
Project Proposal
ayb2121
vm2724

Summary
Parallelize A* search on the NP-Complete variation of the traveling salesman problem.

● NP-Complete TSP: given a weighted graph and a maximum length N, does a route with
length <= N exist that visits a given list of nodes.

● A* search will not be performed on the nodes themselves, but on all the states of
possible routes.

○ Vertices are routes
○ Edges are (legal) swaps between two cities on the route, where a swap is legal if

the resulting route is legal (i.e. that path exists in the graph)

Serial Algorithm
A* search requires you to define a heuristic. A state object storing information like 1) current
node, 2) visited nodes and 3) total distance traveled. The heuristic can be varied, but we will
start with the total distance traveled, which the priority queue will be ordered on. This
guarantees correctness - i.e. the first item off the queue that reaches the end is guaranteed to
be the shortest path. With the NP-Complete variation of the problem, we can ‘early exit’ if no
solution is found, making time comparisons easier.

Parallelization Plan & Anticipated Difficulties
Some ideas:

1. Explore frontier in parallel, each iteration pop x items off the queue and compute their
children in parallel, then consolidate them back to the queue. Next iteration repeats.

2. Shard the priority queue up to some state depth (e.g. serial after 5 cities visited) and
each branch gets its own queue.

Functional specific ideas:
● For coarse granularity while maintaining work sharing, have a spark explore N nodes

before resynchronizing with the shared priority queue, prioritizing
● Implement strategies-compatible problem space?

Anticipated difficulty is correctness when states are explored in parallel. We will need to
consolidate all the found solutions in each branch and then get the best one out of those.



Input Data
TSP gets expensive even with only 30-50 cities so the input data can be designed by hand, and
IO will not be the bottleneck.


