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What is Arbitrage?

Bookie #1 
Odds(a) = A

Bookie #2
Odds(b) = B

Is (1 / A) + (1 / B) < 1?

Arbitrage

Not 
Arbitrage

● Bettors place bets provided by bookmakers (bookies)
● Bettor can place multiple bets on same event from different bookies to 

guarantee profit, no matter the outcome of the event.
● Determined using simple comparison calculation:

yes

no

is A + B < AB?



Our Project
Detect combinations of bets on NBA 
games that result in guaranteed profit 
– i.e. are arbitrage opportunities.
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Software Parsing: Data



Software Parsing: Bookie Mapping

Bookie Name Bookie ID

DraftKings 0

FanDuel 1

BetOnline.ag 2

… …

SuperBook 12

the most we've seen is 13
—can be represented in 4 bits!



Software Parsing: Fixed-Point Conversion

x.xxxfloating point 

 fixed point 210 | 29 | … | 22 | 21 | 20  | 2-1 | 2-2 | 2-3 | 2-4 | 2-5 | 2-6 | 2-7 | 2-8 | 2-9



Software-Hardware Interface: Representation

typedef struct {
uint32_t odds: 20;
uint32_t game_id: 4;
uint32_t bookie_id: 4;
uint32_t outcome: 1;
uint32_t unused: 3;

} arb_event_t;

Event struct (32-bit):
typedef struct {

uint32_t arb_prob: 20;
uint32_t game_id: 4;
uint32_t bookie_id_a: 4;
uint32_t bookie_id_b: 4;

} arb_result_t;

Result struct (32-bit):

typedef struct {
uint32_t done: 1;
uint32_t result_count: 8;
uint32_t padding: 23;

} arb_read_regs_t;

Done struct (32-bit):



Software-Hardware Interface: Registers
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Software-Hardware Interface: ioctls

CALC_ARB_WRITE_EVENTS

CALC_ARB_READ_EVENTS



Hardware: Grouping

...
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Hardware Calculation: Event Writing Phase



Hardware Calculation: Comparison Phase



Hardware Calculation: calc_odds

Core 
Logic



Synchronization: A more detailed view
● Instance arrays help 

make things simpler! 
● narrow vectors (clk, 

writedata) 
duplicated: each 
instance gets a copy

● wide vectors 
(calc_write_selector) 
distributed: each 
instance gets a slice



Synchronization: write_manager



Synchronization: write_manager



Synchronization: write_manager



Synchronization: write_manager



Efficiency

Pure Python Implementation

Arbitrage Detection: 0.220 seconds

FPGA Implementation

    Arbitrage Detection: 0.006 seconds



 Demo Time!


