
TankGo!

Jiayi Wang (jw4462)

Xuanbo Xu (xx2440)

Yizhi Wang (yw4174)

Yiyang Peng (yp2655)

May 10, 2024

CSEE 4840 Embedded Systems

Overview and Rules
- There exists three maze maps.

- Two players move tank around a maze and shoot bullet at one another.

- Players use the ⬆⬇➡⬅ buttons on joysticks to move the tank

- Players shoot with the attack 🅰button.

- Ball bounces off walls 15 times then disappears if no tank was hit.

- If a tank gets hit by opponent or itself, it loses HP.

- When a tank has no HP, game over.

System Block Diagram

Avalon Bus Interface

If bullet loc == 0b00000000,
Bullet does not display.

Tank 1 HP = 16 - Tank 2 score

When game over, End is high.

Memory

Total:28568

Graphics

We used matrix translations on mifs to achieve 8 directions with only four sprites in ROM for two tanks.

Graphics

We used matrix translations on mifs to achieve 8 directions with only four sprites in ROM for two tanks.

(x, y)

(y, 16 - x)

Rotate 90°

Joystick

- Each controller communicates using the 7 byte protocol above⬆
- The three constants are all 255, representing the protocol 0 being used in these joysticks. The h_dirc

and v_dirc are the directional inputs from the joysticks.

- h_dirc changes to 0 when left arrow is pressed and to 255 when right arrow is pressed. Similarly,

v_dirc changes to 0 when up arrow is pressed and to 255 when down is pressed.

- XYAB: Different integer values represent different combinations of these button being pressed.

- Other keys were not used in our project.

Constant Constant Constant h_dirc v_dirc XYAB Other keys

Joystick

A for shoot bullet

When XYAB = 47

X is for select map

When XYAB = 31

Drive Forward
When v_dirc = 0
Also for selecting the
next map

Reverse
When v_dirc = 255
Also for selecting
the last map

Spin left
When h_dirc = 0

Spin right
When h_dirc = 255

Game Logic

Tank Movement
Four arrow buttons but 8 directions.

➡ ➡ ➡ ➡ etc.

⬅ ⬅ ⬅ ⬅ etc.

⬆

⬆

⬇

⬇

Collision Detection (Tank with Map)
(Tank1_x, Tank1_y) (Tank1_x + 3, Tank1_y)

(Tank1_x , Tank1_y - 3) (Tank1_x - 3 , Tank1_y - 3)

Int map1 [64] = {
1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 1, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 0, 1,
1, 0, 1, 1, 1, 1, 0, 1,
1, 0, 1, 0, 0, 0, 0, 1,
1, 0, 1, 0, 1, 1, 1, 1,
1, 0, 1, 0, 0, 0, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1}

int index = x + y * 8;

int index1 = x+3 + y * 8;

int index2 = x + (y-3) * 8;

int index3 = x-3 + (y-3) * 8;

if (index >= 0 && index < 64 && (map[index]

== 1|| map[index1] == 1 || map[index2] == 1

|| map[index3] == 1)) {

 return 1;

} else {

 return 0;

}

Collision Detection (Bullet with Tank)
(Tank1_x, Tank1_y) (Tank1_x + 3, Tank1_y)

(Tank1_x , Tank1_y - 3) (Tank1_x - 3 , Tank1_y - 3)

if bullet_x between Tank1_x and Tank1_x - 3,

AND bullet_y between Tank1_y and Tank1_y - 3) {

 return 1;

}

 return 0;

}

Collision Detection (Bullet with Wall)
Initially, bullet direction = tank direction.

If direction is , if bullet_wall_collision() == 1, N ➡S, E ➡W, S ➡N, W ➡E.

If direction is ex. NE, two possibilities:

If bullet_x+1 collides, NE ➡NW.
If bullet_y+1 collides, NE ➡SE.

