forward and inverse FFT were tested on a variety of data points, including a window size of
4096 which is its ultimate application within the phase vocoder algorithm.

A simple shell script that creates an end to end pipeline for the software simulation. Sets up a
python environment with the necessary requirements for WAV file processing. It then runs the

https://vanhunteradams.com/FFT/FFT.html

python converter script and stores the WAV samples in a temporary file. It then iteratively pipes
these samples into the C vocoder algorithm, storing this next step of the output in a new temporary
file. Finally, the TXT to WAV python script is run on the output of the vocoder, generating a pitched
audio file while removing all intermediate files.

Pitch Perfect is intended to work using the Line In and Line Out ports on the Cyclone V DE1-SOC
board. To configure the board to allow us to interface with these ports in a way that made sense for
our project, we set up the following components:

1. Audio Clock for DE-series Boards

Configured to a frequency of 12.288 MHz to work with a 48kHz sampling rate of both the
ADC and DAC according to the following specification from page 39 of the Wolfson
WM8731/WM8731L CODEC manual to achieve a Base Oversampling Rate of 0. Output
clk out serves as the clock input for the audio core and sampler components, described

below.

SAMPLING MCLK SAMPLE DIGITAL
RATE FREQUENCY RATE FILTER
ADC DAC REGISTER SETTINGS TYPE
kHz kHz MHz BOSR | SR3 SR2 SR1 SRO
48 48 12.288 0(286fs)| O 0 0 0 1
18.432 1(384fs)| 0O 0 0 0
48 8 12.288 0 (266fs)| O 0 0 1 1
18.432 1(384fs)| 0O 0 0 1
8 48 12.288 0(256fs)| O 0 1 0 1
18.432 1(384fs)| 0 0 1 0
8 8 12.288 0 (256fs)| O 0 1 1 1
18.432 1(384fs)| 0 0 1 1
32 32 12.288 0 (256fs) 0 1 1 0 1
18.432 1(384fs)| 0 1 1 0
96 96 12.288 0(128fs)| O 1 1 1 2
18.432 1(192fs)| 0 1 1 1
441 44.1 11.2896 0 (266fs)| 1 0 0 0 1
16.9344 1 (384fs)| 1 0 0 0
441 8 11.2896 0 (266fs)| 1 0 0 1 1
(Note 1) 16.9344 1 (384fs)| 1 0 0 1
8 44.1 11.2896 0 (256fs)| 1 0 1 0 1
(Note 1) 16.9344 1 (384fs) 1 0 1 0
8 8 11.2896 0 (256fs)| 1 0 1 1 1
(Note 1) |(Note 1) 16.9344 1 (384fs)| 1 0 1 1
88.2 88.2 11.2896 0(128fs)| 1 1 1 1 2
16.9344 1(192fs)| 1 1 1 1

2. Audio and Video Config Core

http://www.cs.columbia.edu/~sedwards/classes/2008/4840/Wolfson-WM8731-audio-CODEC.pdf
http://www.cs.columbia.edu/~sedwards/classes/2008/4840/Wolfson-WM8731-audio-CODEC.pdf

Provides a way to initialize and reconfigure the Wolfson Audio CODEC. It communicates with
the CODEC through the 2-wire 12C serial bus via its I12C_SDAT and I2C_ SCLK external
interface, which connect to the board’s FPGA 12C SDAT and FPGA I2C SCLK wires,
respectively. It has been configured to auto-initialize the CODEC to use the Line In to ADC
audio input path, the DAC to Line Out audio output path, using 16-bit left-justified samples
at a sampling rate of 48kHz. Its Avalon Slave config interface is connected to the

software interface component, but unused, as we don’t want to allow the core to be
reconfigured after its initial configuration.

h Audio and Video Config

Megotore Bltera_up_avalon_audio_and_video_config

Documentation

TS T T =TT - =iF]
i —{¥| |~ Components = ¥
€ == ;
Leik Audio/Video Device: }On»Board Peripherals ‘v‘
clk :
rekot Lf DE Board: DE1-50C =
L reset : Auto Initialize Device(s)
avalon_av_config_slave
ddress[1..0] S s |~ Auto Initialization Parameters for Audio =
byteenable Audio In Path: ’Line In to ADC Iv‘
i ‘ Audio Out - Enable DAC Output
write
writedata 0 [Audio Out - Microphone Bypass
readdata i ;
—— [] Audio Out - Line In Bypass =
external_interface | Data Format: Left Justified
C_SDAT :]
S export : Bit Length: 16 :
export f .
. Sampling Rate: 48 kHz : :
altera_up_avalon_audio_snd_video_confi— © =l
q Il HDEED I = o[
3. Audio Core

Provides an interface for audio input/output to the FPGA’s Audio CODEC. Configured in
“streaming mode” to allow us to stream values from other hardware components, and
otherwise auto-initialized by the Audio and Video Config Core.

Clock Reset
-t Avalon Streaming Source (=& Input
valon Streaming Source Left FIFO N from ADC
Deserializer [
-4 Avalon Streaming Source [~ Right FIFO
o Qutput
+
— | Avalon Streaming Sink Left FIFO 10 DAC
Serializer
— 3 Avalon Streaming Sink = Right FIFO

Communicates with software via the Avalon Bus, connected to the processor’s
h2f 1w axi master output, to receive an 8-bit fixed-point “shift amount” with 6 fractional bits,
then indicates to scaler how much to scale the pitch by.

input logic 2 writedata,
write,
chipselect,

address,

shift amt = O,

output logic 3 av_config slave address = 0,

output gic : av_config slave byteenable = 0,

output logic av_config slave read = 0,

output logic av_config slave write = 0,
av_config slave writedata = O,

av_config slave readdata,

av_config slave waitrequest

Avalon streaming component to read samples of left from adc channel of the Wolfson Audio
CODEC to a ring buffer. Connects to the avalon left channel source and
avalon right channel source of the Audio Core according to the Avalon Streaming Sink

specification, flashing the in ready inputs for one clock cycle and expecting the in valid and

in data values to be set accordingly on the next cycle. Every 1024 samples read, a window is ready
to be processed by the rest of the pitch scaling algorithm, so the go_out wire is flashed high for one
cycle to indicate to first hannifier that it should begin processing samples from the ring buf,
as will happen for each of the following components. The 3-bit window start output indicates to
hann_buf whether the current window starts at index 0, 1024, 2048, 3072, or 4096 of ring buf.
The ring buffer, ring buf, is a 2-port RAM component of M10K memory holding 4096 + 1024 =
5120 16-bit samples, with 2 clocks, one for a write-only input from sampler at the audio clock
speed, and one for a read-only output to first hannifier at the main FPGA clock speed of
50MHz.

input left in data,
input left in valid,

output left in ready = 0,

input 5: right in data,
input right in valid,

output right in ready = O,

ring buf data,
ring buf addr

ring buf wren

window start,

go _out = 0

Applies the Hann Windowing function to a window of samples from ring_buf. All 4096 Hann
Window scaling values have been stored in ROM as 16-bit fixed-point values with all 16 bits
fractional. Hann Windowed values are written to pre fft buf, a 2-port single-clock RAM

https://www.intel.com/content/www/us/en/docs/programmable/683364/18-1/streaming-interfaces.html
https://www.intel.com/content/www/us/en/docs/programmable/683364/18-1/streaming-interfaces.html

10

component of M10K memory holding 4096 16-bit fixed-point words with 8 fractional bits, as are all
following RAM blocks throughout the implementation.

input : window start,

input go in,

input 5:(ring buf data,

output : ring buf addr

input 15: hann rom data,

output hann rom addr

output > ¢ out buf data
output out buf addr

output out buf wren

output

At the core of our implementation are two Fourier Transform hardware blocks. For these, we’ve
decided to use Intel’s FFT Engine rather than attempting to implement our own Fast Fourier
Transform module, as we have faith that the good people at Intel were able to implement an
efficient FFT module. Both our FFT and IFFT IPs were created with the following parameters:

11

M Parameters i

System: fft Path: fft_ii_0

FFT Details

altera_fft_ii Generate Example Design...

Basic
[* Transform

Length: 4096 :

Direction: Bi-directional :

[F1o
Data Flow: |Variab|e Streaming |'|

i T
oupmors a7

[* Data and Twiddle
Representation: EREREine |v|

Data Input Width: 18 || bits

Twiddle Width: it
Data Output Width: |16 bits

|[* Latency Estimates
Calculation Latency: 4096 cycles

Throughput Latency: g192 cycles

&= Messages & il |
Type Path Message
T @ 1 Info Message
@ |fRFREi O Radix-2 digit reverse implied

Window length = 4096 samples (~ 92 ms)
Hop length = 1024 samples (~ 23 ms)

The window length was selected to be 4096 based on the convention of using this window length in
audio processing. The hop length was calculated to be 1024 based on testing the C-version of our
implementation.

To initially test the FFT module, we created the IP as outlined above and generated an example file
which we then analyzed using QuestaSim.

