
Parallel Functional Programming Final Project Proposal

Mancala Parallelization Using Minimax
Daniel Manjarrez (dam2274), Caiwu Chen (cc4786), Sindhu Krishnamurthy (sk4699)

Nov 17, 2024

1. Introduction to Mancala

Mancala is played on a board consisting of 12 small pits and 2 larger pits called "stores"

or "mancalas." Each player controls 6 small pits on their side and has one store to collect

captured stones. During gameplay, players take turns picking up all the stones from one of their

pits and "sowing" them into subsequent pits one by one, including their own store but skipping

the opponent's store. If the last stone lands in the player’s store, they get another turn; otherwise,

control passes to the opponent. If the last stone lands in an empty pit on the player’s side, they

capture all stones from the opponent’s directly opposite pit. The game ends when all pits on one

player's side are empty, and any remaining stones are collected into the opponent’s store. The

player with the most stones in their store wins.

2. Algorithm
● Minimax

We will use the Minimax algorithm to make strategic decisions by evaluating potential

moves and anticipating the opponent’s responses. During gameplay, the algorithm recursively

explores possible game states, alternating between the player and opponent, and evaluates each

state using a heuristic function that considers factors such as the number of stones in the store,

potential captures, and extra turns. The scores from the leaf nodes of the tree are propagated back

up, with MAX nodes selecting the highest score and MIN nodes selecting the lowest. The

optimal move is chosen based on the highest score at the root node. To improve performance and



reduce computation time, we will apply alpha-beta pruning to eliminate unnecessary branches

from the search tree.

● Alpha-Beta Pruning

Alpha-beta pruning introduces two parameters: alpha, the maximum score that the

maximizing player is guaranteed to achieve so far, and beta, the minimum score that the

minimizing player is guaranteed to achieve so far. These parameters track the best possible

scores for both the MAX and MIN players. During the search, alpha and beta are updated at each

node based on the current best scores for the players. If the current node is a MAX node and its

value exceeds beta, it means the minimizing player would not choose this move, so the branch is

pruned. Similarly, if the current node is a MIN node and its value is less than alpha, then the

maximizing player would not choose this move, so the branch is pruned.

3. Parallelization
● Node Exploration Parallelization

For each move made by an AI or player, the algorithm generates a new state. We will

parallelize the process of generating each node to reduce computation time. This part can

be implemented using Strategies.

● Heuristic Evaluations Parallelization

Since each heuristic operates independently, we will compute them in parallel at each

node of the search tree to increase efficiency. This part can also be implemented using

REPA.

● Alpha-Beta Pruning Parallelization

We will explore methods to parallelize Alpha-beta pruning in combination with minimax

parallelization. In this approach, each thread will independently maintain its branch and

share information if needed.

4. Performance Evaluation



We will evaluate the performance of parallelizing heuristic evaluations in a Minimax

Mancala implementation from these aspects: Speedup, CPU Usage & Thread Efficiency,

Comparison with Sequential Version, etc. Ideally, we should see a significant reduction in time

spent evaluating game states, with minimal increase in memory and overhead costs, leading to a

more efficient decision-making process.

Reference
[1] M. Blake, "Understanding the Rules of Mancala: Capture the Win," LoveToKnow, Jul. 9,

2019. [Online]. Available: https://www.lovetoknow.com/life/lifestyle/mancala-rules. Accessed:

Nov. 17, 2024.

https://www.lovetoknow.com/life/lifestyle/mancala-rules

