
Sports Arbitrage
Bettor

Team: Brennan McManus, Shivan Mukherjee, Jonathan
Nalikka, Chelsea Soemitro, Shreya Somayajula

CSEE 4840: Embedded Systems

What is Arbitrage?

Bookie #1
Odds(a) = A

Bookie #2
Odds(b) = B

Is (1 / A) + (1 / B) < 1?

Arbitrage

Not
Arbitrage

● Bettors place bets provided by bookmakers (bookies)
● Bettor can place multiple bets on same event from different bookies to

guarantee profit, no matter the outcome of the event.
● Determined using simple comparison calculation:

yes

no

is A + B < AB?

Our Project
Detect combinations of bets on NBA
games that result in guaranteed profit
– i.e. are arbitrage opportunities.

Workflow

Use Python API to
scrape various

bookie websites

SCRAPE
BOOKIES

Transform data
from API (assign

IDs, convert to
fixed-point)

PARSE RAW
DATA

Send data to
hardware to

perform arbitrage
detection

ARBITRAGE
DETECTION

Retrieve arbitrage
results and

calculate profit in
software

USER
INTERFACE

1 2 3 4

software softwarehardware

Avalon
Bus

Software Hardware

Data
Scraping

&
Parsing

Kernel
Driver

Grouping
Module

Results
BRAM

...

Calculation
Modules

Main
Program

iowrite32()

ioread32()

events

results

Software Parsing: Data

Software Parsing: Bookie Mapping

Bookie Name Bookie ID

DraftKings 0

FanDuel 1

BetOnline.ag 2

… …

SuperBook 12

the most we've seen is 13
—can be represented in 4 bits!

Software Parsing: Fixed-Point Conversion

x.xxxfloating point

 fixed point 210 | 29 | … | 22 | 21 | 20 | 2-1 | 2-2 | 2-3 | 2-4 | 2-5 | 2-6 | 2-7 | 2-8 | 2-9

Software-Hardware Interface: Representation

typedef struct {
uint32_t odds: 20;
uint32_t game_id: 4;
uint32_t bookie_id: 4;
uint32_t outcome: 1;
uint32_t unused: 3;

} arb_event_t;

Event struct (32-bit):
typedef struct {

uint32_t arb_prob: 20;
uint32_t game_id: 4;
uint32_t bookie_id_a: 4;
uint32_t bookie_id_b: 4;

} arb_result_t;

Result struct (32-bit):

typedef struct {
uint32_t done: 1;
uint32_t result_count: 8;
uint32_t padding: 23;

} arb_read_regs_t;

Done struct (32-bit):

Software-Hardware Interface: Registers

writedata
ignored,

raise
arb_reset

writedata
ignored,

raise
arb_start

Registers
(9-bit addressable,

32-bit words)

write an
event,
raise

arb_write

write = 1

done
struct

result
struct

result
struct

...

result
struct

read = 1

0 1 0 1 0 0 1 1 0

9-bit address

Registers
(9-bit addressable,

32-bit words)

Address 0

Address 1

Address 2

Address 0

Address 1

Address 2

Address 3 - 255

Address 256

HardwareSoftware

Software-Hardware Interface: ioctls

CALC_ARB_WRITE_EVENTS

CALC_ARB_READ_EVENTS

Hardware: Grouping

...

Calculation
Modules

event

calc_write_selector

 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Game ID 2

Calc
Module #2

Grouping Module

write = 1

Hardware Calculation: Event Writing Phase

Hardware Calculation: Comparison Phase

Hardware Calculation: calc_odds

Core
Logic

Synchronization: A more detailed view
● Instance arrays help

make things simpler!
● narrow vectors (clk,

writedata)
duplicated: each
instance gets a copy

● wide vectors
(calc_write_selector)
distributed: each
instance gets a slice

Synchronization: write_manager

Synchronization: write_manager

Synchronization: write_manager

Synchronization: write_manager

Efficiency

Pure Python Implementation

Arbitrage Detection: 0.220 seconds

FPGA Implementation

 Arbitrage Detection: 0.006 seconds

 Demo Time!