After doing so, we focused on creating a more developed wrapper module to further test and
understand the functionalities of the FFT IP. This consisted of the following three files, and was
developed with help from this video, with modifications made to the specifications of our project:

fft wrapper.

https://www.youtube.com/watch?v=DgRVqS4Dw9g

12

This module serves as a wrapper around the FFT core. It handles input/output signals, controls, and
instantiates the FFT module. It also manages signal synchronization and data flow between the FFT
core and external components.

control for fft.v

This module generates control signals required for the FFT computation. It manages signals such as
validity, start of packet (SOP), end of packet (EOP), and error indications. It also handles
configuration options like inverse FFT and FFT point size.

testbench.

This testbench is used for verifying the functionality of the FFT wrapper and control modules. It
generates clock signals, drives input signals to the FFT wrapper, and monitors the output signals. It
instantiates the FFT wrapper and the NCO IP to provide input to validate its behavior under different
conditions.

Although these files were successfully compiled in Quartus, we faced FFT core errors when
attempting to simulate them in QuestaSim. Therefore, we moved on to creating a wrapper that is
focused on interfacing the FFT IP within the necessary functionalities of the phase vocoder.

Converts imaginary values to polar coordinates. Converted values are written to

pre scaler mag buf 0 and pre scaler phase buf 0Orpre scaler mag buf 1 and

pre scaler phase buf 1, alternating each cycle. When a window is completed, cur buf
indicates to scaler whether the current set of values were written to buffers 0 or 1. This module
utilizes an open source CORDIC module. CORDIC works as an approximation for trigonometric
functions by iteratively rotating the input point by a predetermined amount that provides a
convenient update rule at each step, only requiring addition and bit shifting. The update rule is as
follows:

X_(k+1) = X_k-Y <<k
Y_(k+1) = X_k + Y <<k
Once the point is shifted to a 0 degree angle, it is clear what the angle and magnitude of the original

point is. As the value you left on x_k = magnitude * scale_factor and angle = sum(r_i) from 0 to k,

where r_i represents the rotation factor.

input logic

13

real buf data,
real buf addr = 0,

input : imag buf data,

put 2: imag buf addr = 0,

output : mag buf 0 data
output : mag buf 0 addr

output mag buf 0 wren

phase buf 0 data
phase buf 0 addr

phase buf 0 wren

output 5: mag buf 1 data
put 11: mag buf 1 addr

output mag buf 1 wren

phase buf 1 data
phase buf 1 addr

phase buf 1 wren

output cur_buf

output go_out

Performs the pitch scaling on polar values of FFT bins according to the algorithm described earlier.
Reads scale amt from software interface to know how much to scale by. Requires both write
and read access to output post scaler buffers to read values from previous cycles for comparison
(see algorithm description section above). Also utilizes its own synth mags and synth devs buffers
to hold intermediate values from the computations for output frequency bins. When a window is
completed, cur buf indicates to polar to_cart whether the current set of values were written to
buffers 0 or 1.

input

input

input

output

input

output

input

output

input

output
output
output

output

input

output
output
output

output

input
output
output

output

go_in,

cur window,

[15:0] scale amt,

[15:0] mag in buf 0 data,
[11:0] mag in buf 0 addr = 0,

[15:0] phase in buf 0 data,
[11:0] phase in buf 0 addr = O,

[15:0] mag in buf 1 data,
[11:0] mag in buf 1 addr = 0,

[15:0] phase in buf 1 data,
[11:0] phase in buf 1 addr

[15:0] mag out buf 0 rdata,

[11:0] mag out buf 0 raddr
[15:0] mag out buf 0 wrdata
[11:0] mag out buf 0 wraddr

mag out buf 0 wren = 0,

[15:0] phase out buf 0 rdata,
[11:0] phase out buf 0 raddr =
[15:0] phase out buf 0 wrdata
[11:0] phase out buf 0 wraddr

phase out buf 0 wren = O,

mag out buf 1 rdata,
mag out buf 1 raddr =
mag out buf 1 wrdata

mag_out buf 1 wraddr

output

input

output
output
output

output

input

output
output
output

output

input

output
output
output

output

output

output

mag _out buf 1 wren = O,

[15:0] phase out buf 1 rdata,
[11:0] phase out buf 1 raddr
[15:0] phase out buf 1 wrdata
[11:0] phase out buf 1 wraddr

phase out buf 1 wren = O,

[15:0] synth mags rdata,
[11:0] synth mags raddr
[15:0] synth mags wrdata
[11:0] synth mags wraddr

synth mags wren = 0,

[15:0] synth devs rdata,
[11:0] synth devs raddr =
[15:0] synth devs wrdata
[11:0] synth devs wraddr

synth devs wren = 0,

Converts polar coordinates back to imaginary values. Utilizes a CORDIC approach to computing sine

and cosine values. Converted values are writtentopre_ifft real buf and pre ifft imag buf.

input

output

input

output

go_in,

cur window,

mag buf 0 data,
mag buf 0 addr = O,

phase buf 0 data,
phase buf 0 addr

input

output

input

output

output
output

output

16

mag buf 1 data,

mag buf 1 addr = O,

phase buf 1 data,
phase buf 1 addr = 0,

real buf data,
real buf addr

real buf wren

imag buf data,
imag buf addr

imag buf wren

The inverse FFT follows the same wrapper module as the FFT, however, the input of “inverse” is set

to 1, as seen below:

Applies the Hann Windowing function to a window of samples from post _ifft buf. Values are
either overwritten or added to those in stitched buf. The 2-bit window start output indicates to
emitter whether the current window starts at index 0, 1024, 2048, or 3072.

input

input

output

input

output

in buf data,
in buf addr = O,

hann rom data,

hann rom addr = 0,

17

out buf data

out buf addr

output out buf wren

output window start,

output go out = 0

Avalon streaming component to write samples to both left and right to dac channels of the
Wolfson Audio CODEC. Connects to the avalon left channel sinkand

avalon right channel sink of the Audio Core according to the Avalon Streaming Sink
specification, flashing the out valid for one clock cycle with the next sample of data on out data
after seeing out_ready flashed. Per the Audio Core specification, both

avalon left channel sinkandavalon left channel sink nheed to be written to for the
Audio CODEC to not block and the sample to be played.

input 1: window start,

input go_in,

output 15:0] left out data = 0,

output left out valid

input left out ready,

output 15: right out data 0,
output right out valid = 0,

input right out ready

From the table entry above, we see that our chosen FFT engine uses 14 of our 397 available M10K
memory blocks.

In our implementation, as seen in the system block diagram utilizes 14 intermediary buffers of
length 4096. Each sample is 16 bits.

https://www.intel.com/content/www/us/en/docs/programmable/683364/18-1/streaming-interfaces.html
https://www.intel.com/content/www/us/en/docs/programmable/683364/18-1/streaming-interfaces.html

Additionally, we utilizes two ring buffers which contain 5120 16-bit samples

Finally, we utilize one 4096 16-bit ROM.

The memory consumption of our buffers is thus 112 M10K Blocks.

The FFT Blocks utilize the following amounts of memory based on our specifications.

18

Cyclone V

Variable
Streaming
Floating
Point

4,096

13,945

60

138

22,615

701

132

Because we utilize two FFT Blocks, one for the forward and reverse processes we utilize a total of
279 M10K Blocks.

Together with the buffers and ROMs the total memory consumption of this project is 391 M10K

Blocks.

Researched pitch shifting algorithms
Researched various implementations of the fast fourier transform for pitch shifting
Implemented the Cooley-Tukey FFT algorithm in C
o Tested with a variety of inputs, including applying FFT and IFFT on a 4096 size
window to ensure that the final output was equivalent to the input
Helped with debugging the C vocoder algorithm
Created converters in python for testing purposes
Researched the FFT intel core module
o Identified the best options of the module to use within our phase vocoder
o Tested a generated example using QuestaSim
Created a FFT wrapper and testbench for testing purposes
o Compiled the files successfully in Quartus
o Ran into errors with protected files while compiling in Questasim
Implemented £ft and ifft hardware components

Researched pitch shifting algorithms
Wrote C algorithm to simulate input buffer, Hann window scaling, and audio outputting
Wrote bash script to integrate Python wav convertors and C simulation

19

e Debugged and contributed to C vocoder algorithm to remove noise
Converted C vocoder algorithm to operate on polar coordinates instead from cartesian
Attempted to set up ROM components for Hann Window coefficients and CORDIC polar
conversion

e Researched and implemented fixed point calculations, computing necessary coefficients and
writing code for computing moduli
Developed polar conversion hardware components
Contributed to scaler hardware component

Researched various pitch scaling algorithms

Implemented two different pitch scaling algorithms in Python
Implemented C vocoder algorithm

Created real-time C implementation wrapper

Created file type converters in Python

Attempted to configure and connect to DE1-SOC Audio module
Configured top level hardware system in Platform Designer
Designed interfaces of all hardware components

Created skeletons of all hardware components with necessary I/O to connect in Platform
Designer

e Implemented sampler, first hannifier, and emitter hardware components, and
contributed to scaler

In this project, we learned about fixed point representation, something none of us had heard of
before. We utilized fixed point representation throughout our project such as in our FFT
implementation as well as our polar/cartesian convertors.

In this project, we learned about fixed point representation, something none of us had heard of
before. We utilized fixed point representation throughout our project such as in our FFT
implementation as well as our polar/cartesian convertors. One of the biggest lessons of this project
was learning how difficult it is to compute certain functions that we often take for granted in
hardware. Hey to our algorithm were functions such as fmodf, atan2, and sine and cosine. We
learned about approximation methods for computing trigonometric functions. We utilized the
CORDIC algorithm for this. Additionally, we were able to factor out fmodf by carefully inspecting the
data that ran through our algorithm. We noticed that the values were bounded. Thus, we could

20

avoid utilizing a costly fixed point mod algorithm, achieving the same effect through addition and
division.

e Simulate even the most simple algorithms with low-level C software to confirm that they
work before building them in hardware

e Make your software simulation match the hardware as closely as possible - it is easier to
think about things in terms of software first
Give yourself more time to implement hardware
It takes a serious amount of time to figure out how to interface with the board

Although a very trivial part of a much more complicated project, we ran into errors with a broken
pathway for “vsim” and had to dig into many different folders to find the correct pathway and open
up Questasim for testing. Additionally, we learned that you can directly link Questasim to Quartus
through settings, so that when you run “RTL simulation” it opens up and simulates the top-level
module in Questasim.

mhr2154@micro34:/tools/mentor/questa_10.7b_1/questasim/linux X

File Edit View Search Terminal Tabs Help
mhr2154...

[mhr2154@micro34 fft testing]$ cd /tools
[mhr2154@micro34 mentor]$ cd questa 18
[mhr2154@micro34 q ta 10.7b 1]% cd gquestas
[mhr2154@micro34 questasim]$ cd linux
[mhr2154@micro34 linux]$./vsim

Reading pref.tcl

We found there to be a steep learning curve in learning the various steps needed for working on the
hardware implementation of our project. Many specific commands need to be run in a specific
order for things to work properly, and we didn’t love scrolling through the entire Lab 3 document
each time to remember them. To that end, we created the following guide for ourselves to follow to
simplify the process, which we are providing here in the hopes that it will be useful for some future
group. To those groups however, please note that we did not actually get our project working on the

21

FPGA as we intended, so this could be completely wrong, and you may want to check with Professor
Edwards or a TA before following our instructions.

® To create a new component
o To define the component’s inputs/outputs, copy the sv file for any other component
(basic_component.sv) and edit the copy to have the inputs/outputs desired
m To figure out what inputs/outputs are needed, look at what it connects to
m [f it connects to a standard library component, right click that component
and click edit, then check “show signals” to see which wires each interface
(ex. Avalon Memory Mapped Slave) uses. You will set the interfaces in the
next step
o To add the new component to our system, do
m gsys-edit soc_system.qsys
m File > New Component
® Give it a name and display name
e Files > Synthesis Files > Add File > new_component.sv
o Click Analyze Synthesis Files to have gsys create a component
from the System Verilog file
o Probably will need to fix errors in the .sv file
o Set Top-Level Module to this file
e Signals & Interfaces tab
o Create interfaces (ex. Avalon Memory Mapped Slave) as
needed to set the input/output logic to match those
Click Finish to create a _hw.tcl file for the new component
ONLY if it is a software interfacing component (will also have to edit
kernel module so really just stick with one of these) in a separate
terminal tab, edit component_name_hw.tcl to add the following
under the module component_name section
o set_module_assignment embeddedsw.dts.vendor “csee4840”
o set_module_assignment embeddedsw.dts.name “full_name”
o set_module_assignment embeddedsw.dts.group “name”
m In IP Catalog > Project (to the left), click the new component, then click
[+Add...] to add it to our system
e To use pre-made Altera components, you cannot just add them in Platform Designer. You
must create files for them using Quartus.
e Right click the various parts of a component to connect them to other parts of other
components
Edit the logic inside a component by editing it’s .sv file
To test on the board

o Click Generate HDL in the Platform Designer to generate the Verilog for the project

22

Run make quartus to generate output_files/soc_system.sof

Run make rbf to generate output_files/soc_system.rbf

Run embedded_command_shell.sh

Run make dtb to generate soc_system.dtb

Plug the board in to power, ethernet, and micro-USB (black cable to the PC)
Run screen /dev/ttyUSB0O 115200

Power on the board

O O O O O O O O

From the screened board terminal

m Login with root, CSee4840!

m Run ifup ethO to connect to the internet

m Run mount /dev/mmcblkOp1 /mnt

m Runscp
<uni>@micro<XX>.ee.columbia.edu:~/pitch-perfect/hardware/hw/output_fil
es/soc_system.rbf /mnt

m scp
<uni>@micro<XX>.ee.columbia.edu:~/pitch-perfect/hardware/hw/soc_syste
m.dtb /mnt < not in output_files!
Run sync

m Run reboot

Software Simulation Files
software-simulation/python-vocoder/vocoder.py

aling algorithm following
'/github.com/BelaPlatform/bela-online-course/blob/master/lectures/le

20/code-exz s/fft-pitchshift.zip

using Python ba

s://github.com/JentGent/pitch-shift/blob/main/audios.ipynb

import libros:
import numpy : np

import soundfile as sf

import sys

WINDOW SIZE = 4096

HOP LEN = 1024

PHASE SHIFT AMOUNT = 2 ** (5 / 12)

waveform, samp rate = librosa.load(sys.argv[l], sr=
num samples waveform.shape[0]

stft result = librosa.stft (waveform, n fft=WINDOW SIZE,
hop length=HOP LEN, win length=WINDOW SIZE)

n fft bins, n fft frames = stft result.shape

stft result = np.transpose (stft result)

stft result scaled = []

prev_anal phases = np.zeros(n fft bins)

prev_synth phases = np.zeros(n fft bins)

for idx, frame in enumerate (stft result):

if idx ==

pass

mags = np.abs (frame)

phases = np.angle (frame)

dphases from prev = phases - prev anal phases

bin center fregs = np.arange(n fft bins) * 2 * np.pi / WINDOW SIZE

dphases from expected = dphases from prev - (bin center fregs *

HOP_LEN)

dphases from expected = np.mod(dphases from expected + (3 * np.pi), 2

np.pi) - np.pi

bin deviations = (dphases from expected * WINDOW SIZE) / (2 * np.pi *
HOP_LEN)

new bins = (np.arange(n fft bins) + bin deviations) *
PHASE SHIFT AMOUNT

new bin nums = np.rint (new _bins)

synth mags = np.zeros(n fft bins)
synth deviations = np.zeros(n fft bins)
for old idx, new bin num in enumerate (new bin nums) :
if new bin num >= 0 new bin num < n fft bins:
synth mags[int (new bin num)] += mags[old idx]
synth deviations[int (new bin num)] += new bins[old idx] -

new bin nums[old idx]

phase remainders = ((synth deviations) * 2 * np.pi * HOP LEN) /

WINDOW SIZE
synth phases = prev synth phases + phase remainders + (2 * np.pi *
bin center fregs * HOP_ LEN)

synth phases = np.mod(synth phases + (3 * np.pi), 2 * np.pi) - np.pi

stft result scaled.append(synth mags * np.exp(synth phases * 17j))

prev _anal phases = phases

prev _synth phases = synth phases

stft result scaled np.array(stft result scaled)

stft result scaled np.transpose (stft result scaled)

new waveform = librosa.istft (stft result scaled, n fft=WINDOW SIZE,

hop length=HOP LEN, win length=WINDOW SIZE)

sf.write(sys.argv[2], new waveform, samp rate, 'PCM 24"')

*

software-simulation/realtime/main.c

<stdio.h>
<stdlib.h>
<math.h>

<errno.h>

. /ffe/ffe.h”

../scaling/scaling.h"

x) pow (2.0 / 12.0

hannify (* inputSamples, startIdx,
for (size t 1 0; 1 < ; ++1) |

.5 * (1 - cos(2 * s Ay

inputSamples|[(i + startIdx) % (

inputSamples [
inputWindowStart =
inputCurldx = 0;
hannedl [
hanned?2 [
*fftRealBufs[2];
*fftImagBufs[2];
*shiftRealBufs[2];
*shiftImagBufs[2];
fftBuflidx = 0;
fftReall |

fftImagl [
fftReal2|
fftImag2 [
shiftReall [
shiftImagl [
shiftReal2 |
shiftImag2 [
ifftReal|
ifftImag|
stitcher|
stitcherPtr
*curLine;

size t curLinelLen = 0;

main (

if (argc != 2) {

fprintf (, "Usage: %s <semitone-shift> \n", argv[0]);

return 1;

semitoneShift = strtol (argv[l],

fftRealBufs[0] fftReall;
fftImagBufs[0] fftImagl;
fftRealBufs[1] fftReal?2;
fftImagBufs[1] fftImag2;
shiftRealBufs[0] = shiftReall;
shiftImagBufs[0] shiftImagl;
shiftRealBufs[1] shiftReal?2;

shiftImagBufs[1] shiftImag2;

(
fftReall[i]
fftImagl[i]

fftReal2[i] =
fftImag2[i] =
shiftReall[i]
shiftImagl[i]
shiftReal2[1i]
shiftImag2[i]
ifftReal [i]

ifftImagl[i]

stitcher[i]

while (-1 != getline(&curLine, &curLinelen,

inputSamples[inputCurIdx] = strtof (curline,

if (inputCurldx == (inputWindowStart +

(+

hannify (inputSamples, inputWindowStart, hannedl) ;

(il = (07 Gl = ;odi++) |
fftRealBufs[fftBuflIdx] [i] hannedl [i];
fftImagBufs[fftBufIdx] [1] 0¢

}

rearrange (fftRealBufs[fftBuflIdx], fftImagBufs[fftBufldx],
) 7

compute (fftRealBufs[fftBufldx], fftImagBufs[fftBufldx],

) ;

processTransformed (fftRealBufs[(fftBuflIdx + 1) %

fftImagBufs|[(f£ftBufldx + 1) %
fftRealBufs[fftBuflIdx],
fftImagBufs[fftBufldx],
shiftRealBufs[(fftBuflIdx + 1)
shiftImagBufs|[(fftBufIdx + 1)
shiftRealBufs[fftBufldx],
shiftImagBufs[fftBuflIdx],
(semitoneShift));

(' 0; 1 < ;o oi++) |

ifftReal[i] shiftRealBufs[fftBuflIdx] [i];

ifftImagl[i] shiftImagBufs[fftBufIdx] [i];
}

inverseCompute (1fftReal, ifftImag,

hannify (ifftReal, 0, hanned2);

; 1t++) |
-)
stitcher|[(stitcherPtr + i) %
(hanned2[i] / 2.0);
cllisie

stitcher|[(stitcherPtr + i) %

(hanned2[i] / 2.0);

(int 1 = 0; i < ;i) |

printf ("$£f\n", stitcher[stitcherPtr + 1]);

inputWindowStart = (inputWindowStart +
(+
fftBufldx = (fftBuflIdx + 1)

stitcherPtr = (stitcherPtr +

inputCurIdx = (inputCurlIdx + 1)

software-simulation/fft/fft.c
#include <math.h>

#include <stdio.h>

#include "fft.h"

rearrange (imaginaryl[],
target = 0;

position = 0; position < N; positiont+)

if (target > position)
{
temp real = real[target];
temp imaginary = imaginary[target];
real [target] = real[position];
imaginary[target] = imaginary[position];

real [position] = temp real;

imaginary[position] = temp imaginary;

mask = N;
while (target & (mask >>

target &= ~mask;

target |= mask;

compute (imaginaryl[],

pi = -3.14159265358979323846;

step = 1; step < N; step <<= 1)

step << 1;
step d) step;
twiddle real
twiddle imaginary 0.0;

group 0; group < step; group+t+)

pair = group; pair < N; pair += jump)

match pair + step;
product real twiddle real * real[match] -
twiddle imaginary * imaginary[match];
product imaginary = twiddle imaginary *
real [match] + twiddle real * imaginary[match];

real [match] = real[pair] - product real;

imaginary[match] = imaginary[pair] - product imaginary;

real [pair] += product real;

imaginary[pair] += product imaginary;

if (group + 1 == step)
{

continue;

angle = pi * (()group + 1)

twiddle real = cos(angle);

twiddle imaginary = sin(angle);

inverseCompute (imaginary

for (i =0; i < N; ++1) {

imaginary[i] = -imaginary[i];

rearrange (real, imaginary, N);

compute (real, imaginary, N);

for (i =0; i < N; ++1i) {

imaginary[i] = -imaginary[i];

= 1.0f / N;
(i =0; 1 < N; ++1) {
real[i] *= scale;

imaginary[i] *= scale;

/ step d;

4

software-simulation/fft/fft.h

#include <stddef.h>

complex num {
real;

imsag;

rearrange (reall], imaginaryl([],
compute (reall], imaginaryl[],

inverseCompute (imaginary

software-simulation/fft/main.c
#include <stdio.h>

#include "fft.h"

main () {

N1 = 8;
input reall = {1. 0.0, 2.3, 0.0, 3.4,
input imaginaryl = {0.0, 0.0, 0.0, 0.0,
rearrange (input reall, input imaginaryl, NI1);
compute (input reall, input imaginaryl, NI1);
printf ("FFT Output:\n");

for (i =0; 1 < N1; ++1) {

printf ("$f + $fi\n", input reall[i], input imaginaryl([i]);

inverseCompute (input reall, input imaginaryl, N1);
printf ("\nIFFT Output:\n");
for (i =0; i < N1; ++i) {

printf ("$f + $£fi\n", input reall[i], input imaginaryl([i]):;

N2 = 4;
input real? = {1. 2.0, 3.0, 4.0};
input imaginary?2 = {0.0, 0.0, 0.0, 0.0},
rearrange (input real2, input imaginary2, N2);
compute (input real2, input imaginary2, N2);
printf ("\nFFT Output:\n");
for (i =0; i < N2; ++1i) {

printf ("$f + $£fi\n", input real2[i], input imaginary2[i]);

inverseCompute (input real2, input imaginary2, N2);
printf ("\nIFFT Output:\n");
for (i =0; 1 < N2; ++i) {

printf ("$f + $fi\n", input real2[i], input imaginary2[i]):;

N3 = §;
input real3 = {1. 2.0, 3.0, 4.0, 5.
input imaginary3 = {0.0, 0.0, 0.0, O.
rearrange (input real3, input imaginary3, N3);
compute (input real3, input imaginary3, N3);
printf ("\nFFT Output:\n");

for (i ;1 < N3; ++1) {

printf ("$f + $fi\n", input real3[i], input imaginary3[i]):;

inverseCompute (input real3, input imaginary3, N3);
printf ("\nIFFT Output:\n");
for (i =0; i < N3; ++1i) {

printf ("$f + $fi\n", input real3[i], input imaginary3[i]):;

N4 = 8;
input real4 = {0.34785901, 0.71862502, 0.11248643, 0.59830784,
0.90372152, 0.44128975, 0.29513480, 0.87653024};
input imaginary4 = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

rearrange (input real4, input imaginary4, N4);
compute (input real4, input imaginary4, N4);
printf ("FFT Output:\n");

for (i =0; 1 < N4; ++1i) {

printf ("$f + $fi\n", input real4[i], input imaginary4[i]):;

inverseCompute (input real4, input imaginary4, N4);
printf ("\nIFFT Output:\n");
for (i=0; i < N4; ++1) {

printf ("$f + $fi\n", input reald4[i], input imaginary4([i]);

N5 = 4096;
input real5[N5];
input imaginary5[N5] = {0};
FILE *file = fopen ("nums.txt", "r");
if (file !=) A
for (' ; 1 < N5; ++1) |

fscanf (file, "S%f", &input real5[i]);

}

fclose (file) ;

printf ("length of real: %$1lu",
(input_real5)/ (input real5[0]));

rearrange (input realb, input imaginary5, N5);

compute (input realb5, input imaginary5, N5);

FILE *fft file = fopen("fft.txt", "w");
if (fft file !=)
for (i =0; 1 < N5; ++1i) {
fprintf (fft file, "%f + %$fi\n", input real5[i],

input imaginary5[i]);

}
fclose (fft file);
} else {

printf ("Error opening fft.txt for writing.\n");

inverseCompute (input real5, input imaginary5, N5);

FILE *ifft file = fopen("ifft.txt", "w");
if (ifft file !=) |

for (i = 0; i < N5; ++1i) {

fprintf (ifft file, "%f + %$fi\n", input real5[i],

input imaginary5[i]);
}
fclose (ifft file);
} else {

printf ("Error opening ifft.txt for writing.\n");

} else {

printf ("Error opening nums.txt for reading.\n");

return O;

software-simulation/scaling/scaling.c
#include <stdio.h>

#include <math.h>

#include "scaling.h"

#define
#define

synthMags [

synthBinDeviations [

phaseDifference (reall, imagl,

return atan2 (imag2, real2) - atan2(imagl, reall);

wrapPhase (

if (phaseIn >= 0)
return fmodf (phaselIn +
else

return fmodf (phaseIn -

processTransformed (* realPrev, * imagPrev,

* imagNew, * realOutPrev,

imagOutPrev,

* realNew,

*

* realOutNew, * imagOutNew,

phaseScaleAmount) {

(i 0, 1 <
synthMags[i] = 0;

synthBinDeviations([i] = 0;

i=0; 1< / 2;
dPhase;
if (realNew[i] == 0 && imagNew[i]
continue;
}
else if (realPrev[i] == 0 && imagPrev[i]
dPhase = i * 2 * s /
}
else {

dPhase = phaseDifference(realPrev[i], imagPrev[i], realNew[i],
imagNew([i]) ;

}

expectedDPhase = 1 * 2 * e /

dPhaseFromExpected = dPhase - expectedDPhase;

binDeviation = wrapPhase (dPhaseFromExpected) *
) ¢

newBin = (i + binDeviation) * phaseScaleAmount;

newBinNum = fmax (fmin (round (newBin),

newBinDeviation = newBin - newBinNum;

synthMags [newBinNum] += sqrt((realNew[i] * realNew[i]) +

(imagNew[1] * imagNew[i]));

synthBinDeviations [newBinNum] += newBinDeviation;

= 0; 1<
newPhase;
(synthMags[i]
newPhase = 0;
}
else if (realOutPrev[i] == 0 && imagOutPrev([i]
newPhase = synthBinDeviations([i]; }
else {

phaseRemainder = synthBinDeviations[i] * 2 *

/ ;
newPhase = atan2 (imagOutPrev[i], realOutPrev[i]) +
phaseRemainder + (i * 2 * * /)i
}
realOutNew[i] = cos (newPhase) * synthMags[i];
imagOutNew[i] = sin (newPhase) * synthMags[i];
if (1 !'= 0) {
realOutNew [i = cos (-newPhase) * synthMags[i];

imagOutNew [i = sin(-newPhase) * synthMags[i];

simpleTransform (* realPrev, * imagPrev, * realNew,

* imagNew, * realOutPrev, &

imagOutPrev,

* realOutNew, * imagOutNew,

phaseScaleAmount) {
(i 0, 1 <

synthMags [1] 0;

(1 = 0; 1 < / 2; i++)

if (realNew[i] == 0 && imagNew[i]

continue;

newBinNum = round (i * phaseScaleAmount) ;

synthMags [newBinNum]

(imagNew[1] * imagNew[i]));

}

i=20; 1<

newPhase;

if (synthMags([i]
newPhase = 0;

}

+= sqgrt ((realNew[i] * realNew[i]) +

else if (realOutPrev[i] == 0 && imagOutPrev([i]

newPhase = 0;

}

else {

newPhase = atan2 (imagOutPrev[i], realOutPrev[i]) + (i * 2 *

/
}

realOutNew[1]

imagOutNew [1i]

if (14 !'= 0) {
realOutNew [

imagOutNew [

phaseDifference (
imag?2) ;

processTransformed (

) 7

cos (newPhase) * synthMags[i];

sin (newPhase) * synthMags([i];

cos (-newPhase) * synthMags[i];

sin (-newPhase) * synthMags[i];

reall, imagl, real2,

* realPrev, * imagPrev, * realNew,

* imagNew, * realOutPrev,

* realOutNew, * imagOutNew,
phaseScaleAmount) ;
simpleTransform (* realPrev, * imagPrev, * realNew,
* imagNew, * realOutPrev, 29
imagOutPrev,
* realOutNew, * imagOutNew,

phaseScaleAmount) ;

software-simulation/scaling/main.c
#include <stdio.h>

#include <math.h>

#include "scaling.h"

#define

approx (a, b) |
if (! (fabs(a - b) < 0.001)) {

printf ("$f neq $f", a, b);

}
return fabs(a - b) < 0.001;

testReall [
testImagl [
testReal2|[
testImag?2 [
testPrevReal [
testPrevImag |
testOutReal [
testOutImag|

printf ("Test No change\n") ;

1:
passed = 1;
0;

for (i = i <
testReall[1i]
testImagl [i]
testReal2 [i]
testImag2[i]
testPrevReal [1]
testPrevIimag[i]
}
processTransformed (testReall, testImagl, testReal2, testImag2?,
testPrevReal, testPrevImag, testOutReal,
testOutImag,
pow (2.0, 0.0));
(= 0700 < ;oit++) |
if ('approx(testOutReal[i], 1.0) || 'approx(testOutImag[i], 0.0)) {
printf (" for i = %d\n", 1);
passed = 0;

break;

}
if (passed) {

printf ("Passed\n") ;
} else {

printf ("Failed\n") ;

printf ("Test 2: Simple rotation\n");
passed = 1;
for (i 0; i < ; 1++) |
testReall[1i]
testImagl [i]
testReal2[i]
testImag2[i]

testPrevReal [1]

testPrevImag[i] = 1.0;
}
processTransformed (testReall, testImagl, testReal2, testImag2?,
testPrevReal, testPrevImag, testOutReal,
testOutlImag,
pow (2.0, 0.0));
(i=20; 1< ;oi++) |

if ('approx (testOutReal[i], -1.0) || !approx(testOutImagl[i],

printf (" for i = %d\n", 1);
passed = 0;

break;

}
if (passed) {

printf ("Passed\n") ;
} else {

printf ("Failed\n") ;

printf ("Test 3: Shifted start\n");
passed = 1;
for (i 0, 1 < ; 1++) {
testReall [i]
testImagl [i]
testReal2[1i]
testImag2[i]
testPrevReal [1]

testPrevImag[i]

}

processTransformed (testReall, testImagl, testReal2, testlImag2,

testPrevReal, testPrevImag, testOutReal,

testOutlImag,
pow (2.0, 0.0));

Il

if ('approx (testOutReal[i], O. | | 'approx (testOutImag[i], -1.0))

printf (" for i = %d\n", 1i);
passed = 0;

break;

}
if (passed) {

printf ("Passed\n") ;
} else {

printf ("Failed\n") ;

printf ("Test 4: Different Magnitudes\n") ;
passed = 1;
for (i 0; i < ; 1++) |
testReall[1i]
testImagl [i]
testReal2 [i]
testImag2[i]
testPrevReal [1]
testPrevIimag[i]
}
processTransformed (testReall, testImagl, testReal2, testImag2?,
testPrevReal, testPrevImag, testOutReal,
testOutlImag,
pow (2.0, 0.0));
(i=20; 1< ;oi++) |

if ('approx(testOutReal[i], 0.0) || !approx(testOutImag[i], -2.0))

printf (" for i = %d\n", 1);
passed = 0;

break;

printf ("Passed\n") ;
} else {

printf ("Failed\n") ;

printf ("Test 5: Scaled shifts up\n");
passed = 1;
for (i o 1 ; oi++) |
testReall [i]
testImagl [i]
testReal2[1i]
testImag2[i]
testPrevReal [1]

testPrevIimag[i] -3.5;

}
processTransformed (testReall, testImagl, testReal2, testlImag2z,

testPrevReal, testPrevImag, testOutReal,
testOutlImag,
pow (2.0,
for (i=20; i<
if (!'approx (testOutReal[i], lapprox (testOutImag[i],
-sqrt (2))) A
printf (" for i = %d\n",
passed = 0;

break;

}
if (passed) {

printf ("Passed\n") ;
} else {

printf ("Failed\n") ;

printf ("Test 6: Scaled shifts down\n");

passed = 1;

for (i o 1 ; 1+4+) |

testReall [i]
testImagl [i]
testReal2[i]
testImag2[i]
testPrevReal [i]
testPrevImag [i]
}
processTransformed (testReall, testImagl, testReal2, testImag2?,
testPrevReal, testPrevImag, testOutReal,
testOutlImag,
pow (2.0, =-1.0));
(i=20; 1< ;i) |
if ('approx (testOutReal[i], 0.0) || 'approx(testOutImagli],
))) Ao
printf (" for i = %d\n", 1);
passed = 0;

break;

}
if (passed) {

printf ("Passed\n") ;
} else {

printf ("Failed\n") ;

printf ("Test 7: Shifting backwards\n") ;

passed = 1;
for (i 2 1 ; 1+4+) |
testReall[1i]
testImagl [i]
testReal2 [i]
testImag2[i]
testPrevReal [1]
testPrevImag[i]
}

processTransformed (testReall, testImagl, testReal?2, testImag2z,

testPrevReal, testPrevImag, testOutReal,
testOutlImag,
pow (2.0, 0.0));
(i=20; 1< ;o oi++) |

if ('approx (testOutReal[i], -1.0) || !approx(testOutImagl[i],

printf (" for i = %d\n", 1);
passed = 0;

break;

}
if (passed) {

printf ("Passed\n") ;
} else {

printf ("Failed\n") ;

printf ("Test 8: Prev FFT 0\n");
passed = 1;
for (i 0, 1 <
testReall [i]
testImagl [i]
testReal?2[1i]
testImag2[i]
testPrevReal [1]

testPrevImag[i]

}

processTransformed (testReall, testImagl, testReal2, testlImag2z,

testPrevReal, testPrevImag, testOutReal,
testOutlImag,
pow (2.0,
(AR =R R

if ('approx (testOutReal[i], !approx (testOutImag[i], -3.

printf (" for i = %d\n",
passed = 0;

}
if (passed) {

printf ("Passed\n") ;
} else {

printf ("Failed\n") ;

printf ("Test 9: Prev output 0\n");
passed = 1;
for (' ° 4 ;oi++) |
testReall [i]
testImagl [i]
testReal2 [i]
testImag2[i]
testPrevReal [1i]
testPrevImag[i]
}
processTransformed (testReall, testImagl, testReal2, testImag2?,
testPrevReal, testPrevImag, testOutReal,
testOutlmag,
pow (2.0,

for (i =0, 1 <

if ('approx (testOutReal[i], lapprox (testOutImag[i], -7.8))

printf (" for i = %d\n",
passed = 0;

break;

}
if (passed) {

printf ("Passed\n") ;
} else {

printf ("Failed\n") ;

software-simulation/converters/txter.py
import sys

from scipy.io import wavfile

import numpy as np

samplerate, data = wavfile.read(sys.argv[l])

if len(sys.argv) > 2:
with open(sys.argv([2], 'w')

for sample in data:

if isinstance (sample, np.ndarray) :
file.write(str (sample[0]) + '\n'")
elses
file.write(str (sample) + '\n')
else:
for sample in data:
if isinstance (sample, np.ndarray):
print (sample[0])
clses

print (sample)

software-simulation/converters/waver.py
import numpy as np

read samples from file(filename) :
samples = []
if filename

with open(filename, 'r') as file:

samples = [float (sample) for sample in file.readlines ()]

else:
samples = [float(sample) for sample in sys.stdin.readlines()]

return np.array (samples)

write wav_file(samples, filename, sample rate=48000, amplitude=1):

wav_file = wave.open(filename, 'w')

wav_file.setparams((1, 2, sample rate, len(samples), 'NONE', 'not

compressed'))

scaled samples = np.intl6(samples * amplitude)

samples bytes = scaled samples.tobytes()

wav_file.writeframes (samples bytes)

wav_file.close()

if name == " main ":

input filename =
output filename =
if len(sys.argv) ==
output filename = sys.argv[1l]
elif len(sys.argv) ==
input filename = sys.argv[1l]

output filename = sys.argv([2]

sys.exit (1)

samples = read_samples from file(input_ filename)

write wav_file(samples, output filename)

print ("WAV file generated successfully.")

software-simulation/setup.sh

! —-f "requirements.txt"]; then
echo "requirements.txt file not found!"

exit 1

VENV NAME="venv"

activate venv () {
echo "Activating the virtual environment...

source SVENV NAME/bin/activate

install deps () {
echo "Installing dependencies from requirements.txt..."

pip install requirements.txt || { echo "Installation failed"; exit

if [-d "SVENV_NAME"]; then
echo "Virtual environment already exists."

activate venv

trap 'rm -f .current requirements.txt' EXIT

pip freeze > .current requirements.txt

DIFF=S$ (diff .current requirements.txt requirements.txt | grep '~\+'
)

if ["SDIFF" -ne 0]; then
echo "Dependencies in the virtual environment do not match

requirements.txt."

install deps

else

echo "All dependencies are up to date."

echo "Creating virtual environment..."

python3 venv $SVENV NAME
[! -d "SVENV_NAME"]; then

echo "Failed to create virtual environment."

exit 1

activate venv

install deps

echo "To activate the virtual environment in the future, use the command:

source $SVENV NAME/bin/activate"

echo "To deactivate an active virtual environment, use the command:

deactivate"

echo "Building the realtime executable...

make realtime

! -x "realtime/main"]; then
echo "Failed to build the realtime executable."

exit 1

software-simulation/shift.sh

"S#" -ne 3]; then

echo "Usage: $0 <shift-amount> <input file> <output file>"

find python () {
if command python3 &>/dev/null; then
echo "python3"
elif command python &>/dev/null; then
echo "python"
else
echo "No suitable Python interpreter found.

exit 1

check scaling main ()

[-x "realtime/main"™]; then
echo "realtime/main is not built. Run setup.sh" >&2

exit 1

PYTHON=S (find python)

check scaling main

samples temp="./.samples"

samples scaled temp="./.samples scaled"

"SPYTHON" converters/txter.py "$2" "Ssamples temp"
if [-ne 0]; then
echo "Failed to generate samples, exiting." >&2

exit 1

cat "Ssamples temp" | realtime/main "$1" > "S$samples scaled temp";

echo "Scaling failed, exiting." >&2

exit 1

"SPYTHON" converters/waver.py "S$samples scaled temp" "$3"

if [-ne 0]; then
echo "Failed to process scaled samples, exiting." >&2

exit 1

echo "Processing complete."

Hardware Implementation Files

implementation/hw/components/audio_piper

module audio piper (
input

input

left in data,
left in valid,

left in ready = O,

right in data,
right in valid,
right in ready = O,

left out data =
left out valid

left out ready,

right out data
right out valid
right out ready,

[9:0] lights

[15:0] data = 0;
ctrl
ctr2
ctr3
ctr4
ctrb

always ff @(clk) begin
if (left in valid) begin
data <= left in data;
left in ready <= 1;

end

if (left in ready) begin
left in ready <= 0;

end

if (left out ready) begin
left out data <= data;
left out valid <= 1;

end

if (right out ready) begin

right out data <= data;
right out valid <= 1;

end

if (left out valid) begin
left out valid <= 0;

end

if (right out valid) begin

right out valid <= 0;

end

if (left in valid)
if (ctrl == 0) begin
lights[0] <= 1;

<= ctrl + 1;

else

ctrl <= ctrl + 1;

else

if (ctr2 == 0) begin
lights[0] <= 0;

ctr2 <= ctr2 + 1;

else

ctr2 <= ctr2 + 1;

if (right in valid)
lights[1l] <= 1;
else

lights[1] <= 0;

if (left out ready)
lights[2] <= 1;
else

lights[2] <= 0;

if (right out ready)
lights[3] <= 1;
else

lights[3]

(ctr3 == 0) begin

ctr3 <= ctr3 + 1;
if (lights[8])
lights[8] <
else

lights[8] <= 1;

else

ctr3 <= ctr3 + 1;

implementation/hw/components/cart_to_polar

module cart to polar(

input

real buf data,
real buf addr = O,

imag buf data,

imag buf addr = O,

mag buf 0 data
mag buf 0 addr

mag buf 0 wren

phase buf 0 data
phase buf 0 addr

phase buf 0 wren

mag buf 1 data
mag buf 1 addr

mag buf 1 wren

phase buf 1 data
phase buf 1 addr

phase buf 1 wren

magnitude;
phase;
n samples = 0;

_ce, done;

topolar polar converter (

.1 _clk(clk),

.1 reset(!go _in),

- @@ (i ee),

.1 _xval (real buf data[1l5:0]),
.1 _yval (imag buf data[15:0]),
.1 _aux(aux),

.0_mag (magnitude),

.0_phase (phase),

.0_aux (aux)

.0_done (done)

) &

always ff @(

(!going)

clk) begin
begin

if (go_in) begin

going <=1;

go_out <=0;

1 g <= lg

curr buf <= !curr buf;

end

end else begin

if (done) begin

real buf addr <= real buf addr + 1;

imag buf addr <= imag buf addr + 1;

n samples <= n samples + 1;

if

end

(!curr buf) begin

mag buf 0 data <= magnitude;

mag buf 0 addr <= real buf addr - 1;
mag buf 0 wren <= 1;

phase buf 0 data <= phase[15:0];
phase buf 0 addr <= real buf addr - 1;

phase buf 0 wren <= 1;

else begin

mag buf 1 data <= magnitude;

mag buf 1 addr <= real buf addr - 1;

mag buf 1 wren <= 1;
phase buf 1 data <= phase[15:0];
phase buf 1 addr <= real buf addr - 1;

phase buf 1 wren <= 1;

if (n _samples == 12'd4095) begin
going <= 0;
go_out <= 1;

end

topolar (i clk, i1 reset, i ce, 1 xval, i1 yval, i aux,

0 mag, o phase, o aux);
IwW=16,
ow=16,
NSTAGES=16,
XTRA= 3,
WW=18,
PW=16;
i clk, i reset, i ce;
[(Iw-1) :0] i xval, 1 _yval;
[(OW-1) : 0] 0 _mag;
[(PW-1):0] o phase;
1 aux;

Oo_auxy

[(WW=1) : 0] e xval, e yval;
{ {(2){i xvall[(IW-1)]}}, i xval, {(WW-IW-2){1'bO}} };
{ {(2){i yvall(IW-1)]}}, i yval, {(WW-IW-2){1'b0}} };

[(WW=1) :0] xv [0:NSTAGES];
[(WW-1) : 0] yv [0:NSTAGES] ;
[(PW=1) : 0] ph [0:NSTAGES] ;

[(NSTAGES) : 0]

e i clk)

(1_reset)

ax <= { (NSTAGES+1) {1'b0}};
(1_ce)

ax <= { ax[(NSTAGES-1):0], i aux };

@(

(1 reset)

(1 _ce)
({i xval[IW-1], i yval[IW-1]})
2'b01:
<= e xval - e yval;
<= e xval + e yval;

<= 19'h70000;

-e xval + e yval;
-e xval - e yval;

19'h30000;

-e xval - e yval;
e xval - e yval;

19'h50000;

e xval + e yval;
-e xval + e yval;

19'h10000;

[18:0] cordic_angle [0: (NSTAGES-1)];

cordic_angle[0] = 19'h0 9720;

cordic_angle| 19'h0 4£d9;

cordic_angle]| 19'h0 2888;
cordic_angle]| 19'h0 1458;

cordic_angle| 19'h0 OaZe;

cordic_angle| 19'h0 0517;

cordic_angle]| 19'h0 028b;

cordic_angle| 19'h0 0145;

cordic_angle| 19'h0 00a2;

cordic_angle| 19'h0 _0051;

cordic_angle[10] 19'h0 0028;

cordic_angle[11] 19'h0_0014;
cordic_angle[12] 19'h0 000a;

cordic_angle[13] 19'h0 _0005;

cordic_angle[14] 19'h0_0002;
cordic_angle[15] 19'h0_0001;

(1=0; 1i<NSTAGES; i=i+1) : TOPOLARloop

@ (i clk)

(1

((cordic_angle[i] ==

)11 (1 >= WW))

(yv[i]>>>(i+1));
(xv[i]>>>(1i+1)) ;

cordic_angle[i];

(yv[i]>>>(i+1));
(xv[i]>>>(1i+1)) ;

cordic_angle[i];

(1 == NSTAGES-1)

o _done <= 1;

o _done <= 0;

[(WW-1) :0] pre mag;

pre mag = xvV[NSTAGES] + $ ({{(OwW) {1'bO0}},

xv [NSTAGES] [(WW-OW)],
{ (WW-OW-1) { !xv [NSTAGES] [WW-OW] }}}) s

(1 _reset)

O _mag <= 0;
o phase <= 0;
o aux <= 0;

(i _ce)

O _mag <= pre mag[(WW-1) : (WW-OW)] ;
o _phase <= ph[NSTAGES];

0 aux <= ax[NSTAGES];

[(WW-OW) : 0] unused val;

unused val = { pre mag[WW-1], pre mag[(WW-OW-1) :0]

implementation/hw/components/emitter

module emitter (

input

[1:0] window start,

go_in,

[15:0] left out data
left out valid

left out ready,

b

[15:0] right out data
right out valid
right out ready

going = 0;
just finished = 0;
tmp = 0;

always ff @Q(clk) begin
if (!going) begin
if (go_in) begin
going <= 1;
end
end
else begin
if (!just finished) begin
tmp <= 1;

if (tmp) begin
just finished <= 1;
end
end

else begin

just finished <= 0;

going <= 0;

end

implementation/hw/components/ffter

[15:0] in buf data,
[11:0] in buf addr = 0,

real buf data
real buf addr

real buf wren

imag buf data
imag buf addr

imag buf wren

just finished = 0;

tmp = 07

always ff @ (clk) begin
if (!'going) begin
if (go_in) begin
go out <= 0;
going <= 1;
end
end
else begin
if (!just finished) begin
tmp <= 1;

if (tmp) begin
just finished <= 1;
end
end

else begin

just finished <= 0;
go_out <= 1;
going <= 0;

end

implementation/hw/components/first_hannifier

module first hannifier (

input clk,

[2:0] window start,

go_in,

ring buf data,
ring buf addr

hann rom data,

hann rom addr

out buf data
out buf addr

out buf wren

going = 0;

just finished = 0;

always ff Q(clk) begin
if (!going) begin
if (go_in) begin
ring buf addr <= window start;
hann rom addr <= 0;

out buf addr <= 0;

end
else begin
if (!just finished) begin
out buf wren <= 1;

out buf data <= ring buf data * hann rom data >> 16;

out buf addr <= hann rom addr;

hann rom addr <= hann rom addr + 1;

if (ring buf addr 4095 + 1024) begin
ring buf addr 0;

end

else begin
ring buf addr ring buf addr + 1;

end

if (hann rom addr 4095) begin
just finished g
end
end
else begin

out buf wren <= 0;

just finished <= 0;

go_out <= 1;
going <= 0;

end

implementation/hw/components/iffter

real buf data,
real buf addr = O,

imag buf data,
imag buf addr = 0,

out buf data
out buf addr

out buf wren

just finished = 0;

tmp = 07

always ff @ (clk) begin
if (!'going) begin
if (go_in) begin
go out <= 0;
going <= 1;
end
end
else begin
if (!just finished) begin
tmp <= 1;

if (tmp) begin
just finished <= 1;
end
end

else begin

just finished <= 0;
go_out <= 1;
going <= 0;

end

implementation/hw/components/sampler

module sampler (
input

input

left in data,
left in valid,

left in ready = O,

right in data,
right in valid,
right in ready = O,

ring buf data,

ring buf addr

ring buf wren

window start,

go out = 0

going = 0;
just finished = 0;
tmp = 0;

always ff @(clk) begin

if (!'going) begin
if (left in valid) begin
go _out <= 0;

going <= 1;

end
else begin
if (!just finished) begin

tmp <= 1;

if (tmp) begin
just finished <= 1;
end
end

else begin

just finished <= 0;
go _out <= 1;
going <= 0;

end

implementation/hw/components/scaler

go_ 1in,

cur window,

[7:0] scale amt,

mag in buf 0 data,

mag in buf 0 addr = 0,

phase in buf 0 data,
phase in buf 0 addr = 0,

mag in buf 1 data,
mag in buf 1 addr = 0,

phase in buf 1 data,
phase in buf 1 addr

mag out buf 0 rdata,
mag out buf 0 raddr
mag out buf 0 wrdata
mag out buf 0 wraddr

~out buf 0 wren = O,

[15:0] phase out buf 0 rdata,
[11:0] phase out buf 0 raddr =
[15:0] phase out buf 0 wrdata
[11:0] phase out buf 0 wraddr

phase out buf 0 wren = 0,

[15:0] mag out buf 1 rdata,

[11:0] mag out buf 1 raddr = O,

mag out buf 1 wrdata
mag out buf 1 wraddr

~out buf 1 wren = 0,

[15:0] phase out buf 1 rdata,
[11:0] phase out buf 1 raddr =
[15:0] phase out buf 1 wrdata
[11:0] phase out buf 1 wraddr

phase out buf 1 wren = 0,

[15:0] synth mags rdata,
[11:0] synth mags raddr
[15:0] synth mags wrdata
[11:0] synth mags wraddr

synth mags wren = 0,

[15:0] synth devs rdata,
[11:0] synth devs raddr =
[15:0] synth devs wrdata
[11:0] synth devs wraddr

synth devs wren = 0,

[2:0] {awaiting, analysis, synthesis, just finished} state

anal read = 1;

cur buf num;

mag in data;

mag in prev data;
phase in data;
phase in prev data;
mag in_ addr;
phase in addr;

mag out rdata;

mag out prev rdata;
mag out raddr;

mag out wrdata;
mag_out wraddr;

mag out wren;
phase out rdata;
phase out prev rdata;
phase out raddr;
phase out prev raddr;
phase out wrdata;
phase out wraddr;

phase out wren;

d phase;
expected d phase = 0;
d phase from expected;
bin dev;

new bin dev;
fractional bin;

extended mult;

new bin;

new bin num;

expected d phase increment =

bin dev multiplier = 16'h0a3;
= 16'h324;

two pi = 16'h648;

neg pi 16'h9b8;

16'h192;

always comb begin

mag in data = cur buf num ? mag in buf 1 data : mag in buf 0 data;

mag in prev_data = cur buf num ? mag in buf 0 data
mag in buf 1 data;

mag _in buf 0 addr mag in addr;

mag in buf 1 addr mag in_ addr;

phase in data = cur buf num ? phase in buf 1 data
phase in buf 0 data;

phase in prev data = cur buf num ? phase in buf 0 data
phase in buf 1 data;

phase in buf 0 addr = phase in addr;

phase in buf 1 addr = phase in addr;

mag out rdata = cur buf num ? mag out buf 1 rdata
mag out buf 0 rdata;

mag out prev rdata = cur buf num ? mag out buf 0 rdata
mag out buf 1 rdata;

mag out buf 0 raddr = mag out raddr;

mag out buf 1 raddr = mag out raddr;

mag out buf 0 wraddr = mag out wraddr;

mag out buf 1 wraddr = mag out wraddr;

mag out buf 0 wrdata = mag out wrdata;

mag out buf 1 wrdata = mag out wrdata;

mag out buf 0 wren = mag out wren && !cur buf num;

mag out buf 1 wren mag out wren && cur buf num;

phase out rdata = cur buf num ? phase out buf 1 rdata
phase out buf 0 rdata;

phase out prev rdata = cur buf num ? phase out buf 0 rdata
phase out buf 1 rdata;

phase out buf 0 raddr phase out raddr;

phase out buf 1 raddr phase out raddr;

phase out buf 0 wraddr = phase out wraddr;

phase out buf 1 wraddr phase out wraddr;
phase out buf 0 wrdata phase out wrdata;
phase out buf 1 wrdata = phase out wrdata;
phase out buf 0 wren = phase out wren && !cur buf num;

phase out buf 1 wren = phase out wren && cur buf num;

always ff @(
case (state)
awaiting: begin
if (go_in) begin
go out <= 0;

cur buf num <= cur window;

state <= analysis;
expected d phase <=

anal read <= 1;

analysis: begin

if (anal read) begin

d phase = phase in data - phase in prev data;

if (d phase < 0) d phase = d phase + two pi;

d phase from expected = d phase - expected d phase;
if (d phase from expected < neg pi) d phase from expected =
d phase from expected + two pi;

bin dev = d phase from expected * bin dev multiplier;

fractional bin = (i << 8) + bin dev;

extended mult = fractional bin * scale amt;

if (extended mult > (2047 << 16))

new bin = 0;

else

new bin extended mult >> 16;

new bin num = (new_bin >> 8) << 8;

if (new bin[7]) new bin num = new bin num + (2 ** 8);

new bin dev = new bin - new bin num;

synth mags raddr = new bin num >> 8;
synth devs raddr = new bin num >> 8;
synth mags wren 0;
synth devs wren 0;
anal read = 0;
end
else begin
synth mags wrdata synth mags rdata + mag in data;
synth devs wrdata synth devs rdata + new bin dev;
synth mags wraddr new bin num >> 8;
synth devs wraddr new bin num >> 8;
synth mags wren <= 1;

synth devs wren <= 1;

i <= (i == 2048) 2 0 : 1 + 1;
expected d phase <= expected d phase +

expected d phase increment;

if (i == 2048) begin
state <= synthesis;
synth mags wren <= 0;
synth devs wren <= 0;
synth mags raddr <= 0;
synth devs raddr <= 0;
synth mags wrdata <= 0;
synth devs wrdata <= 0;
synth mags raddr <= 0;
phase out prev raddr <= 0;

expected d phase <= 0;

anal read <= 1;

end

synthesis: begin

phase out wrdata <= phase out prev rdata + expected d phase;
mag out wrdata <= synth mags rdata;

phase out wraddr <= i;

mag_out wraddr <= 1i;

phase out wren <= 1;

mag_out wren <= 1;

synth mags raddr <= i + 1;
phase out prev raddr <= i + 1;
i<=1i+1;

expected d phase <= expected d phase +

expected d phase increment;

if (i == 2047) begin
state <= just finished;

end

just finished: begin
expected d phase <= 0;
synth mags wren <= 0;
synth devs wren <= 0;
synth mags raddr <= 0;
synth devs raddr <= 0;
synth mags wrdata <= 0;
synth devs wrdata <= 0;
expected d phase <= 0;

i <= 0;

go_out <= 1;
state <= awaiting;
end

endcase

implementation/hw/components/software_interface

module software interface (
input

input

writedata,
write,
chipselect,

address,

shift amt = 0,

av_config slave address = O,

av_config slave byteenable = O,

av_config slave read = O,
av_config slave write = 0,
av_config slave writedata = 0,
av_config slave readdata,
av_config slave waitrequest

) ;

always ff Q(clk) begin
if (chipselect && write)

shift amt <= writedata;

implementation/hw/components/stitcher

module stitcher (

input

in buf data,
in buf addr = 0,

hann rom data,

hann rom addr

out buf data
out buf addr

out buf wren

window start

go _out = 0

always ff @(clk) begin

window start = 1;

implementation/hw/fft_testing/fft_sim/testbench.v

10ns/100ps
testbench;

clk;

[31:0] fsin o, fcos o;

[31:0] real power sig, imag power sig;

#10 clk=!clk;

.clk (clk),

.reset n (reset n),
.clken (1'b1),

.phi inc i (32'd41943040),
.fsin o (fsin o),

.fcos o (fcos o),

.out valid (out valid)

.clk(clk) ,

.in_signal (fsin_ o) ,

.real power (real power sig) ,

.imag power (imag power sig) ,

.fft source sop (fft source sop sig) ,
.sink sop(sink sop sig) ,

.sink eop(sink eop sig) ,

.sink valid(sink valid sig) ,

.reset n(reset n)

“timescale 10ns/10@ps
module testbench;

reg clk;

wire [31:0] fsin_o, fcos_o;
wire [31:0] real_power_sig, imag_power_sig;

initial
begin
clk=0;
end

always

begin

#10 clk=!clk;
end

wire reset_n;

nco nco_inst(
.clk (clk), // clk.clk
.reset_n (reset_n), // rst.reset_n
.clken (1'bl), // in.clken
.phi_inc_i (32'd41943e40), // .phi_inc_i
.fsin_o (fsin_o), // out.fsin_o
.fcos_o (fcos_o), // .fcos_o
.out_valid (out_valid) // .out_valid

fft_wrapper fft_wrapper_inst
(

.clk(clk) , // input clk_sig

.in_signal(fsin_o) , // input [31:0] in_signal_sig
.real_power(real_power_sig) , // output [31:@] real_power_sig
.imag_power(imag_power_sig) , // output [31:@0] imag_power_sig
.fft_source_sop(fft_source_sop_sig) , // output fft_source_sop_sig
.sink_sop(sink_sop_sig) , // output sink_sop_sig
.sink_eop(sink_eop_sig) , // output sink_eop_sig
.sink_valid(sink_valid_sig) , // output sink_valid_sig
.reset_n(reset_n) // output reset_n_sig

endmodule

87

References

https://www.voutube.com/watch?v=PjKIMXhxtTM
https://gith m/JentGent/pitch-shift/blob/main/audios.iptheyn

https://en.wikipedia.org/wiki/Audio time stretching and pitch scaling
https://en.wikipedia.org/wiki/Phase vocoder

https://www.guitarpitchshifter.com/algorithm.html

https://cdrdv2-public.intel.com/667064/ug_fft-683374-667064.pdf&ved=2ahUKEwWiR1YTHi5uFA
xWCkKIKEHUhhBCMQFnoECBMQAQ&usg=A0vVawlFMRMwxHpeg2|39DPhM4wl|

https://ftp.intel.com/Public/Pub/fpgaup/pub/Intel_Material/18.1/University_Program_IP_Core
s/Audio_Video/Audio.pdf

https://ftp.intel.com/Public/Pub/fpgaup/pub/Intel _Material/18.1/University Program_IP_Core
s/Audio_Video/Audio _and Video Config.pdf

http://www.cs.columbia.edu/~sedwards/classes/2008/4840/Wolfson-WM8731-audio-CODEC.p
df

https://www.intel.com/content/www/us/en/docs/programmable/683364/18-1/streaming-inter
faces.html

https://cdrdv2-public.intel.com/667068/mnl_avalon_spec-683091-667068.pdf

https://github.com/BelaPlatform/bela-online-course/blob/master/lectures/lecture-20/code-exa
mples/fft-pitchshift.zip

mplementation_in_Verilog_using_ CORDIC_algorithm

https://www.youtube.com/watch?v=PjKlMXhxtTM
https://github.com/JentGent/pitch-shift/blob/main/audios.ipynb
https://en.wikipedia.org/wiki/Audio_time_stretching_and_pitch_scaling
https://en.wikipedia.org/wiki/Phase_vocoder
https://www.guitarpitchshifter.com/algorithm.html
https://cdrdv2-public.intel.com/667064/ug_fft-683374-667064.pdf&ved=2ahUKEwiR1YTHi5uFAxWCkIkEHUhhBCMQFnoECBMQAQ&usg=AOvVaw1FMRMwxHpeg2l39DPhM4wI
https://cdrdv2-public.intel.com/667064/ug_fft-683374-667064.pdf&ved=2ahUKEwiR1YTHi5uFAxWCkIkEHUhhBCMQFnoECBMQAQ&usg=AOvVaw1FMRMwxHpeg2l39DPhM4wI
https://ftp.intel.com/Public/Pub/fpgaup/pub/Intel_Material/18.1/University_Program_IP_Cores/Audio_Video/Audio.pdf
https://ftp.intel.com/Public/Pub/fpgaup/pub/Intel_Material/18.1/University_Program_IP_Cores/Audio_Video/Audio.pdf
https://ftp.intel.com/Public/Pub/fpgaup/pub/Intel_Material/18.1/University_Program_IP_Cores/Audio_Video/Audio_and_Video_Config.pdf
https://ftp.intel.com/Public/Pub/fpgaup/pub/Intel_Material/18.1/University_Program_IP_Cores/Audio_Video/Audio_and_Video_Config.pdf
http://www.cs.columbia.edu/~sedwards/classes/2008/4840/Wolfson-WM8731-audio-CODEC.pdf
http://www.cs.columbia.edu/~sedwards/classes/2008/4840/Wolfson-WM8731-audio-CODEC.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683364/18-1/streaming-interfaces.html
https://www.intel.com/content/www/us/en/docs/programmable/683364/18-1/streaming-interfaces.html
https://cdrdv2-public.intel.com/667068/mnl_avalon_spec-683091-667068.pdf
https://github.com/BelaPlatform/bela-online-course/blob/master/lectures/lecture-20/code-examples/fft-pitchshift.zip
https://github.com/BelaPlatform/bela-online-course/blob/master/lectures/lecture-20/code-examples/fft-pitchshift.zip
https://www.youtube.com/watch?v=2p_-jbl6Dyc
https://www.vlsiuniverse.com/verilog-code-for-sine-cos-and-tan-cordic/#3_Sine_and_Cosine_Implementation_in_Verilog_using_CORDIC_algorithm
https://www.vlsiuniverse.com/verilog-code-for-sine-cos-and-tan-cordic/#3_Sine_and_Cosine_Implementation_in_Verilog_using_CORDIC_algorithm

